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PREDICTION IN THE WORST CASE!

By DeAN P. FOSTER
University of Chicago

A predictor is a method of estimating the probability of future events
over an infinite data sequence. One predictor is as strong as another if for
all data sequences the former has at most the mean square error (MSE) of
the latter. Given any countable set 9 of predictors, we explicitly construct

“a predictor S that is at least as strong as every element of 2. Finite sample
bounds are also given which hold uniformly on the space of ail possible
data.

1. Introduction and summary. As in Rissanen (1986), the data will be
an infinite sequence of binary variables R;, in other words, R = {R,, for
i=1,2,...}is a {0, 1}-valued stochastic process. () is the set of infinite binary
sequences. Let &, be the natural o-field induced by R, R,,..., R,.Call M a
predictor if at time n — 1 it outputs a number M (n) which estimates the
probability P(R, = 1%, _,). Technically, M is a predictor if and only if it is an
&, _,-adapted stochastic process taking values in the interval [0, 1]. This model
of probability forecasting is discussed in Dawid (1984, 1986).

Consider two predictors: A and B. Which is better? Define

_ 12 .
Qu(Am) = - T (AG) - R,

the mean square error between prediction and observation—called the Brier
score in meteorology [Brier (1950)]. We can compare predictors A and B by
computing d (A, B),

dp(A, B) = liminf(Qx(A,n) — Q(B,n)).

Note that dg(-, ) is not a metric, nor is it antisymmetric. Since @, is
bounded between zero and one, d,(-, - ) is finite. If dz(A, B) > 0, then in the
limit B forecasts better than A on the data sequence R.

DEFINITION. B is as strong as A if for all sequences R in Q, dz(A, B) > 0.

DEFINITION. B is stronger than A if it is as strong as A and there exists a
sequence R in Q such that d,(A, B) > 0.

The results of this paper concern relationships among predictors, such as
strong or stronger, which hold for all sample paths. Although not explicitly
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mentioned, such properties will hold a fortiori almost surely or in expectation
with respect to any measure & on (). For example, if B is as strong as A,
then for all measures &,

li’rlriigole(QR(A,n)) — E(Qg(B,n)) > 0.

The goal of this paper is to propose and justify a new method for combining
predictors. More precisely, consider two predictors A and B, neither of which
is as strong as the other. This new method will yield a predictor S which is as
strong as both A and B. In other words, S combines the best properties of
both A and B; if A predicts well on some sequence of R, then so does S.

Empirical properties of various other methods of combining forecasts have
been discussed in Newbold and Granger (1974) and Gupta and Wilton (1987).
A concept similar to strength which deals with portfolio selection in finance is
due to Cover (1991).

2. Exploring strength.

ExampLE. Define two predictors: ZERO(n) = 0 and ONE(n) = 1. Then,
ZERO is not as strong as ONE, nor is ONE as strong as ZERO. This is seen by
considering the two data sequences R, = 1 for all i and the sequence R = 0
for all i. Then, d ;(ONE, ZERO) = —1, dz(ZERO,ONE) = —1.

This situation seems reasonable—each of these two predictors has some
data that it does better on. Is stronger a vacuous definition? No; the following
lemma gives a general construction.

LEMMA 1. For any arbitrary predictor M, there exists a predictor S which
is stronger than M.

Proor. We need to find two things to prove this lemma: a predictor S
which is as strong as M and a point w in Q for which this predictor does
better than M. Find a point » in Q) with the following property:

|1, if M(i)(w) <0.5,
o, if M(i)(w) > 0.5.
This point can be recursively constructed because M(i) is .%;_;-measurable.
Note that @ (M, n) > 0.25 for all n: Now let
w;, if R, =w; forall j <i,

SO(R) = {M(i), otherwise.

Thus, for all points R # w in Q, dx(M, S) = 0. Also, d (M, S) > 0.25. Thus,
S is stronger than M. O

One would expect from the name that strength is transitive. This is so. It
follows from superadditivity of limit inferior: dgj(C, A) > dgx(C, B) +
dg(B, A) > 0.
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3. Results. Suppose we have a finite set Z of predictors. If a strongest
element of Z does not exist, then we cannot decide which predictor from 2 to
use. Thus, the search is on for finding a predictor S, which is as strong as
every element of 2. The subscript & in S, stresses that S depends on which
set is being dominated.

Call the elements of Z: f|, fs, f3,- .., f4- For instance, the prediction made
by the second predictor in Z at time n is fy(n). Define the convex hull of 2
to be the set of predictors created by convex weightings of predictors in 2.

DEFINITION. Convex hull of 2 is {MIM(i) = w, 1) + wyfo(i) +
o twy fy(0) for w; > 0 and w, + wy + -+ +wy = 1)

In vector notation, M = w’f, where w =[w,, w,,...,w,;]" and f=
[f1, far---, [4]F. At time n, we write the prediction made by M as M(n) =
wTf(n).

DErINITION. Let B represent the simplex

B={weRd

d
Ewi=1,wi20}.
i=1

The convex hull of 2 can be written as {M|M = w”f, w € B}.
We now state the main theorem.

THEOREM 1. For Z a collection of d predictors, let

So(n) =(n - 1) f(n),

where W(n — 1) minimizes (n — DQ(wTf,n — 1) + wTw over w in B. Then S,
is as strong as every element of the convex hull of 9. In particular:
Qr(S,,n) — Qp(M,n) < (2 + dlogd(n + 1))/n for every R in Q and for all
M in the convex hull of 9.

We will prove theorem later in the section.

Because (n — 1)@ + wTw is a quadratic over a compact set, the minimum
exists but it need not be unique. If it is not unique, just pick one arbitrarily.
No matter how this is done, we have

(n-1DQ((w(n—1) +x) f,n—1) + (d(n - 1) +x)" (¥(n - 1) +x)
~(n-1)Q(b(n-1)"fn-1)-d(n-1)"d(n-1) >0

for all x € R¢ with @(n — 1) + x € B. Let L, _(x) denote the linear part in x
of this expression. L,_,(x) can be thought of as the directional derivative of
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(n — DQ + wTw at its minimum point (@&(rn — 1)). If @W(n — 1) happens
to be in the interior B, then L,_,(x) = 0. More generally, it follows that
a1x) = 0if ¥(n—-1)+x €B.
Deﬁne A, a function of time i and an R%vector x, as

AGi,x) = i(Qr((i — 1) f,i) — Qe((B(i - 1) + x)"f,1))
4 (i - D)TH( - 1) — (i — 1) +2)T(d(i - 1) +x).
Using the fact that @( — 1) minimizes Z}_,(R; — w"f)? + w'w over B, we
have for (i — 1) + x € B,
A(i,x) = —xTG;x + a;27f(i) — L;_y(x) < —x"G,x + a;2"f (i),

where f(i) is the vector of predictions at time i, G, =1+ LZ%_,f())f )7,
a;, = 2R, — f()Tw(i — 1)) is a real number with |a,| < 2 and I is the identity

matrix.
Our first claim relates A to our total error.

CrLamM A.
Qr(So,n) — u(B(n)"f,n)
1 T T i :
= ;(ﬁ)(n) w(n) —@(0)" @(0) + Y max A(z,x)).

i=1 WG-D+xeB
Proor.

QR(S.@»n) = Z (iQR(lf)(i - 1)Tf,i)

i=1
—(i - Dp(w(i - D f,i - 1))
QR(w(n) f n)

(@r(@(i — DTF,1) — @u(()F1))

S|+

-
S

TR E
+%( (n)Tw(n) — w(0)" w(0)
_y [@(i - )T@(i - 1) - zb(i)sz(i)])
i=1
= QR(w(n)Tf7n)
+ %(w(n)%(n) — »(0)T@(0)
+ éA(i,w(i) — (i - 1))).

Notice that A(Z, - ) attains the maximum at x = @(i) — @(i — 1). O
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In Claim B, we bound the size of A.

Cramm B.

IG;| - 1G;_4
max A < max(-x"G;x + a,x7f(i)) < ————
w(i—-1)+x€B xeR? |Gl

Proor. Note G; = G,_; + f(i) f(i)T. Because G, is the identity plus a
nonnegative definite matrix, we know that G; is invertible. Let |G,| be the
determinant of G,.

G, =G, - £G) F(i)T
1G,_i = 1G(1 = F(i) TG (D)),

T ~N—1p/ IGil_lGi—ll
(@) G f(a) = —GI

)

But the maximum value of A is less than or equal to a, f(i)7G; 'f(i)a,;/4.
(Maximizing the quadratic —xTAx + b7x, where A is a positive definite ma-
trix, yields 57A~'b/4.) Recalling that |a;| < 2, we get the desired result. O

Craimm C.

n

> max A(i,x) <dlogd(n +1).

i=1 Wi@—-1)+x€B
Proor. Using Claim B and the equation 1 — x < —log(x), we get
n
Y, max A(i,x) < log(1G.,|).
i=1

|G,| < L¢, where L is the maximum eigenvalue of G,. The elements of G, are
bounded by n + 1. Thus, L is bounded by d(n + 1). O

Proor oF THEOREM 1. For all M in the convex hull of 2,
QR(M,n) - QR(S_@’ n)
o _ 1
2QR(w(n) f?n)_QR(S_@’n)_ ;

> (- f; max A(i, x) + ®(0) " ®(0) — w(n) w(n) - 1
n i=1

1
> ;l-(—dlogd(n +1) - 2),
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where the first inequality follows from Qg((n)Tf,n) < Qz(M,n) + 1/n for
all M in 9. The second line is by Claim A. For w € B, wTw < 1. This plus
Claim C yields the last inequality. Thus

. —dlogd(n+1) -2
dr(M,S,) > liminf =

n—o n

0. m]

Since f; is in the convex hull of 2, we see that S, is as strong as f;. So, of
the predictors, { f, f2,-- -, f4» Sy}, the strongest is S,,.

The bound in Theorem 1 holds for all R, so in particular it holds for the
worst possible R—called the worst case. Thus it deals with prediction in the

worst case.

THEOREM 2. For any countable set 9 of predictors, there exists a predictor
T, which is as strong as every member of .

Proor. Define T, for i = 1,2,3,... as

T(n) = filn), Tfl. =
Sy(n), ifi<n,

where 2, = {T.,,, f;}. Notice that for all times n, all T; are well-defined. By

Theorem 1, T, is as strong as f; and as strong as T ;. By transitivity, T, is as

strong as f,. In other words, T, is as strong as T,, which is as strong as

Ts, ..., which is as strong as T}, which is as strong as f;, so T, is as strong

as f;. Letting T, = T, proves our result. O

ExampPLE. Theorem 2 is only an asymptotic result. In other words, a set 2
can be constructed such that at all finite times n, there exist a perfect f;, € &
with @(f,,n) = 0, but @(T, n) = 3. Theorem 2 forces lim inf, _,., @(f;,n) > 3
for all f; in 2. So, in this case,

13

0 = lim inf §(f,,n) < liminf Q(T,,n) < inf liminf §( f;,n).
o0 1 n—o

n—o n—
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