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GOODNESS OF FIT TESTS IN MODELS FOR LIFE HISTORY
DATA BASED ON CUMULATIVE HAZARD RATES
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To check the validity of an assumed parametric model for survival
data, one may compare A(t), the nonparametric Nelson-Aalen plot of the
cumulative hazard rate, with A(¢, 6), the estimated parametric cumulative
hazard rate, 6 being for example the maximum likelihood estimator. Con-
vergence in distribution of Vn (A(f) — A(¢, 6)) and more general processes is
studied in the present paper, employing the general framework of counting
processes, which allows for quite general models for life history data and
for quite general censoring schemes. The results are applied to the con-
struction of y2-type statistics for goodness of fit. Cramér-von Mises and
Kolmogorov—Smirnov type tests are presented in the case where the un-
known parameter is one-dimensional. Power considerations are also in-
cluded, and some optimality results are reached. Finally tests are con-
structed for the hypothesis that the unspecified hazard rate part in Cox’s
regression model follows a parametric form.

1. Introduction and summary. Statisticians often have to perform sev-
eral difficult and highly interrelated tasks concurrently, including translating
other scientists’ problems into statistical terms, analyzing data and establish-
ing models. The yes/no answer provided by a traditional goodness of fit test,
for some parametric model, is usually only a small part, and dependent upon
other parts, of the final statistical analysis. That many journal articles are
devoted exclusively to goodness of fit testing, and usually without giving ciues
as to what to do should the model be rejected, for example, is perhaps better
explained by the way in which we publish our papers, than by statistical
practice. Having said this, however, this is an article developing general
goodness of fit methods for parametric models for time-continuous survival
data. It should find applications in the areas of actuarial statistics, biostatis-
tics, demography, engineering, life history data, reliability and sociology. The
methods work for much more general models than life length distribution
models and should be applicable to a wide range of models for counts of
transitions from one state to another, also in the presence of censoring.

Although workers in reliability theory and survival analysis and other fields
often have been concerned about their parametric assumptions, relatively few
general goodness of fit procedures seem to have been available for time-con-
tinuous data when censoring is present. An exception is the problem of testing
for exponentiality, where numerous methods have been proposed; cf. Doksum
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and Yandell (1984). Aalen and Hoem (1978) outlined a general method based
on a technique using random time changes. Aalen (1982) elaborated a bit
further on another method involving so-called Cox residuals; cf. Cox (1979).
Independently of each other Burke (1981), Hjort [(1984), Section 3] and Habib
and Thomas (1986) developed asymptotic theory for Kaplan-Meier curves
when parameters are estimated and proposed ways of using this to test
parametric models. Burke (1981), Csérgé and Horvath (1982b) and Horvath
(1982) used empirical kernel transforms, but this results in somewhat awk-
ward testing procedures. Habib and Thomas (1986) arrived at chi squared type
tests. Gray and Pierce (1985) tested parametric models within larger paramet-
ric models using score functions. Akritas (1988) developed a chi squared test in
the random censorship framework which in fact is identical to the test listed as
Special Case 2 in Section 3.

Our approach is based upon hazard rates (or intensities, or forces of
transition) and their cumulatives. These are perhaps more natural and funda-
mental quantities in survival data and counting process models than prob-
ability densities, cumulative distributions, quantile functions and transition
probabilities. This gives rise to large classes of tests, most of which seem to be
new even when specialized to the classical situation of random variables on
[0, ) with no censoring. We shall be concerned with quite general models for
life history data. In its abstract form, Aalen’s (1975, 1978a, 1982) general
multiplicative model for counting process data is defined as follows: Let
(Q, &, P) be a complete probability space and let {#; ¢ > 0} be an increasing,
right-continuous family of sub-o-algebras of %. Furthermore, let N = {N(¢);
t > 0} be a counting process defined on (Q, &, P), adapted to {F,; t > 0}, with
hazard process Y(s)a(s) for s > 0, where Y is adapted, nonnegative and
left-continuous. N(-) and Y(-) are observed, while a(:), the parameter of the
model, is (partly) unknown. See Andersen and Borgan (1985) for a review.

It is well demonstrated by now that the rather abstractly defined model
above encompasses a fair range of important statistical models. The prime
example is the homogeneous survival data model which involves data of the
form T, = min(X;, ¢;), 8, = [T, < ¢;} on n individuals having a common haz-
ard rate a(-); here X; are lifetimes and c; censoring times. In this situation
N(t)=L? KT, <t, 5, = 1} counts the number of observed deaths in [0, ¢]
and Y(¢) = X7?_, {T; > t} is the number at risk just before time z. Other
examples also typically let N count transitions of some kind, while Y has a
number at risk interpretation and o is the hazard rate for one individual.
There are important bonuses of the counting process formulation. Much more
general models than the simple alive — dead model above can be treated, and
in a unified way. It also encompasses quite general censoring schemes; see
Aalen (1978a), Gill (1980) and Andersen and Borgan (1985).

The counting process framework above was originally created for the non-
parametric case, where a(-) is only assumed to be continuous (Aalen 1975,
1978a). However, recently several authors have studied parametric multiplica-
tive models, thus generalizing and unifying (at least asymptotic aspects of)
decades of work on parametric lifetime distributions. These models have
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a(s) = a(s, ) for some specified function of a p-dimensional parameter 6.
Borgan (1984), Andersen and Borgan (1985), Hjort (1986) and Karr (1986)
studied properties of maximum likelihood inference about 6; Hjort (1985)
developed more general M-type estimators, while Hjort (1986) and Aven
(1986) also considered Bayesian procedures.

Suppose one wants to check whether one’s a(s,#) model is adequate.
Introduce the cumulative hazard rate A(t) = [{a(s)ds for ¢ > 0, which under
the model assumption is equal to A(¢,0) = [la(s, 6)ds for a certain value of
the parameter. A sound procedure is to draw both

A th(S)
A = [ 505

in a diagram and compare them. Here A is the nonparametric Nelson—Aalen
estimator (cf. Andersen and Borgan (1985)) and A(t,6) the corresponding
parametric one, with 6 estimated from the data. If the assumed model is
correct, or at least adequate, then these two functions should agree reasonably
well. This method of diagnostic checking was introduced in Nelson (1969,
1972) and versions of it are widely used in engineering statistics. Some
examples from biostatistics can be found in Aalen (1982).

To construct a proper test, hoping to make rigorous the ‘“‘reasonably well”
statement above, we choose to work with the maximum likelihood estimator 6,
which has several asymptotic optimality properties according to Hjort (1986)
and Dzhaparidze (1986), and study asymptotic properties of

Z,(t) = Vn{A(t) - A(t,0))

and the more general process

and A(¢,0) = [‘a(s,é) ds
0

H(t) = f‘K,,(s) dz (s) = JZ/‘Kn(s){dN(s)/Y(s) —a(s,b)ds), t>0
0 0

The weight process K, is assumed to be predictable, or to approximate one
that is predictable, and is scaled in such a way that K,(s) converges to some
k(s, 0) in probability. We show in Section 2 that H,, —, H, a certain zero-mean
Gaussian process with covariance function given in Theorem 2.1. This general-
izes the by now classic result about the limit in distribution of vVn {A(-) — A(-)}
available in Aalen (1978a), Gill (1980) and Andersen and Borgan (1985). It also
generalizes results independently obtained by Csérgé and Horvath (1982b) for
Z,. Also included in Section 2 are results about the asymptotic behavior of the
general goodness of fit process H, outside model conditions. We establish
results both for local alternatives and for a fixed alternative.

The weak convergence results are applied in Section 3 to the construction of
several types of test statistics for model assumptions of the general form
a(s) = a(s, 0). In particular, each choice of K, above leads to a xZ2type
statistic. Tests of the Kolmogorov—Smirnov and Cramér-von Mises type can
also be put up and in the one-parameter case explicit and readily usable limit
distribution results are reached.
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The general theory is applied to some special cases in Section 4, while power
function performance of the tests is investigated in Section 5. In addition to
providing approximations to power functions the results also have bearings on
the problem of choosing the weight function K,. Some optimality results are
reached for local power against contiguous alternatives.

In Section 6 a parametric Cox model is studied. The model postulates that
a,(s) = a(s, 0)exp(B'z;) is the hazard rate for an individual with covariate
vector z;. Processes similar to Z, and H, above are defined and we show how
the adequacy of the model can be tested. The tests are shown to be consistent
against large classes of alternatives.

The theory and results of the present paper provide rigorous methods by
which it is possible to judge whether the nonparametric A(¢) fits the paramet-
ric A(¢,6). Formulae are also given sufficient for the drawing of A(¢) — A(¢, 6)
divided by an estimate of its standard deviation, as a function of time ¢,
suggesting another graphical procedure which could be used to detect possible
departures from the assumed model. Also informative in this respect is the
comparison of a nonparametric estimator &(s) of the hazard rate itself with
the parametric a(s, §). Methods producing such &’s have been proposed by
Ramlau-Hansen (1983), Hjort (1985) and others. Yet another proposal is to
plot a simultaneous confidence band for the unknown cumulative hazard A,
for which methods have been proposed by Csérgé and Horvath (1982a), Hjort
[(1985), Section 1], Bie, Borgan and Liestgl (1987) and others.

A point worth making is that the proposed goodness of fit tests work
perfectly well even when no censoring is present. Most of them seem to be new
even in this classical framework. In particular, one of the y2-type statistics
constructed in Section 3, referred to there as Special Case 2, can be used as an
alternative to the classical Pearson y2. The new test still compares the number
of observations in an interval with an estimate based on the model, but the
latter is now evaluated in a more dynamic way, using the hazard function and
the number at risk function instead of the overall probability of falling in the
interval. This test was proposed in Hjort (1984, 1985), but was independently
developed by Akritas (1988). A certain optimality property for this test is
established in Section 5.

The article is concluded with a number of remarks placed in Section 7.
Points taken up there include extensions to several counting processes, alter-
native estimators to be used in the various tests, a general search procedure
for declaring certain departures from the model to be present and other
goodness of fit tests that can be constructed using the same machinery.

2. Weak convergence of the general goodness of fit process. This
section provides limit distribution results for the general goodness of fit
process H, described in Section 1. Section 2.1 briefly discusses various prereq-
uisites that are needed and provides the basic Theorem 2.1 about the limit
distribution of H, under model conditions and from which goodness of fit
tests are later derived in Section 3. Section 2.2 gives some results about H,
outside the model conditions, first w.r.t. a sequence of local alternatives and
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then in the context of a fixed alternative. These results have bearings on power
functions for the various tests, a topic pursued in Section 5.

I learned after an earlier version of this paper had been written that a
version of the special case of Theorem 2.1 that corresponds to weight function
K, (s)=1, ie, H,=Z,, had been proved earlier in Csérgé and Horvath
[(1982Db), Section 12] and Horvath [(1982), Section 2]. These authors employ
strong Hungarian approximation methods, which work under the random
censorship model for i.i.d. random variables. Our approach, using counting
processes and martingales, yields a more generally valid result. However, we
include in our study only the maximum likelihood estimator for the unknown
parameter, or asymptotically equivalent variants (cf. Remark 7A), whereas
Csorgé and Horvath allow more general estimators.

2.1. Weak convergence under model conditions. Since we aim at asymp-
totic properties, we think of our model as being the n’th in a sequence of
models having an increasing number (usually n, in fact) of individuals under
study, each with the same hazard rate a(-, ). We shall partly suppress n in
the notation in what follows; this concerns in particular the counting process
N, the number at risk process Y and the associate martingale M defined in
(2.1). We employ 6 = én, the maximum likelihood estimator for 6 in the n’th
model; see (2.3). It will be convenient to keep 6 as a free parameter, so single
out the true value and denote it 6,. Calculations and probability statements
in the present Section 2.1 are w.r.t. the probability mechanism governed by
this 6.

For simplicity, assume from now on that the stochastic processes involved
are observed over a finite time interval only, say [0, T']. This is the customary
framework, as, e.g., in most of Andersen and Borgan (1985). Generalizations
are possible, for example to the case of an arbitrary stopping time T, or even to
[0, ©) with some extra conditions; see Remark 7C.

Borgan [(1984), Section 4] and Hjort [(1986), Sections 2 and 3] studied the
properties of 6 in this framework. We shall assume that Borgan’s regularity
conditions (A), (B), (C) and (D) are fulfilled. Although not strictly necessary, we
shall also throw in the following condition:

(E) Y(#) <n and N(¢) <n always, and Y(¢)/n tends to some positive,
deterministic function y(¢), in probability ‘

for good measure. In the random censorship model, for example, where
T, = min(X;, ¢,) and X,’s come from F(-) while censoring times ¢, come from

G(+), then y(¢) = F[t,®)G[¢t,©). A convenient set of sufficient conditions for
(A)-(E) to hold is as follows:

(F) The convergence in (E) is uniform, i.e., max,_, _|Y(¢)/n — y(¢)| =, 0.

(G) There is a neighbourhood N(6,) of 6, in which the first, second and
third order derivatives of a(s, ) w.r.t. 6 exist and are continuous, for almost
all s, and they are bounded in [0, T'] X N(8,).
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(H) a(s, 8) is bounded away from zero in [0, T'] X N(6,).
(D The X-matrix defined in (2.5) is positive definite.

These conditions (F)-(I) are usually satisfied in practice.
More notation is needed. Let

(2.1) M(¢t) = N(t) — fO‘Y(s)a(s, 8,)ds, t=0.

Then M is a local, quadratic integrable martingale w.r.t. {%,; ¢t > 0}, and
Var{dM(s)| % _} = Y(s)a(s, 8,) ds. The regularity conditions ensure that
M(-)/ Vn -, V(*) in the function space D[0, T'] equipped with the Skorohod
topology, where V is a zero mean Gaussian martingale with independent
increments and

(2.2) Var{dV(s)} = y(s)a(s,8,) ds.

The integral of a function g(s) w.r.t.dV(s) is well defined whenever
IFg(s)?y(s)a(s, 8,) ds is finite. Andersen, Borgan, Gill and Keiding (1982) and
Andersen and Borgan (1985) are good sources to consult about the general
martingale machinery that is going to be employed in this paper, and for other
applications.

The likelihood of what is observed, expressed as a Radon-Nikodym deriva-
tive w.r.t. a unit rate Poisson process, can be written

(2.3) L(0) = const.exp[fT{log a(s,0) dN(s) — Y(s)a(s,0)ds}|;
see, for example, Borgan (1984). Let ¢/(s, 6) be the vector of partial derivatives

of log a(s, ) w.rt. 6; in particular 6 is the solution to [Ty(s, O{dN(s) —
Y(s)a(s, 8) ds} = 0. Then

1 alogL(GO) dM(s)
Uy = = = [T(s,8) ——
(2.4) a f Yo
=g U= ["4(s,6,) dV(s).
0
Furthermore,

9% log L(6,) /96,98, = [ 90;(s,6,) /90, dM(s)
0

-/ "Y(8),(s,60) (5, 00) (s, 8,) ds.

The vector U has covariance matrix 2 with elements given by

1 9%log L(6,)

T
(2.5) - ;"W 2 01 = _/;)y(s)'/fj(S,oo)‘lfz(S,00)“(3,00) ds.
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Borgan (1984) showed in effect that the maximum likelihood estimator satis-
fies

(2.6) Vn (6 — 6,) =37'U, + ¢,,

where ¢, tends to zero in probability; in particular Vr (6 — 0,) tends to
N,0,%" 1) in distribution.

Now we possess the requisites and can proceed to processes relevant to
goodness of fit testing. Let

Z,(¢) = Vn {A(t) — A,(t,6)) = \/—n_fOTJ(s){dN(s)/Y(s) — a(s, §) ds},

in which J(s) = {Y(s) >} and A (¢,0) = [{J(s)a(s, 8,) ds. We have J(s) — 1
uniformly in probability from assumption (E), so that A, = A with high
probability. Working with A, instead of A makes the martingale apparatus
work more smoothly and has a statistical reason, also: We cannot estimate
a(s) in regions where J(s) = 0, i.e., where nothing is observed. More gener-
ally, define

H,(t) = [K.(s) dZ,(s)
(2.7) 0

- \/Ef()‘Kn(s)J(s){dN(s)/Y(s) —a(s,b)ds}, t=0,

where K, is an a.s. bounded process scaled in such a way that K,(s) —,
k(s,8,), say. Of course K, = 1 gives us Z, again.

We shall study weak convergence of H, under suitable requirements on the
weight function K,. It is easiest to reach a result for cases where K, is a
predictable or previsible process. Sufficient conditions for K, to be predictable
are that K (¢) is #-measurable for each ¢ and that its sample paths are left
continuous, i.e., K (t) is known just prior to time ¢. It will, however, be worth
the trouble to allow K, to depend upon 6 as well, in which case it is not
predictable, since K,(t) depends upon data recorded after time ¢. The follow-
ing technical regularity condition is not the weakest possible, but will suffice
for our purpose. Under this condition K, at least approximates a predictable
process and this will often suffice for the asymptotic martingale calculus to
work.

(K) K, (s) = G,(s,0), where the process G,(s, 0,) is predictable, converges
uniformly to k(s,8,) in probability and is twice continuously differentiable
w.r.t. 6. Furthermore, the partial derivative G, ,(s,6,) is predictable and
converges uniformly to g;(s, 6,) in probability, and g(s, 0,)%y(s) a(s, 0,) ds
is integrable over [0, T'], for each j. Finally there is a neighbourhood- N(BO) of
6, such that the second order derivatives satisfy

max max |G s,0)|/Vn —_ 0.
0<t<T 06N(0| (s, 0/ P
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THEOREM 2.1. Let the counting process model satisfy regularity conditions
(A)-(E) or (F)-(D and suppose that K, satisfies the requirements of condition
(K), in particular, K,(s) », k(s, 8y). Let B(t) be the vector
JER(s, 00 (s, 8)als, 8,) ds. Then H, =, H in D[0,T], where

H(t) = fot{k(s,@o)/y(S)} dv(s) - B(f)'E‘lfOTt/f(s,(’o) dv(s), t=20.

H has covariance function
(2.8  CovlH(n), H()) = fotlmz{k(s,00)2/y(s)}a(s,00) ds
- B(tl)'E_IB(tz).

ProoF. Start out subtracting and adding vn J(s)a(s, 8,) in the defining
expression for Z,(¢), to obtain

dZ,(s) = J(s)[Vn dM(s)/Y(s) — ¢(s,0)'a(s,0)Vn (8 — 6,)],

in which 6 is on the line segment between 6, and 6. Let B,(¢) =
JEK ,(s)y(s, 6)a(s, 6) ds. Then the expression above, the regularity assumption
about K, and (2.4) permit us to write
nd(s) dM(s)
Y(s) Vn

nd(s) dM(s
- [G.(00 > B B (3710, + e,)

H,(1) = [K,(s) 5o ~ B,(t)'Vn (6 - 6,)

. nd(s) dM(s)
+f0{Kn(S) G,(s8,00)} 57— Ys) vn

This surely already suggests the result, in view of the following lemma:

LemMmA 1. Suppose (H?,U,) -, (H° U) in DI[0,T] X %P, which is the
same as requiring that H° —», H° in D[0,T] and that every set of
(Ht),...,HXt),U,) converge properly. In this case, if C, (s) = c;(s)
uniformly in probability and the c;’s are continuous, then H, =H? -
3p_,C, ;U, ; converges in distribution to H = H° — 3*_, ¢;U; in D[0, T].

n,j-n,j

Proor. This lemma is proved upon noting two, things, utilizing,
respectively, Theorem 4.4 and Theorem 5.1 in Billingsley (1968). First,
(H?,U,,C,) >, (H°U,c) in D[0,T]x %X D[0,T]?. Second, the mapping

which takes (H?,U,,C,) to H® — (C,)U, is measurable and continuous on
D[0,T] x #P x C[0,T1*. O
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It remains to demonstrate that the regularity assumed really ensures
H, -, H.In view of Lemma 1, it suffices to show that:

nd(s) dM(s) k(s,0,)
O [fosson Ty =5 [ e

in D[0,T] X %#P.
(i) B,(t) - B(¢) uniformly in probability, from which it then also follows
that B, (#)e, tends to zero uniformly in probability.

nd(s) dM(s)
Y(s) Vn

(i) ~ max

0<t<T p

fOT{K,,<s) Go(5,00)}

(i) is implied by the stronger statement

. nd dM .- M
(LGn(3700)—?T"/;¢(S’00)ﬁ)

k(s, 0,
ad(/o (( ))dV( ) [ s, oo)dV(s))

in D[0, T]?*!. This follows, however, by an application of the general martin-
gale convergence Theorem 2.1 of Andersen, Borgan, Gill and Keiding (1982).
Details concerning the verification of the conditions of that theorem in the
present situation are available in Hjort (1984). They involve the use of
Lenglart’s inequality as well as other martingale convergence arguments.

(ii) is true since consistency of 6, max,_, |K,(s) — k(s, 6,)] =, 0 and
Borgan’s regularity conditions together imply

_/;)T|Kn(3)‘/fj(s’é)“(s’00) - k(s,00)¢-(s,00)a(s,00)|ds -, 0.

To show (i), write K,(s) = G(s, 9 + Gy, 9o X0 — 0,) + 1(8 — 6,)
G/ (s,0X6 — 8,), where 6 again is between 6, and 6 and dependent upon both
n and s. That

nd(s) dM(s)
masx | [1Gi(s,00) (0 — 6) Y(s) Vn
nd(s) dM(s)
Zl Olzlta<xT fGn 1(89 0) Y(S) ‘/’7 0] - 00,j| —‘)P 0

holds, is seen via [,G, (nd/YXdM/Vn Vn) =, [;8;/ydV, which is another
consequence of Andersen Borgan, Gill and Keiding’s Theorem 2.1. Finally,

. X .. nJ(s) dM(s)
5 16006001 0.0 ) L)

<n\0 oOJH(al 00,\ max G"ﬂ(s,é) 1+ A(T))

nd
Y(s)
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and this converges to zero in probability by the assumption on G/ » 1 stated in
regularity condition (K). We have used here that |[{C,dM| <n maxs|C ()|
X{1 + A(T)} holds, for every process C,, by regularity condition (E).

The expression (2.8) for the covariance function of H is not difficult to
verify, recalling that the Gaussian martingale V has independent increments
with variances given by (2.2) and that U = [f(s, 6,) dV(s) has covariance
matrix 3. |

REMARK. The case where no unknown parameters are present is also cov-
ered by the efforts above. In that case H,(¢) = Vn [(K,(s)J(s{dN(s)/Y(s) —
a(s) ds} converges in distribution to H(¢) = [/{k(s)/y(s)} dV(s), provided only
that K, is a predictable process with a limit in probability function k. The
limit process H becomes itself a Gaussian martingale with independent
increments and Var{dH(s)} = {k(s)?/y(s)}a(s) ds. This can be used to make
inference about the hazard rate a(-) in the nonparametric case; see Aalen
(1978a, b) and Section 3.3. Versions of this result are in Aalen (1978a) and
Andersen and Borgan [(1985), Appendix].

2.2. ‘Results outside model conditions. Theorem 2.1 will be used in Section
3 to find the limiting null hypothesis distribution of various goodness of test
statistics. The present subsection briefly discusses results about the distribu-
tion of H, outside model conditions, which are relevant for power function
considerations. We give two results, one pertaining to a sequence of local
alternatives and one valid under a fixed alternative.

Our first result requires the Pitman-like framework of local alternatives.
The null hypothesis is that a(-, 0) indeed is the true hazard rate for some
appropriate 6,. Consider some wider (p + 1)-dimensional parametric family
a(+,0,7n), where n = n, corresponds to the simpler family a(-, 6). Assume that
the true hazard rate for model »n is

(2.9)  a,(s) =als,0,m+8/Vn) = a(s,0,){1 + ¢(s,0,)8/Vn},

in which ¢(s, 6) is the derivative of log a(s, 8, 7) w.r.t. n and evaluated at 7,.

THEOREM 2.2. Under the sequence of local alternatives just described and
under the conditions of Theorem 2.1, H, tends in distribution to

H() + a[fo'k(s,ao)qb(s,eo)a(s,eo) ds

-B(ys [ () b(s,0,)(s,0)a(s,8,) ds

in the function space D[0, T'].
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Proor. Expression (2.7) for H, can be rewritten by replacing dN(s)/Y(s) —
a(s, ) ds with

dM (s)/Y(s) + {a,(s) —a(s,0,)} ds — {a(s,8) — a(s,8,)}ds,

in which M, (¢) = N(¢) — [{Y(s)a,(s) ds is the accompanying true martingale
for the n’th model. We can then proceed as in the proof of Theorem 2.1, with a
couple of manageable extra complications. We omit details here, but mention
that the limiting distribution of Vn (8 — 6,) is needed in this framework of
local alternatives. Going carefully through arguments of Borgan [(1984), Sec-
tion 4] valid for the nonlocal case, which corresponds to § = 0 in (2.9), one
ends up with

Vn (6 — 0,) = 3~Y(U, + 8v) + ¢, o4 37U + 83 v ~ N,(837'v,27)

as the appropriate generalization of (2.6), where v is the vector
IEy(8)p(s, 0,)0(s, 0)als, 0,) ds. The technical arguments used also resemble
those used by Hjort [(1986), Section 3] in connection with the local asymptotic
normality property of the counting process model. O

Assume next that the counting process model has a true, underlying hazard
rate a(-) which is not among the parametric candidates a(- 6). Thus, replac-
ing (2.1), there is a true martingale M(¢) = N(¢) — [{Y(s)a(s)ds with
Var{dM(s)|.% _} = Y(s)a(s) ds and the limit in distribution V(-) of M(-)/ Vn
has Var{dV(s)} = y(s)a(s) ds, instead of (2.2). Using Lenglart’s martingale
inequality one can show from (2.3) that (1/n)log L(8) converges in probability
to the function [{y(s)da(s)log a(s,8) — a(s, 0)}ds. The maximum likelihood
estimator 6§ is consistent for the parameter value 6, that maximizes this
function, as shown by Hjort [(1986), Section 2.2]. This is a statistically
meaningful parameter in that it is least false, or most fitting, according to the
distance measure

Ma(), a(+,0) = [ y(s)[a(s){log a(s) — log a(s, 0)}
(2.10) 0

—{a(s) — a(s,0)}] ds

between hazard rates. This is a generalization of the Kullback-Leibler infor-
mation distance to models with censoring; see Hjort (1986).
From (2.7) and with the extra notation introduced above one finds

H. (t)/Vn = j:Kn(s)J(s) dM(s)/Y(s) + j:Kn(s)J(s){a(s) - a(s,é)}ds,
from which it is not difficult to prove '

THEOREM 2.3. Suppose that the true underlying hazard rate is a(-) and let
the conditions of Theorem 2.1 be in force. If there is a unique least false



1232 N. L. HJORT

parameter value 6, minimizing (2.10), then

#(t) = Hy(t) /Vn -, f(:k(s, 8,){a(s) — a(s,8,)} ds = w(¢).

The notation used here emphasizes that H (-)/ Vn = #(-) usefully can be
thought of as an estimator of the population parameter function 7(-), where
the null hypothesis model amounts to this function being equal to zero. One
can for completeness formulate a version of the theorem for the very rare
cases of a honunique 6, and can also prove that H (t) — Vn w(t) = Vn {#(¢) —
7(#)} has a limiting normal distribution, under natural conditions. Both the
limit distribution of Vn (§ — 6,) outside model conditions, which can be worked
out, and the limit process of Vn {K,(s) — k(s, 6,)} play important roles here.
See also Remark 7B.

Among the consequences of the above is that goodness of fit tests based on
H, generally will be consistent, in that any such test will detect any piecewise
continuous alternative hazard rate with probability tending to 1 as n in-
creases. The theorem also suggests how to design K, so as to make possibly
interesting departures from the model more easily detectable. If it is not more
important to detect a # a(-,0) in some intervals than in others, then one
might use K ,(s) = 1. See Section 5 for more precise results.

3. Goodness of fit tests. Theorem 2.1 gave the limiting distribution of
the general goodness of fit process H, = [K, dZ, under model conditions. The
model should be rejected if H, is significantly different from zero, as measured
by some suitable functional. Natural test statistics could, for example, be
max, _, o|H,(¢)| or [{H,(t)*dt. We know that these have limits in distribu-
tion max, _, ,/H(¢)| and [] H(¢)? dt, respectively, but this can only rarely be
utilized. The limit distributions would be very intractable and would also
typically depend upon the particular y(s) function. One could estimate y(s)
using Y(s)/n, but this function varies with the censoring mechanism and
from experiment to experiment, making it impossible to construct general
tables.

However, perhaps unexpectedly, some interesting explicit results for such
Kolmogorov-Smirnov and Cramér-von Mises type statistics are available in
the case where the unknown parameter 6 is one-dimensional. This one-
dimensional case is studied in Section 3.2. Section 3.1, on the other hand,
considers y2-type statistics based on H, and a division of the observation
period into cells, in the general p-dimensional case. [Creating y? statistics
based on such cells and weak convergence is of course a well-known device,
which at least goes back to Schoenfeld (1980).] Several interesting special cases
come forward. Finally the fully specified case, which is much easier and
corresponds to p = 0 unknown parameters in the hazard rate of the null
hypothesis, is briefly discussed in Section 3.3.
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Most of the tests proposed here seem to be new, even for specialized a(s, 8)
models like exponentiality and even in the case of no censoring. A referee has
pointed out that the Kolmogorov-Smirnov type test for exponentiality given in
Section 4 is essentially identical to one of the total-time-on-test related statis-
tics proposed by Barlow and Campo (1975), which were later justified for use
with censored data by Aalen and Hoem (1978). The chi squared tests of
Section 3.1 were originally put forward in Hjort (1984, 1985). Akritas (1988)
has independently worked out the theory for the important case that corre-
sponds to weight function K,(s) = Y(s)/n, listed as Special Case 2. Akritas
used the i.i.d.-like framework of the random censorship model, so our results
are in one way more general than his. On the other hand, Akritas also studied
the benefits of using a particular minimum chi square estimator for 6 and
included a simulation study of the test’s performance in an example with a
fully specified null hypothesis.

Some specializations of the general methods of Section 3 are listed in
Section 4. Section 5 provides results about the power functions of the tests,
some of which pertain to the problem of choosing an appropriate weight
function K,(-).

3.1. Chi squared tests. Let 0 =a,< -+ <a,, =T be a division of the
observation interval [0, T'] into m cells I, = (a;_;, a;]. Let

Q,.=H,(a; y,a;) =Vn f, K,(s)J(s){dN(s)/Y(s) — a(s,6) ds)

and @, = H(a;_;,a;], where H is given in Theorem 2.1. Then @, with
elements @, ; converges in distribution to @ with elements @;, since H has no
fixed discontinuities. The covariance matrix of @ is readily found from Theo-
rem 2.1 to be of the form

(3.1) R=VarQ =D - S'371S.

Here D is dlagonal with elements d; = [;{k(s, 6,)*/y(s)}a(s,0y) ds, S is the
p X m matrix (b,,...,b,,), in which

b;=B(a,_j,a;] = fk(s,()o)c//(s,(io)a(s,()o) ds

(cf. Theorem 2.1), and ¥, is given in (2.5).
Let now R be any consistent estimator of the covariance matrix of Q, say of

the form D — §'3-1S with elements 7 fij= Jlﬁl, i b3 1bJ. Natural choices
are '

s ,nd(s) dN(s) dN(s)
(32&) d, —/;LK"'(S) Y(s) W’ _fK( )‘//(S 0) Y( )
(3.2b) S=f ") s, 000,y ((“’))

Some options are available here, since what matters is only that d i l;i and $
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are consistent for d;, b, and 3 under the null hypothesis that the parametric
model is correct. Flrst dN(s)/Y(s) may everywhere be replaced by
J(s)a(s, 6) ds in the expressions above. Second, under some censoring schemes
the limit in probability y(¢) of Y(¢)/n may be explicitly expressible as a
function of 6, say y(¢,0). In such cases y(¢,6) may replace Y(s)/n above.
Third, it may be advantageous to use an alternative estimator (3*)~! for the
asymptotic covariance matrix of Vn (6 — 0,) that is consistent even outside the
null hypothesis, i.e., when the parametric model fails. See Remark 7B, where
also the benefits of using a model-robust estimator R* for the full covariance
matrix of @, are discussed.
Our general test statistic will be

(3.3) X=QRQ=(Q, 1. .,Q, )R (Q,,,...,Q,.,.)"
It is clear that X2 -, X2 = Q'R Q, which is x? distributed with df =

Rank(R) degrees of freedom. Here R~ and R~ are, if necessary, generalized
inverses. In most cases R has full rank m, whereas df = m — 1 in a particular
class of cases, where H,(T)= X", Q, ;= 0. To test the model assumption,
choose m intervals, choose a weight function K, among those allowed by
condltlon (K) preceding Theorem 2.1, and compare X2 above to its approxi-

mate x2% distribution.
There is a convenient matrix identity that both simplifies the computation
and aids the understanding of X?2. It is not very difficult to verify that

(34) R=D-S'3"'S implies R"=D'+ D S'G SD!,

in which G~ is the p X p (generalized) inverse of G =3 — SD!S’. This
matrix equation is well known in the p = 1 case, when ¥ is simply a scalar,
and is then sometimes called Bartlett’s identity. The generalization invented
for the present occasion leads to

A

X:=Q,07'Q,+Q,D'8G~8D-

Qi anz ’\, an,i’\
|53 (£ ),

i=1

)
S

(3.5)

3[\’}

i=1

,

i

where

-~ (5 - 8D-18) =( zr/z)

and there is a similar uncareted expression for X2, In particular, only a p X p
matrix needs to be inverted.

REMARK. The (generalized) inverse of G = 3 — SD~1S’ plays a role in the
limit distribution X2 for X2 Let us write k(s,6,) = y(s)h(s) and dv(s) =
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y(s)a(s, 8,) ds. Then G is the sum of m matrices

G, = fl./u//dv - (/;hwdv)(j;h«pdv)’/j;hzdv.

From the Cauchy—Schwarz inequality it is seen that u'G,u always is nonnega-
tive and is zero only if h(s) is proportional to u'y(s, 8,) on I;, so G has full
rank p unless there are u,’s for which h(s) = u/y(s,0,) on each I,. In
particular, df = Rank(R) = m in all other cases. In the special lower rank case
h = ¢y, which essentially corresponds to K,(s) = {Y(s)/n}c'¥(s, ), it holds
that u'Gu is zero only if u'y(s, 6,) is proportional to ¢'y(s, 6,) on each cell. So
when h = ¢'¢y, G will in all but very rare cases have rank p — 1 and df = m —
1. The model with constant hazards on different cells can have even lower
rank.

SpeciaL case 1. If K, (s) = 1,then H, = Z, and Q, ; = Vn{A(a,_,,a,] -
J1,d(8)a(s, 6) ds}. In this case, X2 2 compares observed and expected cumulative
hazards over intervals.

SpeciAL casE 2. If K,(s) = Y(s)/n, then Q, ;= (N, — E;))/Vn, where
N N(a;_,, a;] counts the number of observed transitions in interval I, and

=/ Y(s)a(s 0) ds is a model-based estimate of N;. So X2 now compares
observed and expected number of trans1tlons over 1ntervals It is interesting to
compare the classical Pearson type y? procedure to the present one, in the
case of no censorlng Whereas the classical x2 uses E;, = nJ 1, fx, 6) dx, for a
minimum y?2 estimator 6, our version is dynamic, ignores the overall probabil-
ity of falling in I, and prefers predicting N, using the number of items under
risk and their comblned hazard rate Y(s)a(s 6) ds; our x? test also allows
censoring.

Let us elaborate further. We have k(s, 6,) = y(s), and d; = [; y(s)a(s, 8,) ds
is naturally estimated either by N,/n or E,/n, see (3.2) and its followlng lines.
Accordingly, expression (3.5) simplifies to

m —
X2=3 (N——) + WG W,
i=1 E i
say, in which W, = Vn £ {(N, — E,)/E,}b, and where N; is equally allowable
in the denomlnator The limit dlstrlbutlon is x2 except in cases where G has
lower rank than p and then X2 —, x2_,, with a further exception; see the
preceding remark and Special Case 3. Let us also point out that a very simple
but slightly conservative test procedure is to reJect the model if X0 =
7 {N; — E;)*/E; exceeds the upper ¢ point of the yZ%. Finally, in the fully
spemﬁed case, which corresponds to p = 0 unknown parameters and where
E, = f,lY(s)aO(s)ds, there is no second term and X? = X¢ .

SPECIAL cast 3. Now try K, (s) = {Y(s)/n}c'¢(s, ) for some coefficients
€1, - -+, ¢, This choice is feasible according to Theorem 2.1. Then £~ @, ; = 0
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by the definition of the maximum likelihood estimator and R has rank m — 1,

as explained in the preceding remark. If ¢ = (1,0, ..., 0), for example, then

Q,, =0/ \/_)[, U(s, 6){dN(s) — Y(s)a(s, §) ds} and one can derive a simpli-

ﬁed _expression for (8.5), involving the elements of S, = 1v 1Y (s, 6)

(s, 8) dN(s)/n written in block notation:

i Qrzz,i ( s Qn l P
+

-1

Xp= L g [y e

i=190i,11 i=1 0},11

i, 12){ Z (Ez 22 T~y 21&ij11A2i,12)}

m Q -

X ( P 7‘“’—21',21)~
i=19;,11

In particular only a (p — 1) X (p — 1) matrix needs to be inverted, and in the

p = 1 case the second term vanishes; see (3.8).

Unlike the classical y? tests, our test statistics (3.5) accept censored data
and do not require special estimators for their use, but simply the maximum
likelihood estimator, computed from the original, ungrouped data.

The problem of choosing the m cells in (3.5) is of course present. An old and
very conservative rule of thumb from the traditional y? tests, stating that
each cell should contain at least five observations, seems reasonable here too;
see also Remark 7H. Akritas (1988), who independently of the present author
developed the tests given as Special Case 2, investigated the actually achieved
level in a simulation study, but only in a situation with a fully specified null
hypothesis hazard rate.

The versatility of the class of tests is illustrated by Special Cases 1-3. The
choice of weight function K, is up to the user, for whom the power considera-
tions in Section 5 should be pertinent.

3.2. The one-dimensional case. The case where the parameter 6 of the
model is one-dimensional deserves special attention. Before turning to continu-
ous type test statistics, let us record some explicit simplifications of the X2
statistics considered above. We have

szi anzz b
2 ,
o)  x-% +{z } { EJ}

i=1 i i=1 d

13
‘

where 62 = [Ty(s, 6)2 dN(s)/n or some other estimator of o2 =
[Ey(s)(s, 8,)%a(s, 8,) ds that is consistent under the model.

For the rest of this subsection we will stick to the important special case
already touched upon in the preceding remark, where K,(s) is chosen to be
{Y(s)/n}y(s, 6), so that

(3.7) H(t) = (1/\/2)[()‘¢(s,é){dN(s) — Y(s)a(s,0) ds).
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In this case, @,, = (1/ \/_)fz ¥(s, XdN(s) — Y(s)a(s, 6) ds) k(s, 0,) =
y(s)(s, 8,) and the elements of R = Var @ can be written r; ; = =o%(p8; ; —
p,pj) in which p, = b,/02 = B(I,)/B([0, T'D); cf. the notatlon 1n Theorem 2.1.
So in this case R has rank m — 1 and

(3.8) X2 = Qéé_Qn =) Qf,i/fii -4 X5 1.
i=1

In fact, fuller information awaits us in this case, as H, behaves asymptoti-
cally as a time-transformation of a Brownian bridge W°. For

Cov{H(t,), H(t,)} = o*{p(t; A ty) — p(t)p(2y)},
where p(t) = B(t)/0? = B(¢t)/B(T), which means that
(3.9) H,—», H=0W°p(+)) in D[0,T].

Accordingly, both Kolmogorov—Smirnov and Cramér-von Mises type test
statistics can be constructed in the one-parameter case.

For example, max,_,_p|H,(8)|/6 =, max,_,_,|W°s)|, so rejecting the
parametric model if

f«p(s §){dN(s) — Y(s)a(s,8) ds}| > 1.366vn

0<t<

constitutes a test with asymptotic level 5%. This test is universally consistent
by an application of Theorem 2.3. One may also construct weighted versions of
this test criterion, for example, dividing by an estimate of the limiting stan-
dard deviation.

Another test that is consistent against each piecewise continuous alterna-
tive hazard rate a can be constructed, utilizing the fact that

[ HA)?dB(2) /6%~y [P W (p(£))* dB(2) /0% = o* [ W (s)"ds,

where dB(t) could be either (¢, 6)2 dN(¢)/n or {Y(t)/n}y(t, 6)%a(t, 0) dt. So
for example, one can reject the model whenever [T H, (£)%y(t, 0)?dN(t) > nA 64,
where A, is the upper & point of the distribution of [¢W °(s)? ds.

We record two variations on this theme, both leading to goodness of fit tests
with good overall properties. Let for convenience p(¢) = B(¢)/62 and dp(¢) =
dB(t)/62. First, the null hypothesis distribution of JEH (t) dp(t) /6 tends to
that of [fo|W°(p())|dp(t)/o = [0|W°(s)| ds. The latter has been found by
Shepp (1982), and a table can be found in Johnson and Killeen (1983). Next,
the limiting variance for H,(¢) is o2p(¢)(1 — p(¢)) and it is natural to try to
weight H, in an Anderson-Darling manner. One can show that the limiting
null distribution of

. (r  H () dp(e)
4= B0a — ) o
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is that of

/0 F2WO(p(8))%/{p(t)(1 - p(£))} dp(t) /o® = fo WO(s)2/{s(1 - 5)} ds.

Rejecting the model if A2 > 2.50 gives, for example, an asymptotic level 5%
test; tables are available in Lewis (1961).

3.3. The fully specified case. It is sometimes of interest to test the hypoth-
esis a(s) = a(s) for s in [0, T'], or perhaps only on a subinterval, where «, is
fully specified. For example, the group of individuals under study might be
compared to some established average hazard curve for a larger population.

This corresponds to the case of p = 0 unknown parameters in the model
and is covered by our earlier efforts; see the remark ending Section 2.1. The
process H,(t) = Vn [¢{K,J(dN/Y — a,ds) converges in distribution to a
time-transformed Brownian motion process H(¢) = W(7%(t)), where 7%(¢) =
Var H(¢) = [{{k(s)?/y(s)}ay(s) ds. A consistent estimator of the latter is

i [t ,nd(s) dN(s)
(3.10) (1) = [ K 5y ey

where one alternatively could use a(s) ds instead of dN(s)/Y(s). It is there-
fore easy to construct a variety of large-sample tests, for example, of the
Kolmogorov-Smirnov and Cramér-von Mises types, as in the previous subsec-
tion. We mention here but two examples of this sort. First,

max |H,(¢)| max |W(7%(¢))]
0<t<T 0<t<T _ v
(3.11) ATy e ~(T) “a Jmax IW(s)l,

under the null hypothesis. A derivation of the distribution of the limit variable
can be found in Billingsley [(1968), Section 11] and a table in Walsh [(1962),
page 334]. Second,

|H,(0)] [w(-2(t)| [W(s)]
i max —————— = max

a<t<c %(t) d a<t<c ‘r(t) d 2a) /) <s <1 \/;

(3.12) ,
providing a naturally weighted version of the first test. One must use a
positive a here. Upper quantiles for the last limit distribution have been
obtained via simulation in a study by Gringorten (1968). Easy to use approxi-
mations to such quantiles can be constructed from Miller and Siegmund (1982)
and an explicit expression for the exact limit distribution has been obtained in
an unpublished report of Hjort.

Let us finally provide a x2-type test for & = a,. Divide the time observation
period into m intervals (a;_,, a;] once more. Then

m
(3.13) X2=Y Hy(a;_1,a;)’/d; >4 x2,
i=1

under null hypothesis conditions, where d; is a consistent estimator for
d; =1%a;_y, ;1 = [;(k®/y)a, ds; cf. the two possibilities for #%(-) noted above.
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The classes of tests derived in this way are very rich, since we are free to
choose K,(-); see Special Cases 1-3 in Section 3.1. As explained in Special
Case 2, the particular choice K,(s) = Y(s)/n leads to the familiar expression
X2 =YY" (N; — E;)?/E;. This test was independently developed by Akritas
(1988). Some guidelines for choosing K, based on power considerations are
offered in Section 5.

4. Some applications.

4A. The most important parametric model for a hazard rate is of course
a(s, 8) = 0, a constant hazard, corresponding to an exponential lifetime distri-
bution in that framework. It is easy to write down a variety of tests for this
model assumption or for the slightly more general a(s, 8) = 6a(s), where a,
is specified. The maximum likelihood estimator is 6 = N(T)/R(T), where
R(@) = [OY(s)ao(s) ds and o? of (2.5) becomes r(T)/0 where r(¢) =
[Ey(s)ay(s) ds is the limit in probablllty of R(t)/n. The x? tests Special Cases
2 and 3 both simplify to X2 =X (N, — E,)*/E,, where E =, Yba,ds is
the dynamic model-based estlmate of N,. X2 tends to x2_, under the model.

Let us also present a Kolmogorov— Smlrnov type test. Following the proce-
dure of Section 3.2, let H,(¢) = Vn #(t), where #(t) = {N(t) — 0R(t)}/n0
consistently estimates 7(¢) = [{y(s)a(s) — 0,}ds/0, under a priori circum-
stances and 0, = [/ya ds/[{yds is least false. Let D, = max,_, _,|7(¢)|. The
test rejects the model if Vn D, /6 exceeds the upper & point of the distribution
of max, _, _,|W%s)|; see also Section 5.3.

4B. Assume that each individual of a population has a constant hazard
rate, but that these individual rates vary according to a gamma distribution
with parameters (6 /m, 1/7). Then the life length of a randomly chosen individ-
ual can be seen to have a distribution with hazard rate a(s) = 6/(1 + ns).
This is an important model which seems to explain many phenomena in
biostatistics; see Aalen (1982). To test this model, or more generally a(s) =
0g(s, n), where g is specified, one might use the x? test given as Special Case
3 of Section 3.1. In the notation of that section, ¢(s,0,7)=1/6 and
Uo(s,0,m) = dlog g(s,m)/dn = Yy(s, n) and one arrives at

Z (N; - E)*
(4.1) X2= ———E—_—— + (W0)’F,,

12

where E; —],Y(s)ads W0 =vVnIT™ (N, — E)/E}j,y(/fzads and Fn=

/s y(lﬁz)z& ds—L™ l(flytlfza ds)2/{E /n} using § for Y(s)/n & for a(s, 6, %),
etc. Under the model X 2 goes to a x2.

4C. The Weibull model a(s) = 6"ns"~! can be tested similarly, with an
X? as in (4.1) and the very same expressions for E; and W,?, but for the fact
that ¢, now means (s, 8,%) = 1/4 + log(s6).
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4D. The gamma distribution and the log-normal distribution for life lengths
can also be tested similarly, most conveniently using Special Case 3 of Section
3, to avoid matrix inversion. It would however require numerical integration
over cells in each case.

4E. Suppose that «, is normal but that one suspects that a tiny propor-
tion of the population may have some substantially higher hazard rate a;(+).
The population probability density is f= (1 —¢) fo+ef1, say, and the
hazard rate for a randomly chosen individual is a(s, &) = mo(8)ay(s) +
7(s)ay(s),. where my(s) = (1 — &)Fy[s, ) /{(1 — &)F,[s, ) + eFi[s,©)} and
mo(s) + 7(s) = 1. This is but one example of interesting mixture models for
lifetimes and its adequacy can be tested using the methods of earlier sections.
The structurally simplest case has three parameters, namely constant hazards
6y and 6, in addition to the mixture proportion &.

5. Power considerations. This section reports on a brief investigation
into the power properties of the various goodness of fit tests. Sections 5.1 and
5.2 study local asymptotic power, first in the case of a fully specified null
hypothesis and then in the parametric case, whereas Section 5.3 considers
fixed alternatives to the model hypothesis. In addition to actually giving
approximations to the power of the tests, the results below are also relevant
for the problem of specifying the weight function K, and in fact some
optimality results are established for local power.

5.1. Local asymptotic power in the fully specified case. Let us start with
the simplest case, which is the p = 0 case of a completely specified null
hypothesis a = a; see Section 3.3. Consider a contiguous sequence of alterna-
tive hazard rates, of the form

(5.1) a,(s) = a(s,my +8/Vn) = ay(s){1 + ¢(s)8/Vn},

where a(s) = a(s,n,) and ¢(s) = dlog a(s, n,)/dn. This is as in (2.9), but
actually simpler. Let H, and H be as in Section 3.3; H, depends upon a
predictable weight function K, and this function’s limit in probability %
features in H. The proof of Theorem 2.2 can be used to show that H, tends in
distribution to H(-) + 8/;k(s)p(s)ay(s) ds.

How should K,(-) be chosen in order to achieve high local power for a test
based upon H,? The simplest such test is based on H,(a, b] = H,(b) — H,(a),
ie, the increment in H, over a single cell, and rejects the model if
\H,(a, b]| /{#%(b) — #*(a)}'/? exceeds z, ,,, the upper & /2 point of the standard
normal, where #(¢) is given in (3.10).

ProposITION 5.1.  The local asymptotic power is

(5.2) Pr{reject|a, ()} — Pr{x2(8%A(a, b]) > 225},
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where the eccentricity parameter of the x? distribution involves

(5.3) A(a,b] = [ [, F)d()ag(s) ds} / [ (/3 an(s) ds.

The choice of K ,(s) that brings optimal asymptotic power against the alterna-
tives (5.1) is K,(s) = {Y(s)/n}¢(s).

Proor. Expressions (5.2) and (5.3) follow readily from H, —», H +
8/okda, ds, upon using the fact that #2(¢) converges in probability to 72(t)
J&(k%/y)a, ds not only under the null hypothesis model but also along the
sequence of models (5.1). Maximizing the local asymptotic power amounts to
maximizing A = A(a, b]. But this can easily be done using the Cauchy-Schwarz
inequality. Let us for clarity write k(s) = y(s)h(s) and dv(s) = y(s)a(s) ds,
which leads to the expression A = (f, ,h¢ dv)?/[, ,;h* dv. The optimizing
choice is ~ proportional to ¢, i.e., k(s) = y(s)¢(s), and we are led to K ,(s) =
&(s)Y(s)/n. O

Next, consider the more serious x? test X2 of (3.13). It is not difficult to see
that X? converges to a noncentral xZ(62\) distribution, along the alternatives
(5.1), where in fact A =X AMa;_q,a;]. Since the best choice is k(s) =
¥(s)¢(s) on each interval, thls is also true for the sum. Accordingly, one should
use X2=1Xr ,Q2,/d;, with Q, ; = [; #(sHdN(s) — Y(s)ay(s)ds} and d; =
] 1. Y(s)¢(s)2a0(s) ds/n to detect alternatlves (5.1), and the optimal local power
is Pr{x2(8%/y yd®ay ds) > v,, .}, where vy, , is the upper ¢ point of the x2.

ExaMpLE 1. Suppose that the null hypothesis specifies a constant hazard
rate 6,. Other constant hazards 0 as alternatives correspond to ¢(s) also being
constant and K,(s) = Y(s)/n is optimal. This is Special Case 2 of Sections 3.1
and 3.3 and accordingly the yx2 statistic X2 = X7 (N, — E;)?/E, is optimal
for detecting other constant hazards. Thls is also the test independently
proposed by Akritas (1988). The optimality property just derived explains
theoretically the simulation results of Akritas’ Table 1.

ExampLE 2. Weibull alternatives correspond to cumulative hazard rate
(8ot)" or hazard rate 6Jns" !. The optimal weight function is K, (s) =
{Y(s)/nH1 + log(6,ys)}.

ExaMpLE 3. Next consider a(s) = 6,/(1 + ns), as in 4B. To detect such
alternatives to a constant hazard rate, which is the degenerate case n = 0, one
should use K,(s) = sY(s)/n.

ExampLE 4. Consider the situation of 4E. How should K, be chosen in
order to detect such alternatives to the null hypothesis a,? Following the
general procedure one finds that ¢(s), the derivative of log a(s, €) w.r.t. € and
evaluated at zero, is equal to exp[—{A(s) — Ay(s)}a(s) — ay(s)}/ay(s). If
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ay(s) = 6, is the null hypothesis hazard and a,(s) = 6, for example, then the
optimal choice is K,(s) equal to (or proportional to) exp{—(8; — 6,)s}Y(s)/n.
This means giving much more weight to the shorter life lengths than the
longer ones, which is natural, in that individuals with hazard rate «, are those
that die first.

ExamMpLE 5. Consider the gamma distribution density f(¢, 0, n) =
{6"/T(n)}t" ' exp(—0¢). The best choice for K,, in order to find gamma
alternatives to the exponential with parameter 6,, which is the special case
m =1, can be shown to be K,(s) = q(s0,)Y(s)/n, in which q(¢) =
Eflog(X/t)| X >t} = [ log(x/t)e ™ dx /[ e * dx for X a unit exponential.

One can also derive expressions for the local asymptotic power of the
Kolmogorov-Smirnov and Cramér-von Mises type statistics mentioned in
Section 3.3. In the first case these expressions involve crossing probabilities for
Brownian motion with nonlinear boundaries and in the second case distribu-
tions of integrals of squares of shifted Brownian motion. Accordingly the local
asymptotic power would in general have to be computed by means of nontrivial
numerical devices, for each k(-) and each §, making general results very
difficult to obtain.

In a couple of instances explicit optimality results are obtainable, however.
Consider the test statistic of (3.12), defined as the maximum over an interval
[a,c] of a weighted version of H,. One can show that it converges in
distribution along the path of (5.1) to

max
rHa)<s<7c)

W(s)/Vs + 5[0"2)'1‘8)k¢a0 du/Vs

I

and use this to demonstrate that the best choice of k(s), also for this test
statistic, is y(s)¢(s). The optimal local power is

(5.4) Pr{ max  |W(¢)/VE + or(c)VE| > cs},
2a)/r¥c)<t<1
where c, is the appropriate quantile of the distribution on the right-hand side
of (3.12).
We should stress that not every test based on H, will achieve its optimal
local power against (5.1) alternatives by using #(s)Y(s)/n for K,(s). The
{max, _,_r|H,()]}/7(T) test of (3.12) is a case in point.

REMARK. The important remaining problem is to compare the power per-
formance of the best tests proposed here with that of other classical tests. One
might, for example, compare the local power given in (5.4), which can be
computed numerically using methods of Durbin (1971) and Folkeson [(1984),
Chapter 2], with similar expressions for the local power of Kolmogorov—
Smirnov or Cramér-von Mises tests. This is not pursued here. We point out,
however, that our new x? tests beat the classical ones in many cases. Let us
illustrate this in a simple situation. Assume the problem is to test a(s) = 6,
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on [0, T] for a large T based on survival times with no censoring. Then the
classical Pearson x2_, is Z, = L (N; — np; ¢)°/np; ,, where p; =
Ji, fo(x)dx and f, is the exponential density 6,exp(—6,x) and N, =
N(a;_;, a;] is the number of observed failures in cell number i. One can now
work out an expression for the local asymptotic power of the Z, test, along the
Pitman path (5.1) of alternatives. In general terms it becomes Pr{y%(6%Ayp) >
Ym-— 1, s} Where AKP zzm 1€ /pz 0 and C; d(al l)exp{ AO(az 1)} -
d(aexp{—Ay(a,)}, writing d(t) for quS(s)aO(s)ds If the alternatives are
other constant hazards 6,(1 + 6/Vn), then ¢, =a,_,0,exp(—a,_,0,) —
a;0,exp(—a;0,) and one can show that Agp is always less than A, =
ITy(s)ds = 1 — exp(—0,T). Accordingly the new test X3, =X (N, -
E,)?/E;, which uses E; = [; Y(s)ay(s)ds and even has an addltlonal degree of
freedom, is stronger than the classical Z,, which uses E; = np, ,. This again
provides a theoretical explanation for the simulation results of Akritas [(1988),
Table 1]. Akritas’ Table 2 indicates that X¢, also is better than Z, against
Weibull alternatives. Example 2 shows that X2 with the K, given there
performs even better. Further research could compare the new tests with also
the more general x? tests of Cressie and Read (1984).

5.2. Local asymptotic power in the parametric case. Let us next turn to
the case of a parametric null hypothesis. It is reasonably straightforward to
obtain expressions for the asymptotic local power of the various tests, employ-
ing Theorem 2.2, but it becomes harder to find explicit optimality results than
in the fully specified case considered above.

Encapsule the null model a(s, 0) in a larger family a(s, 6, ), where n = 7,
gives the original model. We are interested in local power for tests, along the
Pitman path of alternatives (2.9). The simplest test based on H, of (2.7) is
the ratio |H,(I)| /{d(I) — B(I)31B(I)}!/2 based on a single cell I (a,b]lin
the notation of Section 3. From Theorem 2.2 the asymptotic local power is
found to be as in (5.2), but with a more complicated expression than (5.3) for A,
namely,

[ikbads — (Jikyads)S~Y([Tydads)]”
[1(B2/y)ads — ([ik¥ads)S ([ ikpads) ’

in which « is shorthand for a(s, 6,), etc.

(5.5) A=

PropPoSITION 5.2. The function k thdt maximizes the noncentrality parame-
ter A of (5.5) is k(s) = y(s)hy(s) = y(sHo(s, 0y) — ciy(s, 0,)}, where cy =
(freyydb'a ds)™ Y eyppa ds and I° denotes the complement [0, T] — I. The choice
of K, that yields optimal local power against alternatives (2.9) for the
single-cell test described above is

K, (s) = {Y(s)/n}{$(s,8) — (&)¥(s,0)},

where &, is the plug-in estimator for c,.
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Proor. It is again helpful to write £ = yo and dv(s) = y(s)a(s, 0,) ds.
Then A can be written [0]2/[u], where

[0] = flhqs dv — (/Iht/fdv),z‘l(ffdn//dv)
[«] =f1h2dv— (j;hwdv),E‘l(flhwdv).

Let us define (g, h) = [;ghdv — ([;g¢ dv)Z~X([;h¢ dv), for any pair of func-
tions g and A for which the integrals exist. This actually defines a bona fide
inner product, satisfying the Cauchy—Schwarz inequality. Furthermore, [©] =
(h, k) and inspection shows that [0] can be written (k, ¢ — c'y), irrespective of
h, when c is chosen as ¢y = ([;-y¢' dv)~Y,edpth dv. Accordingly A is maximal
when h is proportional to 2, = ¢ — c{y, as claimed. The weight process K,
given in the proposition is consistent for 2 = yh, and obeys regularity condi-
tion (K) of Theorem 2.1. O

and

It is slightly awkward that the best choice K, depends upon the cell I. If I
is a small cell, an approximation to the best % is

(5.6) k*(s) =y(s)h*(s) = y(s){d(s,00) — (c*)¥(s,0,)},
where c* = 37 Typpa ds, with an accompanying proposal for K,(s); see
B.7.

Consider next the full 2 test (3.3). Using Theorem 2.2 again it follows that
X2 >, x2%(8%)), where A = g¢’'R~g and g is the vector with components

= flkq.')ads - b{E_I/;Ty¢wads

= /;lhcﬁdv— ([Iihwdv)'z—l([o%wdv) = flihh*dv,

again writing 2 = yh, and using h* of (5.6). Upon using (3.4), it follows that
m(f,hh*dv)’

i1 ]1h2dv
m [, hh*dv m [, hh*dy
+{,§1 W fhc/zdv} G(h)~ {El—fz,.hzdv fihdfdv},

where G(h)~ is the (generalized) inverse of 3 — SD™!S' = 7 [ [1 ' dv —
(Ji,h dvX [ hy dv) /[ h? dv]. Choosing h = h* maximizes the first term and
makes the second term’ vanish. I have not been able to prove that h* really
maximizes A, but it is at least possible to show that A, as a function of the
possible choice & = A* + (¢;)'y on I;, has a local maximum for ¢, = -+ =
€,, = 0. This indicates that ~* is a very good choice for 2 and we propose

(5.7) K,(s) = {Y(s)/n}{¢(s,8) — &y(s,0)},

where ¢é = 3 Y79dda ds estimates c*.
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ExaMPLE 1. An omnibus test for exponentiality, which at the same time is
clever at detecting alternatives of the form a(s) = 8{1 + ¢(s, )8} for small 5,
uses an appropriate estimated version of k(s) = y(s)¢(s, 0) — ¢(+, 6)}, where
¢(-,0) = [Ty(s)p(s,0)ds/[Fy(s)ds, for K, (s). This is seen following the
general program above. Weibull alternatives correspond to ¢(s,0) =1 +
log(6s) and gamma distribution alternatives correspond to ¢(s, 8) = —q(s9),
where q is the function given in Example 5 of the previous subsection. Several
interesting models have a(s) = 8g(s,n) for some specified g, where some 7,
gives the constant hazard rate case. An example is the gamma frailty mixture
case 0/(1.4+ ns) considered in Example 3 of the previous subsection. Then
#(s,0) = dlog g(s,my)/dn = ¢(s) is independent of 6; in the example it is
equal to —s. In this case, an empirical version of y(s){¢(s) — ¢} is used for
K, (s).

ExamPLE 2. One can use the general method to establish a test for Weibull
cumulative hazards (6¢)?, which is strong against three-parameter alternatives
(6¢ + m)P, and one may similarly devise a K, weight function which makes a
test for exponentiality strong against a ray through or a mixture of this
three-parameter alternative model, etc.

5.3. Power against fixed alternatives. Here we shall only outline results
that can be obtained. Let us first consider the x? test X2 of (3.3). We are
interested in the distribution of X2 outside the null model, say under a
general hazard rate a(-) not belonglng to the parametric family. It can be
wrltten X2=Q, R- Q = n#'R %, where # is the vector with components
m=@Q,,;/Vn \/_ From Theorem 2.3 it is seen that 7 really estimates the vector
m with elements m = [; k(s,0,{a(s) — a(s, 0y)}ds under a priori circum-
stances and X? in eﬁ'ect tests whether the m a;’s are equal to zero; see also
Remark 7B.

Under natural conditions vn (# — ) will have some Gaussian zero mean
limit, say Z, with a covariance matrix R, more general and more cumber-
some than the null model R previously considered. Simultaneously, Vn (R~ —
R;) will have some zero mean Gaussian matrix limit, say M, where R is the
hmlt of R under a. One can now show that

Vn(X2/n —w'Ryw) = Vn (#'R % — w'Ryw)
converges in distribution to the variable w'M= + 27w'R;Z, which is normal
with zero mean and a complicated variance depending upon the specific
alternative «. This variance is zero under the null model.

Let us also consider another type of example, namely the Kolmogorov—
Smirnov type test for a(s) = 6ay(s) described in 4A. The variable D,
max, _, . 7|7(¢)| converges in probability to A, = max, _, _r|7(¢)|. Under model
conditions A, is zero and Va D, has a hmlt distribution. Under regular
conditions \/; {#(-) — w(-)} tends to a certain zero mean normal process, say
U(+); cf. comments made after Theorem 2.3. Assume for concreteness that

= |m(¢y)| for a unique ¢,. Then careful arguments similar to those used in
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Raghavachari (1973) can be used to show that vn (D, — A,) is asymptotically
equivalent to Vn {|#(t,)| — |m(t,)|} and this variable tends to U\ (tO) Additional
analysis brings an end result for Vn (D,/é — A,/0,), where o, is the limit in
probability of & under a conditions.

These results can be used to explore problems like choosing a test with high
power for log-normal alternatives under gamma distribution conditions and
vice versa. See also Remark 7B.

6. Testing the parametric Cox model. So far we have considered
lifetimes to have been drawn from a homogeneous population of individuals
with a common hazard rate a(s). Assume now that certain covariate measure-
ments are available for each individual, say z; = (z;,..., 2;,) for number i,
and that these are thought to influence this 1nd1v1dual’s hazard rate. Among
several possible models for this kind of situation, by far the most popular is
Cox’s regression model for proportional hazards; see for example Cox (1972),
Kalbfeisch and Prentice (1980) or Andersen and Borgan (1985). This is a
semiparametric model which postulates that number i has hazard rate
(6.1) a;(s) = a(s)exp(B'z;),
where B is an unknown g-dimensional parameter and «(:), the hazard rate for
an individual with covariate vector zero, is left unspecified. Gill (1984) gives a
good account of the martingale approach to the understanding and analysis of
the Cox model.

The success of the Cox model has perhaps led to the unintended side effect
that practitioners too seldomly invest efforts in studying the baseline hazard
a(+). A parametric version, say
(6.2) a;(s) = a(s,0)exp(B'z;),
for some p-dimensional 6, if found to be adequate, would lead to more efficient
estimation of B and related quantities, like survival probabilities, and concur-
rently contribute to a better understanding of the survival phenomenon under
study. References to work where models of type (6.2) have been used, with
a(s,0) corresponding to the exponential, Weibull, log-normal distribution, or to
piecewise constant hazards, can be found in Kalbfleisch and Prentice [(1980),
Chapter 3], Friedman (1982) and Borgan (1984). Efron (1977) also studied this
model. Borgan (1984) studied the asymptotic properties of the maximum
likelihood estimators (6, ) in the general settmg of (6.2). Observe that g is
now more efficient than the usual Cox estimator §,,,. This can be shown using
arguments as in Altham (1984). [The Cox estimator is usually almost as good
as f3, as shown by Efron (1977) and others.]

In Section 6.1 we motivate goodness of fit processes similar to those studied
in Section 2 and derive their limit distributions under model conditions. The
results are used in Section 6.2 to construct explicit goodness of fit tests for the
parametric model (6.2). The general line of reasoning is analogous to that of
Sections 2 and 3, but necessarily becomes more cumbersome, both w.r.t.
notation and proof technicalities. We leave a fair amount of details behind in
Hjort (1984).
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ReEMARK. We operate here with covariates z; that are constant over time,
but only for the sake of concreteness and notational convenience. Our methods
and results go through for time-dependent and even random processes z,(s) as
long as these are uniformly bounded and predictable; see Andersen and Gill
(1982). Similarly results below can be generalized to different forms of the
relative risk function, as in Prentice and Self (1983).

Techniques for checking the adequacy of the tranditional semiparametric
Cox model have been proposed by Schoenfeld (1980), Andersen (1982), Moreau,
0O’Quigley and Mesbah (1985), Gill and Schumacher (1987) and Arjas (1988),
among others. Wei (1984) provided a consistent goodness of fit test for
proportional hazards in the two-sample case. I am not aware of any earlier
tests for the parametric Cox model.

6.1. Weak convergence of goodness of fit processes. In the following we
shall employ the same framework, and partly the same techniques, as laid out
for us in Andersen and Gill (1982), Gill (1984) and Borgan (1984). Matters are
more complicated than in the usual semiparametric Cox model that Andersen
and Gill studied, because of the presence of § and ¢ and because we use B
instead of B,,.

We need to introduce some notation. Results will be derived under the
conditions of the model (6.2). Let 6, and B, denote true parameter values.
Probability statements below are w.r.t. the underlying true model, except for
Section 6.3 and the paragraph where A of (6.7) is motivated. Let [0, T'] be the
observation period and let N;, Y; and M, be the counting process, the at-risk
indicator and the corresponding martingale for individual number i. The
o-algebras in question are &, = V ?_,0{N(s), Y(s); s < t}, while

(6.3) dM,(s) = dN,(s) — Y,(s)exp(Byz;)a(s,0,)ds, fori=1,...,n.

Note that both N, and Y, are zero-one processes.
The logarithm of the observed likelihood can be written

log L(6, B) = const.+ i fOT[log{a(s, 6)exp(B'z;)} AN,(s)
i-1

—Y,(s)a(s, 0)exp(B'z;) ds];

cf. (2.3). Write again (s, 8) = dlog a(s, ) /96. The maximum likelihood esti-
mators (B, §) are consistent solutions to the equations

dlog L g, n
%ﬁ) ~ ["4(s,0){dN(s) - Yi(s)exp(Bz,)a(s, 6) ds} = 0,
i=1"0

dlog L(6 n
__Og_aé_’_‘_’_)_ = Y ["2{dN,(s) — Y,(s)exp(Bz,)a(s,0) ds} = 0.
i=1"0

|
™
—
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Next, let
B 1 dlog L(8,,By) 3 1 2 7
Un— ﬁ—ae— ﬁi=lj; 1[1(8,00) dMi(S)’
(64) 1 dlogL(8y,8,) 1
og 0>Po) T‘ )
K oL R

We shall assume that the regularity conditions of Borgan [(1984), Section 6]
are in force. They ensure that

1 n
R(s,B) = — ¥ Yi(s)exp(Bz,) =, (s, B),
i=1

S|+

R(l)(S,ﬁ) = Z Y. (s)z eXp(B'zi) ~p "(1)(3,3),
i=1

1 n
R(Z)(S, B) = ; Z Yi(s)zizz" exp(B'zi) ~p "(2)(3, B),
i=1
at least for B8 values in a neighbourhood of the true one. Note that R (s, B) is
a q vector and R(s,B) a g X ¢ matrix. It is furthermore the case that
(U}, V,}Y converges in distribution to (U’, V'), a zero mean Gaussian distribu-

tion with covariance matrix 3, defined blockwise as

= " (s, 00)0(s,00)'7(s, Bo) (s, 8,) ds,
(6.5) 2= _/;)T‘//(S,Oo)"(l)(s’ﬁo)'a(s, 0,) ds,

T
D00 = j;) re(s, Bo)a(s,0,) ds.

The technical arguments presented in Borgan [(1984), Section 6] can be used
to demonstrate that

(6.6) [‘/;(0 = o) } =51

Vn(B-8o)|

in which §, and &, both go to zero in'probability. In particular the limiting
covariance matrix for (9, 8) is 37! /n.

Depart for a moment from the parametric model assumption (6.2) and
assume only that (6.1) does hold for some B, in order to motivate a semipara-
metric estimator, as it were, for the cumulative baseline hazard A(¢) =
Joa(s)ds. Let N=X7_ N, and M = ©7_, M, be the accumulated counting
process and martingale, respectively, where M, for the moment has a(s)ds
instead of a(s,8,) ds in its definition; cf. (6.3). Then dM(s) = dN(s) —

7-1Y(s)exp(Byz;)als) ds, so that J(s{dN(s)/n}/R(s, B,) can be written as

U, +6,
V,+e, ’
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J(s)a(s) ds plus martingale noise, where J(s) = {X?_,Y.(s) > 0}. This moti-
vates

. tJ(s)dN(s)/n .+ J(s)dN(s)
(6.7) A(t) = [ . = f . -
0 R(s, B) 0 Zi=1Yi(s)eXp(Bzi)
as an estimator of A(#). The traditional estimator for A in the Cox model is
identical to (6.7) except from using S, instead of the present j8; see Johansen
(1983) or Gill (1984).

We can finally define the general goodness of fit process. Let A (¢, 6) =
[¢J(s)a(s,0)ds and Z (¢) = Vn {A(t) — A, 6)} and consider

Hy(t) = [ ‘K(s) dZ,(s)

(6.8) dN(s)

_1Yi(s)exp(B'z;)

To ensure the desired convergence result we need to impose restrictions on the
weight function K,(s), similar to condition (K) of Section 2.

K*) K,(s) = G,(s, 8, B), where the process G, (s, 0,, By) is predictable, con-
verges to a suitable k(s,0,, B,) uniformly in probability and is twice con-
tinuously differentiable in (6, B). The partial derivatives G, (s, 0,,B,) are
predictable and converge uniformly in probability to functions g,(s,0,, By)
satisfying [[g;(s, 09, Bo)?r(s, By) 'a(s, 6,) ds < w. There is finally a neigh-
bourhood N of (6,, B,) for which the variable

|Gy a(s.0.8)|
max max

0<s<T 0.pyeN  Vn

- \/EfOtKn(s) —J(s)a(s,0)ds|.

tends to zero in probability.

THEOREM 6.1. Assume that regularity conditions (1)-(5) of Borgan [(1984),
page 14] are satisfied, with the r(s, B,) defined above being positive on [0, T,
and assume that L7_, exp(B4z;)/n is bounded in probability. Let {K,} be a
sequence of weight functions obeying condition (K*) and define

/tk(s’007 BO)‘/’('S, 00)“(8, 00) ds
B(t)=|"° ’
/;)tk(s’007 Bo)e(s, Bo)a(s,ao) ds

in which e(s, B) = r (s, B)/r(s, B). Then H, of (6.8) converges in D[0,T] to a
Gaussian zero-mean process H with covariance function

/‘tlAtzk(S7 007 BO)2

Cov{H(t,), H(t,)} = r(s, Bo)

a(s,0,) ds — B(£,)'S 'B(t,).
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Proor. We start out rewriting dZ,(s) in a manner similar to the manipu-
lations of Andersen and Gill [(1982), page 1104], but taking also the variability
of § around 0, into account. By also using arguments similar to those used in
the proof of Theorem 2.1, one finds

dZ,(s) = VnJ(s)[(1/n) dN(s)/R(s, B) — a(s,8) ds]
=J(s)R(s,B) " dM(s)/Vn — J(s)¢(s,6)a(s,b) dsVn (6 — 6,)
—J(s){dM(s)/n + R(s, By)a(s,0,) ds}

x{Ra(s, B)/R(s, B)" |V (B - B),

where 6 is between 6, and 6 and, similarly, B is between Bo and j. By (6.6),
this leads to an expression of the type

} + remainder,,,

H,(t) = ['K,(s) dW,(s) - Bn<t)'2-1[€"
0 n
in which W,(¢) = [{J(s)R(s, B))"'dM(s)/ Vn is a martingale, B,(t) is a
random vector which converges to B(#) uniformly in probability and re-
mainder, goes to zero in probability, by several careful arguments parallelling
those used in proof of Theorem 2.1. Details are available in Hjort (1984).
Rebolledo’s central limit theorem for martingales, in the form of Theorem
1.2 in Andersen and Gill (1982), can be used to verify that W, -, W in
D[0,T], a Gaussian martingale with Var{dW(s)} = r(s, B,) " la(s, 8,) ds. We
have earlier mentioned that (U, V,/)’ of (6.4) tends to a zero-mean Gaussian
(U, V'Y with covariance matrix 3 given in (6.5). What is needed to conclude
the proof is the stronger simultaneous statement (W,,U,,V,) -, (W, U, V) in
D[0,T] x #P*9, where (W,U,V) has the appropriate covarlance structure:
Cov{W(2), U} = [5¢(s,00)als,0,)ds and Cov{W(2),V} = [le(s, Byals,8,)ds.
This can be shown using Rebolledo’s theorem once more. In consequence, H,
converges in distribution to

H- [O'k(s, 8y, By) AW(s) — B(-)’E‘l[g].

This is a Gaussian process with mean zero, and it is not difficult to verify that
its covariance structure is as given in the theorem. O

6.2. Goodness of fit tests. To check the validity of one’s parametric Cox
model with a(s) = a(s, ), one could draw the graph of H (t)/#(t), where

‘2(t)—fR( dA(s) B(t)S'B(¢)

is a consistent estimator for 72(t) = Var H(¢). Estimators 3 and B(t) are easy
to construct by replacing k(s, 6, B,) by K,(s), (s, 8,) by (s, ), etc., in the
expressions defining 3 and B(t). If the model is correct, then H (t)/‘r(t) is
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asymptotically standard normal for each ¢, but otherwise it would drift off
from zero. Special Cases 1-3 below lead to three different possibilities for

H, (1) /7).
A class of rigorous x? tests can also be derived. Let0 =a, < -+ <a, =T
divide [0, T'] into cells I; = (a;_;, a;], as in Section 3.1, and let
dN(s)/n R
=H (a,_{,a;] = K J —_—— — ,0) ds |.
Qn,t n(az—l a‘z] ‘/;j;l n(s) (S) R(S,B) Cl(S ) S

Then the vector @, with elements @, ; tends in distribution to the vector @
with elements @, = H(a,_;, a;]. As in Section 3.1 it is seen that @ has

Q=VarQ =D - 83718,

in which D is diagonal with elements d; = [, {k%/r}ads and S = (b,,...,b,,)
is (p + q) X m with elements b, = (/}, kd/ ads, [1,ke’a ds). We allow ourselves
to write & for k(s, 0y, Bo), ¢ for Y(s, 00) etc., here.

Let () be any estimator of Q which is consistent under model conditions,
say with elements &, ; = d;s; . — b'i_lb Our test statistic will be X2 =
Q) Q- Q,,, which upon reemployment of the matrix identity (3.4) can be written

m 2 m . m ,
(69) X2=@,0°Q,=Y — LR {E Q’i”é,-} G—{Z Qi‘"é,-},

zli ildi i=1 i

involving the (generalized) inverse of the (p +¢q) X (p +q) matrix G =
$-8h1§=%- }:;" ,b,61/d,. The limit distribution of X2 under model
conditions (6.2) is x%, where df = Rank(Q2). In most cases af = m, whereas
df = m — 1 for choices of K, that give H,(T)=XY.,Q, ; = 0; see the Re-
mark in Section 3 and Special Case 3 below.

Interesting choices for the K, function include the following:

SpECIAL cASE 1. Let K,(s) = 1. Then @, ; = Vn {A(I)) — [, J(s)a(s, ) ds}
compares two estimates of the cumulative hazard rate over interval I, one
based on the semiparametric Cox model and one based on the parametric Cox
model.

SpPECIAL cASE 2. Let K, (s) = Zj=11/}(s)exp(ﬁ’zj)/n = R(s, ), which obeys
condition (K*) of the theorem, as a consequence of the other regularity
conditions. In this case @, ; = (N; — E;)/ Vn, where N, = N(I;) counts the
observed transitions in interval I, and' E, = IR 1Y(s)exp(B 2;)a(s, 0)ds is
a dynamic, hazard rate based estimate of N based on model assumptlons One
has X2 = L (N, — E,?/E, + W/G~W,, in which W, = yn £ (N, -
E)/E}b,.

SPECIAL CASE 3. Let this time K ,(s) = R(s, B)c'¥(s, 6) for some coefficients
¢y,-..,¢,- Then 22 ,Q, ; = 0,df = m — 1 and (6.9) can be evaluated using the
inverse of a (p + q — 1) X (p + g — 1) matrix, as in the corresponding situa-
tion of Section 3.1.
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TuE ONE-DIMENSIONAL CASE. Assume that 0 is one-dimensional and choose
K,(s) = R(s, B)Y(s, 6). Then

Q..; =flw(s,é){dN(s) -y Y;(s)exp(B'z;)a(s, e)ds}/f
13 J_
and d, = f1, R(s, (s, 6)%a(s, 6) ds. One can show that
X2 = §Q2u/d,+ (W60 (W),

where W0 L@y, (1)(3 Ba(s,0)ds/d; and G° is the g X ¢ matrix
LR (2)01 ds —{J; R ja ds){/p, R padsy/d,]. The test statistic X2 has
a limiting x2_, distribution if the model conditions (6.2) hold. In partlcular

one can write down a test for exponential regression, that is, a;(s) = 0 exp(B'z;),
of the form L7 (N, — E))?/E, + (W2Y(G®)"Y(W)2).

6.3. Consistency of the tests. What type of departures from the parametric
Cox model will the tests just proposed be able to detect? Assume only that the
true hazard rate structure is of the form a,(s) = a(s)g(z;), say, where we
might take g(0) = 1 to identify the baseline hazard rate a(:). The parametric
Cox model amounts to a(s) = a(s, ) for some 6 and g(z) = exp(B'z) for some
B. But what happens to H,, of (6.8) in the wider model?

One has dN(s) = L7_,Y,(s)g(z,)a(s)ds + dM(s), where M is a sum of n
individual martingales. Assume that the average ©7_,Y,(s)g(z,)/n tends in
probability to some function #(s). Under regularity conditions similar to those
described in Hjort [(1986), Section 4] one can demonstrate that § and S
converge in probability to certain appropriate least false parameter values 6,
and B,. Lenglart’s inequality [see Andersen and Gill (1982)] can be used to
show that A(z) of (6.7) tends to [{{¢(s)/r(s, By)a(s)ds, and these results
combine to give

H (t)

#(t) = k(s 00, Bo) 1)
Vn

r(s,B,)

cf. Theorem 2.3 and its proof. It follows that appropriate tests based upon H,
will detect any departure from (6.2) of the type a(s)g(z;), with probability
tending to 1. One can also show that H, (¢) — Vn w(¢) = Vn {#(t) — 7(¢)} has a
limiting normal distribution under traditional regularity assumptions; cf. the
closing paragraph of Section 2 and Remark 7B.

Two types of departure from (6.2) are of particular interest. If the g(z) =
exp(Byz) part is correctly modelled, but a(-) differs from a(-,6,), then
H,(t)/Vn tends to m(t) = [¢k(s, 0, Bo)als) — als, 8,)} ds. Even in cases
where the a(s) = a(s, 6,) part of the model is correct, will departures of g(z)
from exp(B}2z) be detected, in that

m(t) = fotk(s,00,30){'5(8)#(8,30) ~ 1}a(s, 6,) ds.

———a(s) —a(s,0,) |ds = w(t);
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One may also derive results about local asymptotic power, as in Theorem
2.2 and Section 5, but this is not pursued here.

7. Concluding remarks.

REMARK 7A. Our results have been derived using maximum likelihood
estimators for the unknown parameters. The results continue to hold for other
estimators that are asymptotically equivalent. A Bayesian is allowed the
privilege of substituting for 6 some appropriate Bayes estimator 6 5 in the test
statistics of Sections 3, 4 and 6, for example, in that Vn (65 — 6) vanishes in
probability, even outside model conditions, according to Hjort (1986). One can
also derive results parallelling Theorem 2.1 for other estimators, but the
covariance structure will in general be more complicated, which in turn
usually would lead to more complicated test statistics. (An exception is the
minimum chi square estimator used by Akritas [(1988), Section 3].) This
remark applies also to the possibility of using ﬁcox instead of ﬁ in Section 6. A
statistical reason for sticking to § or some asymptotically equivalent relative is
that these are asymptotically optimal estimators; see Hjort [(1986), Section 3].

ReEMARK 7B. To make our next point, let us write Pr, for probability
statements w.r.t. the counting process model with hazard rate a(-). The
defining property of a bona fide test statistic with asymptotic level ¢ is that

(7.1) lim sup Pr {reject} <¢ forall «a € H,,
n—oo

where H,, is the subset of a’s that agree with the null hypothesis model, i.e.,
a(s) = a(s 6) for some value of the parameter 6. The x 2.type test statistics of
Section 3 employ certain estimators d, PR b,, S for quantities d, i» b;, 2 present in
the asymptotic covariance matrix R = D — S'3~1S for @,; see (3.1) and (3.2).
As pointed out there, the single requirement is that these estimators are
consistent under H, conditions, i.e., (7.1) holds, and indeed with = replacing
< and lim replacmg lim sup, prov1ded only that R -, R =R, for each
a e H

But what should a statistician do next, if the null hypothesis model is
rejected? The natural desire is to search for specific departures from H, and
declare certain such departures to be present. This calls for a search rule see
HJOI't (1988) for a general discussion. In the present situation the y? test

= Q) R- Q, = n#'R~# of (3.3) in effect tests whether m=0,...,m7, =0,

in the notation introduced in Theorem 2.3 and Section 5.3. Call a smooth
function f(w) = f(sry,...,m,,) a contrast if f(0,...,0) = 0. A possible search
rule for departures from the null state is to declare the contrast f(m) to be
positive if Vnf(#)/6(f) > ¢, for appropriate level ¢, where &2(f) =
Dq(#Y RDf(w) and D.(w) is the vector of partial derivatives. A good search
rule should have the property
(7.2) limsup Pr,{thereissomef(m) < 0, butf() is declared positive} < ¢,

n—o
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for all a priori a hazards, not only those under H,,. The results of Hjort (1988)
can be used to show that (7.2) indeed does hold, for the quoted search rule,
with ¢ = (y4 ,)'/?, provided that 6(f) is computed with an R that is a priori
consistent. This means that R is required to tend to the general limiting
covariance matrix R, of Vn (# — ), also for a’s outside H,. There is a link to
significance testing in that the event ““at least one contrast is declared positive”
is asymptotically equivalent to X2 = n#'R™# > v ,.

Seen in this light X? takes the perhaps more natural role of a clearance test
and one avoids the somewhat artificial probability calculations under a model
that one perhaps knows in advance cannot be exactly true. The caveat and the
price to pay is that a model-robust R is called for; B = D — §'$-18 is not
good enough. Accordingly, if (7.2) is strived for [not only (7.1)], then X2 cannot
be used in the simple forms (3.5), (3.6) and (3.13), for example. One can derive
general but rather cumbersome expressions for R, and a priori consistent
estimators can be constructed based on this; see the closing paragraph of
Section 2. It might be simpler to use nonparametric bootstrapping.

Of course the points made here are of a general nature and apply to most of
the classical yZ-type tests as well.

RemMaRrk 7C. We have employed a framework with a fixed, bounded time
interval [0, T'], since the martingale and counting process apparatus works best
there. We do not consider the boundedness a serious practical problem, but it
is of course satisfying to have results applicable for the full half-line. Exten-
sions of this article’s results are possible, to T being a random stopping time
and to T = », under appropriate extra conditions; see Gill (1980), Andersen,
Borgan, Gill and Keiding (1982), Andersen and Gill (1982), Helland (1982),
Wei (1984) and Aven (1986) for similar comments and details. Basically one
needs conditions that ensure contributions to estimators and test statistics
from data on [7, ) to be arbitrarily small, uniformly in n for large enough 7,
and the matrix % = [Jy(s)y(s, 8¢ (s, 0,)'a(s, 0,) ds must be finite. Explicit
conditions seem easiest to put up following Aven [(1986), Section 5].

REMARK 7D. Often a framework is needed with more than one counting
process. Assume, for example, that n individuals in a homogeneous population
move among different states in a Markov chain manner, with hazard rate

;(s) for transitions from state i to state j. Let N, ;(#) count the number of
observed transitions from i to j in the time 1nterva1 [0 t]. Then the collection
of N, /s form a multivariate counting process, with hazard processes
Y(s)a ;(s), where Y(s) is the number of individuals in state i just prior to
time s; see Aalen (1978a, b). Some examples of parametric models for several
hazard rates, used in actuarial sciences and demography, can be found in
Borgan (1984) and his references.

The methods and results of Sections 2 and 3 first of all apply to any of the
given counting processes, so that the hypothesis that the hazard rate from i to
J is constant over a certain time interval, for example, can be tested with some



GOODNESS OF FIT TESTS 1255

appropriate test among those proposed in Section 3. Second, the methods and
results can be extended to the multivariate framework, with surprisingly few
extra difficulties, using asymptotic martingale techniques. This is due to the
fact that the associate basic martingales become orthogonal. Details of this
extension are not given here, but are available along with some examples of
applications in Hjort (1984).

REMARK 7E. There are several relatives to the goodness of fit tests in
Section 3. Several tests can be based on weak convergence of Vn{F(@t) — F(z, 0))
or a weighted version, where F' is the Kaplan—-Meier estimator. Results for
this process were independently derived, thereby simultaneously generalizing
classic theorems of Durbin (1973) and Aalen and Johansen (1978), by Burke
(1981), Hjort [(1984), Section 3] and Habib and Thomas (1986). The latter
authors proposed a class of x? tests. Other related tests that can be con-
structed using essentially the same machinery as in this paper’s Sections 2 and
3 are based on parametric transformations of the cumulative hazard. To test
whether A(¢) is of the Weibull type (6¢)?, for example, one might consider
functionals of log A(#) — p log(6t), or perhaps inventing a test for linearity of
log A(¢) in log ¢.

REMARK 7F. The limit process H of Theorem 2.1 is a p times tied-down
time-transformed Brownian motion process. Write H(¢) = H%(¢) — B(¢)’S™1U,
where H°(¢) has independent increments and can be represented as
W{{(k?/y)ads} and U = [{¢(s,8,) dV(s). One can now show that the distri-
bution of H°, conditioned on the vector U being zero, is exactly that of H.

REMARK 7G. It is worth pointing out that the null distribution of some of
the tests proposed here can be obtained through simulation.

REMARK 7H. The x? tests of Sections 3 and 6 can use certain types of
random cell boundaries without affecting the limit distribution results. This
can be established using random time change techniques of Billingsley [(1968),
Section 17]; see Habib and Thomas [(1986), Section 3].

ReMARk 7I. It should be possible to construct classes of goodness of fit
tests for certain parametric semi-Markov processes, at least for the class
studied in Voelkel and Crowley (1984), extending the techniques used in this

paper.
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