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LANCASTER INTERACTIONS REVISITED

By BERND STREITBERG

University of Hamburg

Additive interactions of n-dimensional random vectors X, as defined
by Lancaster, do not necessarily vanish for n > 4 if X consists of two
mutually independent subvectors. This defect is corrected and an explicit
formula is derived which coincides with Lancaster’s definition for n < 4.
The new definition leads also to a corrected Bahadur expansion and has
certain connections to cumulants. The main technical tool is a characteriza-
tion theorem for the Moebius function on arbitrary finite lattices.

1. Introduction: A defect in Lancaster’s definition of interaction
measures. The concept of additive interaction measures was introduced by
Lancaster (1969), although a special case already appear in Bahadur’s (1961)
representation of a multidimensional probability distribution concentrated on
{0, 1}*. An (additive) interaction measure AF is a signed measure determined
by a given distribution F on R™ which vanishes identically whenever F in the
nontrivial product of two of its (multivariate) marginal distributions. Besides
having an independent value as a structural concept, interaction measures
have many applications in statistics, e.g.:

1. contingency table analysis, cf. Zentgraf (1975), Toewe, Bock and Kundt
(1985);
2. statistical physics [cf. Falkenhagen and Ebeling (1963)];

3. a new axiomatization of cumulants, cf. Section 4 of this paper. This

axiomatization suggests several ways for the robustification of cumulants.

Lancaster (1969) introduces an interaction measure as a certain signed
measure AF, a function of the joint distribution F = F, , , of a random
vector X = (X,..., X,,) that is supposed to be identically zero whenever the
random vector is decomposable into two mutually independent subvectors. For
n = 2, he finds

AF(x;, x5) = Fia( %1, %5) — Fi(x) Fp(x5),
or, in a symbolic notation,
AF = (Fi* — F)(F3* - F,),

where after expansion a product like F*F* --- F.* is understood to denote
the corresponding joint distribution function F; ;  ,, cf. also Darroch and
Speed [(1983), page 736]. The interaction measure AF for general n then is
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given by
AF = (F* — F))(F3 - F,) -+~ (F} - F,).
While this definition has the intended property for n = 3 where
AF = F 33 — F\Fy; — F,F i3 — F3F,, + 2F,F,F;,

it does not work as intended for n > 4. Assuming that X = (X, X,, X3, X,) is
decomposable into the two mutually independent subvectors (X;, X,) and
(X3, X,), one finds after expansion and simplification

AF = (F12 - Fle)(F34 - F3F4),

which is, in general, unequal to the zero function.

We will, in the following, define a corrected version of Lancaster’s interac-
tion measure. The symbolic notation will not be used, the main technical tool
being a characterization of the Moebius function on an arbitrary finite lattice.
The new definition of interaction measures will lead immediately to a corrected
Bahadur representation of probability measures. In a precise sense, Lancaster’s
original definition corresponds to moments about the means, while the new
definition introduces measures which correspond to cumulants. In his work,
Lancaster gave not only the measure theoretical definition [Lancaster (1969),
Chapter XII, 2] but also an alternative approach to interaction measures via
L? expansions. These expansions are essentially moment generating functions.
While not discussed in the following paper, an analogous L2 theory can easily
be developed for the new interaction measures. The expansions then will
correspond to multivariate cumulant generating functions.

2. Partitions and interactions. A partition w of n ={1,2,...,n}is a
set of nonempty, pairwise disjoint subsets m; C n, called the blocks of the
partition, the union of which is equal to n. We write, as a shorthand notation,
instead of, e.g., {{1, 3}, {2}, {4}}, simply 13|2|4. The set of all partitions 7 of n is
denoted by P(n). The lattice structure on P(n) is most easily described by
viewing a partition as an equivalence relation on n. Let R be the set of
reflexive and symmetric relations on n, i.e., subsets R € n X n with (i,i) € R
for all i € n and (i, j) € R whenever (j,i) € R. The equivalence relations are
precisely the closed elements R = R* in R, where R* is the transitive closure
of R. We identify an equivalence relation with the partition given by its
equivalence classes. For partitions 7,7 we define 7 < 7 if 7 C 7 as relations
and the lattice operations by 7 A w =7 N and 7 V 7 = (r U 7)*. The finest
partition is 0 := 1|2| - - - |[n and the coarsest one is 1 := 1,2, ..., n. The lattice
of partitions appears naturally in many classical and, since the rebirth of
invariant theory, modern parts of statistics and combinatorics [cf. Carney
(1968), Rota (1964), Tracy and Gupta (1973), Speed (1983), Stanley (1986)].

The following construction of partition operators is exemplified by the
simple operator J;3,, which transforms a three-dimensional distribution func-
tion Fjp3 = F(xy, x5, x3) into the product Figp = Figo(x;, xp, x3) =
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F(x,, %, x3)F(», x5, ). Given an n-dimensional distribution function F =

F, , .., of arandom vector (X,,..., X,) and a partition 7 = |my| - -+ |7, €
P(n), let F_ be the product of the marginal distribution functions of the %
subvectors (X;: i €m;), j=1,2,...,k. The map F — F,_ is a (nonlinear)

operator J,_ on M, the set of probability measures on (R", &,), and the
operators J, have a simple composition rule which is easy to prove:

ProposITION 1. For r,m e Pm): J, o, =d_, ..

The intended characteristic property of Lancaster interactions can be de-
fined as follows:

DEFINITION 1. A measure F € M, is called decomposable if = € P(n) with
7 < 1 exists such that J_F = F. An (additive) interaction operator is a linear
combination

A = EaﬂJ‘n"

with AF = 0 for all decomposable measures F. A measure F € M, is called
r-decomposable for + € P(n) if m € P(n) with 7 < 7 exists such that J_F = F.
A r-interaction operator A_ is a linear combination

A= Z a(’”" T)Jfr

m

such that A_F = 0 for all 7-decomposable F. We set A, = J,.

Clearly, A = A,, i.e,, a, = a(w,1). Note that F is 7-decomposable if F = F,
and furthermore, at least one of the subvectors defined by the blocks 7; of 7:
(X;: i € 1) is itself decomposable. An interaction operator A_ is a map from
M; to M, the (Banach) space of all finite signed measures on (R”, %,), i.e., the
interaction measure AF is a finite signed measure. For n = 2, Definition 1
immediately gives, up to a multiplicative factor, A = A}, = J, — Jyp, ie,
Lancaster’s definition for the case n = 2. With a bit more algebra, one also
finds directly from the definition that AF as defined here coincides with
Lancaster’s result for n = 3.

3. A corrected version of Lancaster interactions and Bahadur ex-
pansions. In the derivation of the general result, Iverson’s convention, cf.
Graham, Knuth and Patashnik (1989), will be used: given a proposition &, let
{?} denote its truth value, i.e., {#} is equal to 1 if & is true and equal to 0 if
Z is false.

For all r, 0 € P(n) and all y <, the sum of a(m,7) over all = with
m Ay = o vanishes. Assume namely that J F = F for an F with J . F = F
and y < 7, i.e., F' is 7-decomposable. Since A, F has to vanish for all such F,
an equality of operators has to hold: £ a(m, y)J,, », = 0. The statement follows
by collecting coeflicients.
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We show that a(-, - ) is, up to a constant, uniquely defined as the Moebius
function on the partition lattice. In order to state this in general terms, let S
be an arbitrary finite lattice and define the incidence algebra I(S) as the set of
all mappings g: S X S — R with g(x,y) # 0 only if x <y. We introduce on
I(S) the operations of

1. scalar multiplication, for ¢ € R: (cgXx,y) = cg(x, y);
2. addition, (g + h)Xx, y) = g(x, y) + h(x,y);
3. convolution, (gh)x,y) = ¥ ,g(x, 2)h(z, y).

It is easy to show, that I(S) is closed under these operations, cf. Aigner
(1975), and is, indeed, an associative R-linear algebra (which can be realized as
a subalgebra of the algebra of upper triangular matrices). Special elements of
I(S) are the identity  with 8(x,y) = 8,,, the zeta function { with {(x,y) =
{x <y} and the Moebius function u as the inverse of the zeta function, i.e.,
u¢ = {u = 8. The following basic lemma characterizes the Moebius function:

LEMMA 1. Let S be a finite lattice. In the incidence algebra I(S) there
exists exactly one function a: S X S = R with the following properties:

() a(x,x)=1 forallx € 8,
Gi) E{x At =sla(x,y) =0 forally,s€ Sandallt <y,

and a = u, the Moebius function in I(S).

Proor. (i) Uniqueness. Let a, b € I(S) satisfy (i) and (ii). Consider e =
a — b. We want to show e = 0. For each y € S, one has e(y,y) = a(y,y) —
b(y, y) = 0 by (1). We proceed by an induction-type argument. Let S(y) be the
set of all z <y for which e(z,y) = 0 has not yet been shown. If S(y) is
nonempty, it contains at least one maximal element, say ¢. Set s = ¢ in (ii),
then (summations over all x € S):

0=3 {xAt=tle(x,y) = ¥ {t <x <y}e(x,)
=e(t,y) + X {t <x <yle(x,y) =e(t,y),

because the sum in the last line vanishes by definition of ¢. Therefore
e(t, y) = 0, hence, by induction, e = 0.
(ii) Existence. We show that u satisfies (i) and (ii). By definition,

Y {x <y <z)u(x,y)i(y,2) = 8(x,2),
y

hence u(x, x) = 8(x,x) = 1. Choose y € S and ¢ < y. Then (summations over
x€8):

Z {x ANt = t}.u'(xvy) = Z {t <x Sy}/-"(x’y)
= Z {x Sy}{(t7x)/~"(x7y) = 6(t’y) =0,

i.e., (i) for s = ¢ <y. Now let S(¢,y) be the set of all s € S with s < ¢ <y for
which (ii) has not yet been shown for . If S(¢, y) is nonempty, it has at least
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one maximal element s. One finds (summations over x € S):
Y{xnt=siu(x,y) = X {(x At=siu(x,y) — X {x At>shu(x,y)
=Y {x At=s}u(x,y) (by definition of s)

=Y {x = s}u(x,y)
= 2 (s, x)n(x,y) = 8(s,y) = 0.
The statement follows by induction. O
A special case of the existence part of Lemma 1 [that u satisfies (ii) for
y =1, s = ¢t < y] can already be found in Weisner (1935), the author who first

generalized the original method by Moebius (1832) to arbitrary partial orders.
Here, however, both the general case and the uniqueness are crucial.

PropOsSITION 2. In the definition of the interaction operator A_, the coeffi-
cient a(t, ) can be chosen equal to 1. Then, uniquely,

A =Y p(m,1)d,
and, in particular,
A=Y (-)" N nl - DI,

where || denotes the number of blocks of a partition 1.

Proor. Immediately from Lemma 1 and the well known explicit form for
the Moebius function on the partition lattice [e.g., Speed (1983)]. O

ExampPLE 1. For n =4, AF is given by

AF = Fip3 — (F123|4 + Floys + Figyp + F234|1) - (F12|34 + Figoq + F14|23)

+2( Floss + Fugips + Fuaes + Fogng + Fogps + F3|4|12) — 6F 934

Note that A_, for 7 < 1, is a product of interaction operators applied to the
marginal distributions defined by the blocks of 7, e.g.,

A12|34F = (F12 - F1F2)(F34 - F3F4)-

PrOPOSITION 3. An arbitrary distribution function F has the Bahadur-type
expansion:

F=3 A(F).
Proor. Definition of n. O

Because J operates on densities in the same way as on measures, Proposi-
tions 2 and 3 can immediately be restated in a density version whenever F
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affords a density with respect to counting or Lebesgue measure (say in order to
define interaction in multidimensional contingency tables).

ExampLE 2. In this example, we use the simplified and not completely
rigorous notation of tensor algebra for the representation of multidimensional
arrays. Let f= (f;;;,) be a four-dimensional contingency table with positive
one-dimensional marginal distributions f;, f;, f;, f; and write, e.g., r;;r;, for
the table corresponding to (A g4 f;4,)/F; f; f1 fi- Note that A,y 5, f is equal to
the product f;f;f,f; of the one-dimensional marginal distributions. The
Bahadur-type expansion of f is as follows:

fijnt =fififi (1 + gt trgtrgtrgtr, ‘gt nr
FrT + Ty Ty Tipg  Pigg + Tijpg)-

In the original Bahadur expansion, the product terms (e.g., r;;7;;) are absent.

Statistical comments: A common application of Bahadur-type expansions is
the approximate representation of an empirical contingency table by low order
interaction terms, cf. Zentgraf (1975). While the estimation theory of trun-
cated Bahadur representations is still largely undeveloped, it is possible that
the appearance of further multiplicative components might produce superior
approximations. An alternative approach for contingency table analysis is
based on the bootstrap and will be discussed in a forthcoming paper.

4, Interactions and cumulants. Interaction measures have an inter-
esting connection to cumulants. We give an axiomatic approach to these
quantities. Let M} € M; be the set of probability measures F on R" for
which E[|X;X, --- X,|] = [lx;xy -* x,/df exists. The cumulant (X,
X,, ..., X,) = k(X) can be interpreted as a real-valued function on M7 which
is characterized by five properties (expressed, with a slight abuse of notation,
in terms of random variables):

PROPERTY 1. Symmetry. «(X) = k(X?) for all permutations o of n, where
(X%) = (X, 0 Xz - » Xony):

PROPERTY 2. Multilinearity. «(aX;, X,,..., X,,) = ax(X, X,,..., X,) and
KX, +Y,X,,...,X,) =X, X,,..., X,) + (Y}, X,,..., X,).

PrOPERTY 3. Moment property. k(X) =«(Y) if X and Y have identical
mixed moments up to order n.

"From Properties 2 and 3, it follows that « is a linear combination of the
moment products M, (X) = [x,x, - x, dJ,, F, where for instance M,;,(X) =
E[X,X;1E[X,].
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PROPERTY 4. Normalization. The coefficient of k in M; = E[X; -+ X, ]is
equal to 1.

PROPERTY 5. Interaction property. «(X) = 0 if X is decomposable.
PROPOSITION 4. « is uniquely given by Properties 1-5 as
k(X) = ¥ (- Yl - )M (X) = [x,x, - x, dAF,
where F is the distribution function of X.
Proor. Immediate from Lemma 1 and Proposition 2. O

The fact that « can be written as an integral with respect to a signed
measure AF suggests many ways of defining k-type parameters in a robust
fashion, e.g., via replacing the coordinate functions x; by bounded functions
h,(x;). Even without a proof of Proposition 4 (e.g., Lemma 1), low-order
cumulants can be computed very simply from Properties 1-5 and also the
well-known properties of cumulants (translation invariance, addition theorem,
cumulants of linear functions, cumulants in the multivariate normal distribu-
tion, etc.) are easy consequences of Properties 1-5. The axiomatic approach
has, therefore, certain pedagogic virtues. If one applies the theory of generat-
ing functions by Doubilet, Stanley and Rota (1972), also the role of log E[e**]
becomes transparent. In this sense, the approach to cumulants from interac-
tion measures is dual to Speed’s (1983) discussion of these quantities.

5. Multiplicative and additive interaction models. Multiplicative in-
teractions in contingency tables are usually represented within the framework
of loglinear ANOVA-type models. A term of such a model corresponds to a
subset T C n, where n indexes the dimensions of the table. The set of terms
has a natural lattice structure as the Boolean algebra 2™ of all subsets of n. A
hierarchical model is given by a subset #C 2™ with the property that with
Te HalsoSeH forall ScT,ie., H# isan order ideal of 2" [cf. Aigner
(1975) or Stanley (1989) for the basic concepts of order theory]. Alternatively,
# can be specified by its Sperner family, i.e., the maximal terms in &#. The
set of hierarchical models is the ideal lattice _#(2") of 27, i.e., the free
distributive lattice on n. This structural characterization can, for instance, be
used to count the number of hierarchical models (to our knowledge, this is an
unsolved problem for n > 12).

Additive interactions, on the other hand, do not correspond to subsets, but
to partitions of n. The set of terms, therefore, is given by the partition lattice
P(n). Again, a hierarchical model &% is an order ideal of the term lattice, i.e.,
with 7 € # also 7 € &# for all 7 < 7. The set of hierarchical models is the
ideal lattice _#(P(n)), which is again distributive. In our opinion, the distinc-
tion between subsets and partitions is the main structural difference between
multiplicative and additive interaction models. While statisticians are well
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trained to operate intuitively within the free distributive lattice of ANOVA
models, the corresponding intuition for the ideals of the partition lattice still
remains to be developed.
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