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NONLINEAR STOCHASTIC APPROXIMATION
PROCEDURES FOR L, LOSS FUNCTIONS!

By ZuiLianc YING

University of Illinois at Urbana-Champaign

The classical stochastic approximation problem can be regarded as
choosing design points so that the responses are close to some target level
in the expected squared distance. Motivated by different loss criteria, a
family of stochastic approximation algorithms is proposed. This family has
the same simplicity as the classical Robbins—Monro procedure does and
contains the latter as a special case. Using appropriate representations and
martingale limit theorems, we establish asymptotic .properties for this
family. Using the semiparametric formulation, lower bounds are obtained
for estimating the desired parameters under any adaptive design, showing
that the proposed algorithms with appropriate scaling are asymptotically
efficient.

1. Introduction. The stochastic approximation method was first intro-
duced by Robbins and Monro (1951). Consider a regression model

(1.1) Yn = M(x,) + &y,

where M is an unknown function such that for some 6, M(8) = 0, M(x) <0
for x < 6, and M(x) > 0, for x > 0, and where ¢, are i.i.d. mean zero random
disturbances with a common distribution function F. At each stage n, one is
faced with a decision of choosing x,, based upon the previous information
Fr =0 13 Y1y Xp_1,---, %), SO that it will stay as close to 6 as
possible. The class of procedures that Robbins and Monro (1951) proposed is
the following simple recursion

(12) xn+1=xn_anyn7

where a, is any predetermined sequence of nonnegative constants satisfying
the condition,

(1.3) Y a, =, Y a? <.

They showed that x,, under certain regularity conditions, converge to 6 in
probability. Their work was further advanced by Kiefer and Wolfowitz (1952),
who provided a similar recursion for finding the design point, under random
perturbations, such that the regression function reaches its maximum, by
Blum (1954), who showed the strong consistency of the Robbins-Monro
procedure and by Chung (1954) and Sacks (1958), who studied the asymptotic
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normality of the Robbins-Monro estimate. In particular, Chung (1954) and
Sacks (1958) showed that, among some reasonable class of {a,}, an asymptoti-
cally optimal one is @, = 1/(nB), where B = M'(6) > 0 is the slope of M at 6,
and that with this {a,},

(1.4) Vn (x, — 0) =4 N(O,;—z).

Lai and Robbins (1979, 1981), on the other hand, showed that if @, ~ 1/(nB)
a.s., then (1.4) still holds; moreover, they also showed how this kind of designs
can be adaptively constructed.

Although stochastic approximation procedures are generally regarded as
extensions of the classical Newton—-Raphson tangent method for finding the
root of a given function, their applications and implications are far beyond this
limitation. Consider y,’s as the quantities of interest. The root 6 of M can be
viewed as the unique value, among all possible design points x, such that

(1.5) V(x) = E{y?x, = x} = M?*(x) + o2

is minimized, where o2 = Var(e,). This formulation includes a particularly
useful model for multiperiod control problems in the econometrics literature
[cf. Zellner (1971), Anderson and Taylor (1976) and Lai and Robbins (1982)].
Another use of the stochastic approximation method is to solve adaptive
control problems in linear systems. This appears in the engineering control
literature, starting with the important work of Goodwin, Ramadge and Caines
(1981).

Instead of using the expected squared deviation (1.5) as the loss, we may
consider different variants. In particular, | - |°, p > 1, are sensible alternatives
and in some situations seem more natural. We shall, in Section 2, propose
simple recursions which converge to optimal design points. Asymptotic theory
is also established there.

A question concerning stochastic approximation and its variants provided
later is whether one can do better by using other procedures, however compli-
cated they might be. The answer, of course, depends upon how much we know
about the model. When the density of ¢, belongs to some parametric family,
one may ‘‘recursify’”’ the maximum likelihood estimate and obtain, in general,
a more efficient estimate [cf. Anbar (1973)]. Improvements in efficiency can
also be achieved when the density of ¢, is symmetric but otherwise arbitrary
[cf. Fabian (1973, 1983)]. Without assuming either parametric form or symme-
try of the density function of ¢,, we shall, in Section 3, study their asymptotic
bounds. In doing so, we show that the efficient Robbins-Monro scheme, and
our variants of it in Sections 2, attain these bounds, and therefore, are
asymptotically efficient.

2. L, loss and stochastic approximations. As we have pointed out
earlier, the stochastic approximation problem can be viewed as adjusting x, so
that y,, related to x, by (1.1), will stay close to some target value y* in terms
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of mean square error. To extend this, consider the problem of minimizing the
expected L, loss, Ely, — y*/”, for some p > 1. Without loss of generality,
assume y* = 0. Let m, = m ,(F) be the value m such that

(2.1) / It — mlP dF(¢)
is minimized. For p > 1, (2.1) is a strictly convex function of m. Thus, m, is

unique. For p = 1, m (F) is the median of F, which is unique if F is strictly
increasing at m . Write

(2.2) Yn=Rp(x,) +e,,,
where
(2.3) R, (x) =M(x)+m,, e,,=¢,—m,.

Let 6, be the root of R, i.e., R,(8,) = 0 [unique under (2.7a) below]. Define

ly, P71, if y, >0,
(24) z, . =1¢0, ify,=0,
~ly, P71, ify, <0,

which has a decomposition

(2.5) z

p,n = W(xn) + T,p n’

where W(x) = E(z WX, = x) and Mpn = Zpn — E(z z, ,lx,). Since
E(n, |, 1) —0and W (0 )=0,(2.5)is a ‘stochastic approximation model.
Thus, analogous to (1. 2) we propose the following recursive scheme for
approximating 6,

(26) Xpnt1 = Xy a’nzp n»

where a, € & _, are nonnegative satisfying (1.3) almost surely. While the
Robbins—Monro scheme is generally regarded as some kind of linear filtering,
with x,,, being a linear combination of the previous design point x, and the
last observation y,, (2.6) may be viewed as a nonlinear stochastic approxima-
tion method because in general the z,, are nonlinear functions of y,.
Moreover, by using convex loss functions other than the pth absolute devia-
tion, schemes similar to (2.6) can readily be obtained.
We list below some conditions that will be used later on.
(2.7a) For any a > 0, inf l(x - 6,)R,(x) > 0,

a< |x—-0p| <a”

(2.7b) IM(x)P~! < K(lx| + 1), for some constant K,

(2.7c) " 16557 dF(t) <,

(2.7d) M is differentiable at 6,.
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Now (2.5) in conjunction with the convergence result for stochastic approxi-
mation methods [cf. Robbins and Siegmund (1971)] implies the following
theorem.

THEOREM 1. Let p > 1 be fixed. Let y, be defined recursively by (1.1) and
x, by (2.6) with a, € &,_, satisfying (1.3) almost surely. Then, under
conditions (2.7a)—(2.7¢),

(2.8) x, >0, a.s.

Different choices of {a,} will result in different rates of convergence. In
particular, if we use the asymptotically efficient ones, as being discussed in Lai
and Robbins (1979) and in the next section, then we have the following results.

THEOREM 2. Let p > 1 be fixed and let x, and y, be the same as those of
Theorem 1 with a, € &,_, to be specified. Suppose conditions (2.7a)-(2.7d)
are satisfied. For p < 2 assume that F is differentiable at m ,, while for p = 1
assume further that F'(m,) > 0. Moreover, for p = 1, assume

1

(2.9) a, ~ [2nM’(0p)F’( mp)]_ a.s.

and for p > 1 assume
(2.10) a, ~ [n(p - 1)M’(0p)/_:lt —mP7? dF(t)]_1 a.s.
Denote

[2M'(6,)F'(m,)] ", ifp =1,

(2.11) o, [ /2l = m 2P~ dF(t)]1/2
(p - DM(8,)[%.lt — m, P2 dF(z)’

ifp > 1.

Then the following weak and strong convergence results hold:

(2.12) v (x, - 6,) =5 N(0,07);

n
(2.13) limsup‘/———lxn—e | =0, a.s.
>0 2loglog n P p

Moveover, for 1 <p < 2,

n 1| B(t)F
(214) n(P/2)_1 gllxi — Gplp g 0':/; /P dty

o o el BOF
(2.15) n®/2-1 Z ly; — ep,ilp —g9 ]M (Op)apl /0 tP dt,

i=1
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where B(+) denotes the standard Brownian motion process; for p = 2,
n

2.16 . — 6 P .S.
( ) log n E’llxl 0p| T G
(217 o L e =200
and for p > 2,

(2.18) _lexi - 0,P <o a.s.,
iz
(2.19) Yly—e, <o as. -

REMARK 1. L7 .|y, — e;|° represents the regret or extra cost due to the
ignorance of the parameter 6, in terms of L, loss. For p = 2, this notion of
regret has been discussed in Lai and Wei (1987) in the context of adaptive
stochastic control. Note that for p < 2, the convergence is in distribution.

REMARK 2. Without prior knowledge of the slope parameter, the sequence
{a,} has to be constructed adaptively. This can be accomplished by using the
same truncated least squares estimate of M'(6,), as that introduced in Lai and
Robbins (1981). Other methods of construction may also be used [see, for
example, Martinsek (1988)].

ReEMARK 3. It will be interesting to see what will be the “ L, analogues of
multivariate and other stochastic approximation procedures such as those
studied in Wei (1987), Walk (1977) and Ruppert (1981).

We preface the proof with the following two lemmas.

LEMMA 1. Let &, be a martingale difference sequence with respect to a
o-filtration <, such that

(2.20) E(é)4, )~ A as,
for some nonrandom constant A. Assume a Lindeberg-type condition,
(2.21) Y E(25 50 Fi-1) = 0,(n) V8> 0.

ie1
Denote U, = L?_.&;. Then for any 1 <p < 2,

(nt] lUI” ¢|B(s)P

(2.22a) np/2-1 2 g,y AP [ ds,

[ne] IUI” 1 u|B(s)

p/2-1 p/2 ["_

(2.22b) n Y in 2 - o1 A joujo 5 dsd

i=1 j=1
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Here and in the sequel we use [a] to denote the largest integer less than or
equal to a.

Proor. Denote
(il U7
M(nyayt) = /2 ! Z p (zzn&)’
l[nﬂl l
_ 2—
R(n,8,t) =n?/ 21 o I; < 5

To show (2.22a), it suffices to show, in view of Theorem 1.4.2 of Billingsley
(1968) and the fact that [/|B(s)/sl’ ds — [{|B(s)/s|’ ds uniformly in ¢ as
46 — 0, that

¢|B(s )|
(2.23) M(n,8,t) >gp 1 Ap/zfs ds V>0,
(2.24) supP( sup R(n,8,t) > e) -0 asé— 0.
n O<t<1

Here and in the sequel, we use the convention [’ =0 if b < a. In view of
(2.20) and (2.21), (2.23) follows from a straightforward application of a weak
invariance principle for martingales [cf. Sen (1981), Theorem 2.4.4].

To show (2.24), let C > 0. Define stopping time

T° = inf{n - 1: E(¢2|4,_,) > C},

and define
[nt]

U, = Z & I[TCZL] Z & and R°(n,d,t) =nP/27! Z \U /il (i <ns):
Since p < 2, by Jensen’s inequality,
2 i p/2
EIUiclp < (EIUic|2)p/ _ (E Z E(chzlcgj_l)) < CP/2ip/2'
j=1

Thus ER(n, §,1) < CP/2pP/2-1¢(n0)(1 /iP)iP/2 > 0 as & — 0. Since
E sup,_, R(n,5,t) < ER(n,8,1) and P(T°=») - 1 as C - x, (2.24) fol-
lows.

Finally, (2.22b) follows from (2.22a) and a tightness argument similar to the
proof of (2.24). O

LEMMA 2. Let ¢,, &4, be the same as those of Lemma 1 satisfying (2.20)
and (2.21). Let 7, € &, _, with 7, — 1,_, = o(,/n) a.s. Define S, = L7_,7,¢;.
Then

-1
Tint)
(2.25) #S[nt] 10,1 VAB(t).
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Moreover, if for all p > 0 and & > 0,

(2.26a) Y P(I§n| > 8y/n loglog n |fn_1) <o a.s.,
n=3
wElflz n(loglog n)~! 2nooncgn—
(2.26b) X (6 Rencopenr- e < s vl 1) <% a.s.,
ne3 n loglog n
then
-1
Tn
(2.27) limsup | —————=8,|=VA a.s.
now | V2n loglogn

Proor. Let U, = L7_.¢;. The Abel transformation gives
S, = Z (T — 7).

By the weak invariance principle [Sen (1981)] and the law of the iterated
logarithm [Philipp and Stout (1986)] for martingales, (2.25) and (2.27) are
valid when S, is replaced by 7,U,. Thus it suffices to show

(2.28) U7, —7_1) 2p 0,

-1

V2n loglog n E’2

By Lemma 1 and the assumption that 7, is slowly varying [cf. Lai and Robbins

(1978)],
n n yloglogi
YIU_(7;,—7_) = o( Y %1;) = o(\/loglognrn\/r?) a.s.
i=3 l

i=3

(2.29) U_(r,—7,_,) =0 as.

Again using the fact that 7, (and therefore 77, too) is slowly varying, we can
similarly show (2.28). O

Proor orF THEOREM 2. We first note that, from the assumptions, Wp(x) is
differentiable at 6, with
2M'(6,)F'(m,), ifp=1,

W, 0 = )
5 (%) (p - l)M’(0,,)f_mlt - m, P"*dF(t), ifp> 1.

Since, by Theorem 1, x, — 6, a.s., it follows from Theorem 3 of Lai and
Robbins (1979) that

n
(230) xn+1_0p=n_177:1(2 Tzn;‘ +p0)7

i=1 i
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where p, is some random variable, 7,,d, € &,_; with 7, — 7,_, = o(7,/n)
a.s. and d, > W,(9,) a.s. Moreover, x, — 0, a.s. also implies that

(2.31) E(n,a|Foos) = [ 16— m, 2P~V dF(2) as.

Let ¢, = 1,/d,, S, = n7,(x,,; — 6,). It follows from (2.7c) and the standard
arguments that, for all p > 0 and § > 0,

n
2(p-1
Z E(|8i| ® )I(|si]2(1’_1)28n}) =o(n),

i=1
Yy P{Ianl("_l) >8y/nloglogn} <o as.
n=3 .

E(le,l*® "1

{pn(loglog n)~1<|e,| %P~ < 5n loglog n)) -
< ® a.s.
n loglog n

(2.32)

I

Since x, — 6, (2.32) implies (2.21), (2.26a) and (2.26b). Hence, by Lemma 2
and (2. 30) (2 12) and (2.13) hold.
Now for 1 < p < 2, again by (2.30),

n
n@/2-1 Z lx; — oplp

i=1
(2.33) . »
= p@/D=1 F j-1-1 Z 22 +0(1) as.
i=1 d

Applying the summation by parts and the fact that 7 — 1i_1 = ol7;/j) as,,

n
n®/2=1Y |y — g P

i=1
(2.34) il g i P
=n®/D-1 Y |y o(1)i~ Y Y 47j +0(1) a.s.
i=1| ! J=1

For 1 <p <2,let ¢ =p/(p — 1). Then by Hélder’s inequality and Lemma 1,
14

n i n i P i p/q
n®@/D=1 3 j=p|p | 7P Z _JTj <n®/D-1 N j-p|r|7P Y | L (Z |7;17
i=1 ji=1 J i=1 j=1 j=1
(2.35) n i U P
- 2)— - J
=0,()ne/P- 1Y -1y | Y
i=1  j=1

= 0,(1).

For p = 1, a similar argument using the Cauchy-Schwarz inequality results in
(2.35), noting that 7, ; are uniformly bounded. In view of Lemma 2, (2.14)
follows from (2.8), (2. 32) (2.34) and (2.35). (2.15) follows from (2.14) by taking
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the Taylor expansion. (2.16) and (2.17) for p = 2 are due to Lai and Robbins
(1979). Finally, (2.18) and (2.19) are direct consequences of (2.13). O

3. Asymptotic efficiencies. In the previous section we introduced
stochastic approximation algorithms for estimating 6, and established certain
asymptotic properties of the procedures. Since we have been using transforma-
tions of y,, it is natural to ask whether there exist other schemes that may
yield better rates of convergence. Since we do not wish to make any parametric
assumption on F, we shall study the efficiency in the spirit of parametric-non-
parametric (semiparametric) formulation and show that (2.6) with a, satisfy-
ing (2.9) or (2.10) are asymptotically efficient.

Our idea is to reformulate the regression model (1.1) so that the informa-
tion bounds can be derived. Specifically, consider the model

(3.1) Yo =M(x,) +e,,

which is the same as (1.1) except we only assume ¢, to be i.i.d. with a common
distribution F which, besides certain regularity conditions that will be im-
posed later, is arbitrary. This means that we do not require F to have zero
mean or zero median. However, the family of the original stochastic approxi-
mation model (1.1) is not enlarged since M(-) is arbitrary and can absorb the
location shift of ,. Moreover, the problem is to estimate 6, = M~'(m (F)).

Our next step is to consider a smaller family by assuming M to be known.
By deriving the lower information bound for the problem of estimating 6,
within the smaller class, we will see from (2.12) that the x, defined by (2.6) are
asymptotically efficient.

Listed below are some conditions which will be used later.

M~(-) exists in a neighborhood of m ,(F) and M(-) is
(3.2a) continuously differentiable in a neighborhood of 6, =
M~(m)),

(3.2b) ¢, has a density function f and f [t)2P~ V() dt < w,

(8.2¢) &, has a density function f and f(m,) > 0.

Let {x,} be any sequence of adaptive designs, in the sense that x, €
o{y,, k < n — 1}. Then the likelihood function becomes

L,- “1 Fly; - M(x,)) = n F(e).

Clearly, {¢;, ¢ = 1,..., n} is a sufficient statistic since we have assumed M(-) to
be known. Thus, we may confine ourselves to the class of statistics involving
only {¢;}.

"Let p > 1 be fixed and let f be the true density satisfying (3.2b) or (3.2¢)
depending on p > 1 or p = 1. Following Ibragimov and Has’'minskii [(1981),
Chapter IV], we consider one-dimensional parametric subfamilies { f,} passing
through f, ie., fop = f, which are locally asymptotically normal (LAN) at
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6 = 6,. We call an estimator T, of 8, regular at f if, for any one-dimensional
LAN subfamily passing through f, T, is a regular estimator. The concept of
regular estimator can be found in Ibragimov and Has’'minskii [(1981), I1.9].

THEOREM 3. Let p > 1 be fixed. Assume conditions (3.2a) and (3.2b) or
(8.2¢), depending on whether p > 1 or p =1 holds. Then, for any regular
estimator T, of 0,, there exists a distribution function G such that

(3.3) Vn (T, - 6,) >4 N(0,1,(6,)" ")+ G,
where * denotes the convolution operator and where
2 . .
[ZM’(op)f(mp)] ’ ifp=1,

(34) Ip(op) = [(p - l)M'(Op)ftmIt — mp|p—2 dF(t)]2 . .
JZalt = mplz("‘l) dF(t) , ifp>1.

Proor. First consider the case p > 1. Let

—lt - M(6,)P~, if t <M(6,),
(3.5) h(t) =<0, if £t =0,
+le —M(8,)P7F, if t > M(6,).

In analogy with the approach of Ibragimov and Has’minskii (1981), define
one-dimensional parametric families

(3.6) (1) = FO[1 + (2 — M(6,))hy(2)],
where

hy(t) = {h(t), if —k(N) <t<N,
N 0, otherwise,

and k(N) are determined by ]Il’k(N)h(t)f(t) dt = 0. Thus, (3.6) defines a
parametric family for each N with A in a close neighborhood of M(6,). It is
certainly LAN at A = M(6,) from II.2 of Ibragimov and Has’minskii (1981),
with its Fisher information

(3.7) Iy = f_o;hfv(t) £(2) dt.

Now let 6(A) = M~*(m ,(f,)), the parameter which we want to estimate. Since
m ,(f,) is the unique solution of the equation

= ["1t = mPTU(8) de + [l = mP () de =0
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and since conditions (3.2a) and (3.2b) are satisfied, we have

dm,(f,) (P = D)2t = m,PTRf(2) dt
AN |yem,  [2Lh()hy() f(2) de

Since 8(A) = M~'(m ,), combining (3.7) and (3.8) yields the Fisher information
quantity with respect to 6 at 6,

M(8,)(p — 1) [t — m,P2f(¢) dt ]
J7h(8)hy(t) F(2) dt

We know that T, is a regular estimator for this LAN family. Thus by
Hajek-Le Cam’s convolution theorem [cf. Ibragimov and Has'minskii
(1981), 11.9] we get, for some distribution function Gy, Vn (T, — 0,) o
N(0, [, 5(6)]"! * Gy. Now letting N — o, we have I, (6,) - I,(8,), imply-
ing N(0, I, 5(6,)~") — N(0, [1,(6,)]" ). Thus, Gy — G for some distribution
G. Hence, Vn (T, — 8,) =4 N(O, [IP(BP)]‘I)* G. For p = 1, we introduce simi-
lar parametric families (3.6) with

-1, ift<M(8,),

h(t) =40, if £ =0,
+1, if ¢ > M(6,)

(3.8)

Ip,N(op) =

f:hgv f(¢) dt.

and 4, the corresponding truncations of 4. The above argument can then be
employed to show that (3.3) still holds. O
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