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RENEWAL THEORY PROPERTIES OF ION CHANNELS
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The membranes of cells, such as those found in heart and nerve tissue,
contain structures known as ion channels. The current produced by an ion
channel in a cell membrane has been modelled as a finite state-space
Markov process. Statistical analysis of ion channels has been largely limited
to the case where a single channel is observed, or where the stimulus to the
channel is so slight that only one channel at a time is emitting current. In
many experiments, however, several channels are producing current simul-
taneously. Therefore only the superposition of the currents from an
unknown number of channels can be observed. A hypothesis test is estab-
lished which tests whether these channels operate independently and iden-
tically. If the null hypothesis is not rejected, confidence intervals for the
mean emitting time and mean nonemitting time of individual channels and
estimates of the distribution functions of the sojourns in emitting states
and nonemitting states are obtained.

1. Introduction and statement of results.

1.1. Molecular ion channels. The membranes of cells, such as those found
in heart and nerve tissue, contain molecular structures known as ion channels.
These complex molecules may assume several configurations, some of which
are capable of pumping ions across the cell membrane and producing a
detectable unit of current. The amperage of this current, measured in picoam-
peres, is intrinsic to the molecular structure of the ion channel. In the absence
of stimulus, the molecule produces no electrical current. In the presence of
certain chemical or physical stimuli, the molecule may assume, first, transi-
tional configurations which still do not produce any current and then either
take a form which produces a unit of electrical current across the cell mem-
brane or return to the resting state. The electrical output of an ion channel is
thus an alternating sequence of random sojourns in the nonemitting and
emitting states. The distributions of the lengths of sojourns in the emitting
and nonemitting states, as well as the means of these distributions, are
functions of the molecular bonding rates. These bonding rates and how they
change with varying stimuli, are key -to the understanding of many cellular
functions and are the object of considerable research in the biological sciences
[e.g., Horn (1984), Horn and Vandenberg (1984), Labarca, Rice, Fredkin and
Montal (1985) and Neher (1983)].

Statistical analysis of ion channels has been largely limited to the case
where a single channel is isolated and observed (a difficult task) or where the
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stimulus to the channel is so slight that only one channel at a time is emitting
current. In many experiments the portion of cell membrane (a cell patch)
contains an unknown number (e.g., 5 to 10) of ion channels and the stimulus
is sufficiently strong that several channels are producing current simultane-
ously. Only the superposition of the currents from an unknown number of
channels can be observed. If the ion channels have identical molecular struc-
ture, it follows that the superposed current is an integer multiple of the
intrinsic current produced by one channel. Henceforth, we consider the cur-
rent to be measured in integers. This paper uses this type of data to attack the
problem of ‘deciding whether or not the channels in a membrane are operating
independently and, if so, estimating the distribution of the sojourn periods in
emitting and nonemitting states.

1.2. Single channel model. The opening and closing of a pore (channel) in
the cell membrane produces a series of pulses of electrical current. The
temporal pattern is determined by the gating mechanism—the molecular
structure of the channel. This pattern of activity may be quite complex. For
example, the channel may exhibit bursting behaviour where the activity
appears as separate bursts of rapidly oscillating current. Drug-induced cur-
rents in single ion channels of a cell membrane have been well described by
Colquhoun and Hawkes (1977, 1981, 1982, 1983, 1987) as a finite state-space
Markov process. The channel may be said to be either in bound and open
(or emitting) states or in unbound and closed (or nonemitting) states. There
are, moreover, several intermediate bound but closed (nonemitting) states.
The finite state space is partitioned into two groups of states: the emitting
states &/ and the nonemitting states &. The simplest case is that of the
alternating renewal process. Note that the 0-1 output process is not necessar-
ily Markovian and that the sojourns in emitting or nonemitting states are not
necessarily exponential. Such processes are known as aggregated Markov
processes.

Studies of Fredkin, Montal and Rice (1985) and others support this repre-
sentation of the gating mechanism of a single channel. The technique of single
channel recording is described in Auerbach and Sachs (1983), Colquhoun and
Sigworth (1983), Hamill, Marty, Neher, Sakmann and Sigworth (1981) and
Sakmann and Neher (1983). The important problem of time interval omission
(where sojourns in &/ or & shorter than a fixed value are missed by the
recording machinery) has also attracted considerable attention [e.g., Blatz and
Magleby (1986) and Ball and Sansom (1987, 1988)]. These papers take a
Markovian approach. A recent paper of Milne, Yeo, Edeson and Madsen (1988)
attacks the problem of time interval omission using renewal methods similar
in spirit to that of this paper. A more general reference is the book of Hille
(1984).

1.3. Multiple ion channels. When the channel patch contains several ion
channels the output current process is the sum of the individual aggregated
Markov processes. Frequently such data are discarded. The techniques refer-
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enced in Section 1.2 are not effective when investigating the gating mechanism
at higher levels of stimulation where several channels emit current simultane-
ously. They are also ineffective in the case of nonidentical channels or when
channels interact [e.g., stretch-activated channels in Sigurdson, Morris, Brez-
den and Gardner (1987)]. An accepted procedure has been to assume indepen-
dent and identically distributed channels and fit the empirical cumulative
distribution function for emitting and nonemitting periods to that predicted by
a Markov chain model [e.g., Patlak and Horn (1982) and Kirber, Singer, Welsh,
Fuller and Peura (1985)]. Dionne and Leibowitz (1982), Glasbey and Martin
(1988), Horn and Lange (1983), Jackson (1985), Sine and Steinbach (1986) and
Yeramian, Trautmann and Claverie (1986) have examined multichannel
patches by different, essentially Markovian, techniques. The goal of this paper
is to introduce a different approach to this problem, to provide a hypothesis
test for independent and identical channels and to obtain useful estimates for
the distribution of sojourn times. Our renewal-theoretic approach is also
useful if Markovian models are not appropriate [see Nagy (1987)].

1.4. Summary of approach and results. Our approach to the problem of
multiple ion channels adapts the following common heuristic process. Assume
the channel patch contains ¢ (unknown) independent and identical ion chan-
nels. Let p denote the ratio of (mean emitting time) to (mean emitting
time + mean nonemitting time) for a single channel, and let X(¢) denote the
total current being produced at time ¢. If the channels are independent,
identical and stationary, the distribution of X(¢) is binomial. The probability
X(#) = s (s out of ¢ are emitting) is

(§)pr-p)".

Hence the observed proportions of time spent by X(¢) at different current
levels can be fitted to a binomial density with parameters ¢ € N and p € [0, 1].
Estimate the unknown ¢ and p by ¢ and p.

We construct random vectors J(j), which represent the proportions of time
spent by X(¢) at the different current levels (0, 1,...,c) during the intervals
Ij — Du, jul, where u is the unit of time chosen for the analysis. From now
on we omit reference to the unit time, u. If the channels are indeed indepen-
dent and identical, then the expected value of each vector J(j) will be

[(g)p"(l -p)%(1)pra e (S —p)O]

The entries of this vector are obtained from the binomial density of X(0). We
use renewal-theoretic arguments to show that {J(j): j > 1} is ¢-mixing at a
certain rate. Well-known results on weakly dependent sequences then allow us
to prove a central limit theorem for {J(j): j > 1} and to state a x? test for H:
The channels function independently and identically versus H,; the occupa-
tion densities do not follow a binomial form. The test requires a minimization
of a quadratic form which yields consistent estimates of ¢ and p. If H, is

’
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acceptable, additional arguments yield estimates for the mean sojourn times,
confidence intervals for the mean sojourn times and estimates for the distribu-
tions of the sojourn lengths. There are a number of alternative mean vectors
[cf., Glasbey and Martin (1988)] corresponding to different models. Our test
can be adapted to test for these as well.

Section 2 gives the precise formulation and statement of our results. The
proofs are presented in Section 3. We look at special cases and at examples in
Section 4. In Example 2 we make some remarks on the time interval omission
problem. In Examples 4 and 5 we look at two different alternatives to indepen-

dent and identical channels. All estimators are designated by a carat, e.g., F.
2. Statement of results.

2.1. Model and notation. Consider a single channel. Colquhoun and
Hawkes (1982) modelled the gating mechanism by a finite state-space Markov
process. We generalize to a finite state-space semi-Markov model. The state
space is partitioned into the emitting states .27 and the nonemitting states 4.
We emphasize, not the Markov property, but rather the renewal property of
the model. For any state a, let P,, denote the probability of transition to state
b. This transition occurs after a sojourn of random length. Let 7 be the
stationary probability measure of matrix P. If a € o7, let 6, denote the
density of the time, starting from an arrival at a, until & is hit. Denote
the mean of 6, by u,. If b € £, let 6, denote the density of the time, starting
from an arrival at b, until «/ is hit. Denote the mean of 6, by wu,.

Consider the chain with kernel P in equilibrium and let S, denote the state
of this chain after n transitions. By stationarity,

P{Sn—l € ‘@7 Sn = a’} = Z 77-(b)f)ba‘
be#

Consequently, given that the embedded chain has jumped from &, the proba-
bility it enters o at state a is

Zbeg”’(b)PIm
Eaewzbeg"r(b)Pba )

Similarly, given that the embedded chain has jumped from 7, the probability
it enters & at state b is

): ae M"T(Q) Pab
Lyeslocwm(@)P,y
Therefore, by regarding successive jumps from & to & or & to & as

successive sojourns of a stationary semi-Markov process, the sojourn time at
a € & (respectively, b € %) has density

Lpeam(b)Py,b, respectively Locom(a)P,,0,
LicwLpeam(b)Py, ’ ZbeQZaEMW(G)Pab
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The sojourn time in & (respectively, &) has distribution F (respectively, G)
with density

Eaemzbegﬁ(b)l)baoa respectively LpealaewT(a)P,0,
Zaewzbegw(b)Pba ’ Zbegzaemw(a)Pab

and mean up (ug, respectively). Suppose that the cell patch contains ¢
(¢ unknown) ion channels of the above structure. We can usually prescribe
reasonable a priori bounds on c¢. For example, if the initial current observed is
8 units, we know that ¢ > 8. The following tests of our model’s independence
assumption contain a parameter c*. It should be chosen so that P[X(0) > c*]
> 0. As above, X(¢) denotes the total current being produced at time ¢ and let
N(¢) denote the number of departures from the set of emitting states &7 by
time ¢ (i.e., how many times did a channel turn off before ¢). We suppose that a
single record of this process can be observed for a long period [0, T'], where T
is very large with respect to uy and ug. Define

I(s,t) =I[X(t) =s] fors=0,1,2,...,c*%...,c,

I(jrs) = [ I(s,0)dt, fors=0,1,2,...,c%....c,j = 1,

i
J(j) =(J(j,s):s=0,1,2,...c*...,c),
J*(j) =(J(Jj,s):s=0,1,2,...c*),

e, =EJ(1,s), e=(e,;:s=0,1,2,...,c),
(e;:5=0,1,2,...,c*),

e*

o>
|
o

n
s_n_IZJ(j,S)’ fors=0,1,2’---’c’ =<As>,
Jj=1

T(rs)= Y nMJ(ir) - )(I(s) - &),

(@, j): li—j|<k(n)

[O < k(n) = o(log n) nondecreasing, e.g., k(n) = max(5, (log n)3/4)],

T(r,s) =E(J(1,7)J(1,5) —e,e,) + kf, E((J(1,7) — e )(JI(k,s) —e,))
k=2

+ X B(k7) = e)(I(L5) — <),

Tn = [Tn(r,s):r,se {0,1,2,...,(3*}],
*=[T(r,s):r,s€{0,1,2,...,c*}].

Furthermore, let é(n) = (é;: s €0,1,2,...,c*), where é, = (g ps(1 — p)é—s
and (¢, p) are those constants ¢, 0 < p < 1, which minimize the (for large n)
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nonnegative quadratic form
Q,(8) - [Z () - e)] [Z () - e>}

2.2. Hypothesis test. The results of Section 3.1 yield that
n
n~V2 Y (J(j) —e) », N(O,T), T,-T*as,
j=1

and that T'* is an invertible and positive definite matrix. Further

T;I/Q{n-w 5 (J%() - e*)} ., NO,I)

Jj=1

and for n sufficiently large, T, is invertible and positive definite. Here 7'1/2 is
a matrix A for which 7T —"AA Since T, ' = (A" ((A™D)Y), it is also a
positive definite matrix. Now, as n — o,

_1[2 (J*(J) - e*)} [Z (J*(J) - e*)l 2 xX(c* + 1).

J

Here x*(n) denotes a x? distribution with n degrees of freedom and y2(n, a)
is its upper 100« percentile. Under the null hypothesis of independent and
identical ion channels,

e* = < = (?)pi(l —p)ie0,1,2,...,c* >
Consequently, for large n, we have the approximate inequalities

P[Qn(é(n)) >ny?(c* + l,a)]

’llZ (J*(J) - e*) lz (J*(Jj) - e*)} > x2(e* + 1, a)]

Jj=1

= «.

Finally, we state our hypothesis test for a given c*. This test has a significance
level of at most a:

H,: The channels are independent and identical, i.e.,
the e, = EJ(1, s)areoftheform( )p (1—p) *for0 <s < c*.
H,: The expected values do not follow the pattern of a binomial density.

Reject H, if (1/n)Q,(é(n)) > x%(c* + 1, ).
REMARK. Were the random vectors /*(j) independent instead of weakly

dependent, the power of this test could be calculated by standard techniques. If
the centering values e do not follow the pattern of binomial probabilities for
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any choice of ¢ and p, then because T* ! is positive definite,
1 . n
—Q,(é(n)) = 0,(1) + 2n2[(e* — &(n)]'T, | n 2 L (J*(J) — e¥)
n X
J=1

+ min{n[(e* - é)]tf',jl[(e* - é)] : é of binomial form}
> an + 0,(n'/?) for some a > 0.

REMARK. Here we fit the binomial density to the occupations of current
levels 0 to c*. The theory carries through for any other reasonable choice of
current levels in the definition of J*(j).

ReMARK. The almost sure convergence of 7', to T* has been rapid in the
examples we have explored numerically. If we pick our unit time u so that
with high probability there are several transitions observed in that period of
time, then k(n) = 5 worked well in practice.

2.3. Estimation. We note that if the channels are independent and identi-
cal, the estimators é and p described above are consistent estimators of the
parameters ¢ and p. That is, é, — e, almost surely and consequently ¢ — ¢
and p = p = up/(up + pg). Without loss of generality we may assume all
channels are in equilibrium at time 0 (since T is large, any initial period may

be discarded).

LeEmMma 2.3.1. The following hold almost surely:

1 1 _
a . - _ C s . c—s
(a) Jim o [(1(s,0)dt = (g)p*(1 = p),
1
(a) lim — ["X(¢)dt =
Jim Tfo (t) dt = cp,
N(T
(b) lim_(_)_zg,
T—x T 115
() 7 LX) dri istent estimat,
= — £ .
Lp N(T)/o (t) dt is a consistent estimator of up

From this lemma and our previous consistent estimator of p follows a
consistent estimator for u,;. We can exploit the weak dependence structure of
J(j) to obtain confidence intervals for wp and u. Define Z(j) to be
Y _osd(j,s).

THEOREM 2.3.2.
Tup

e | [Tx(t) dt — — N(T) - — N(0,3) asT
- - ) > — ©
0 ppt ke Kpt UG 7 ’ * ’
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where % is the asymptotic 2 X 2 covariance matrix. Let k = k(n) be the
function defined in Section 2.1. We have the following consistent estimates of
the entries in X:

R 1 k(n)
(233  S,-5 L T [/( ) - = Z /(J)]
k=—k(n) i

x[/(i RS /(j)],
j=0

: . 1 k(n) 1
(2.3.4) Sm=7 L L|NG)-NGi-1)- TN(T)]
k=—k(n) i
NGi+k-1) - %N(T)],
. k(n) 1
(2.3.5) 3= T Y Y [ING)-N(G-1) - FN(T)]
k=—k(n) i

1 T-1
X[ A(i+k) - = X F()|
T .2,
Since
A — 1 T
T (e = ) = | [ dt = ND) |
and since T/(N(T')) - (ur + ug)/c almost surely, we have

THEOREM 2.3.6. As T — o, VT (ip — uy) converges in distribution to a
centered normal distribution with variance

prpt pg)?
(%) [211 + u5Sgy — 2#1«*212]-

CorOLLARY 2.3.7. For the estimate of 3 given by (2.3.3, 2.3.4, 2.3.5), an
approximate 100(1 — a)% confidence interval for uy is
Z, ( Arp+ g

T
“F_\/T

CoroLLARY 2.3.8. For the estimate of 3 given by (2.3.3, 2.3.4, 2.3.5),
applied to the processes X'(¢t) = (number of channels off at time t) and N'(t) =
(number of departures from the nonemitting states, %), an approximate
100(1 — a)% confidence interval for u is

. Z, (/-LF+:U’G')
'MG_\/T

1/2

)[211 + /J'F222 2.U«FE12]

é

vz
[211 + Mazzz 2#0212]
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Here i is the analogous estimator to iy determined from X' and N'. Note
that X'(t) is observable if ¢ is known and that the values of E are the same as
those found in Theorem 2.3.6.

2.4. Estimates of F and G. Define A,(x) to be the conditional survival
function of the time spent with r channels in 7, given that we start
measuring from the moment the rth channel started emitting. Similarly, let
B,(x) be the conditional survival function of the time spent with r channels in
the emitting state, given we measure from the moment a channel stopped
emitting. The A (x) are estimated by A (x), the empirical conditional survival
functions. Consider the number of times the process X(¢) goes from r — 1 to r
channels emitting and let A (x) represent the proportion of these which
continue with r channels emitting for more than x units of time. Similarly, of
those trajectories which decrease from r + 1 channels emitting to r channels
emitting, let f?,(x) represent the proportion which continue with these r
channels emitting for more than x units of time. That these are consistent
estimators of A,(x) and B,(x), respectively, follows from results on ergodic
sequences. Then 1 — F(x) and 1 — G(x) can be estlmated by [here J(x) is an
appropriate normalizing constant and é and p are the estimates from the
hypothesis test]

¢ ( )p (1-p)° rAr(x)i
(1 _ y(x))(c /¢ éﬁ

and
o(8)pra-p) (e -nB(x) 1
(1- I (x))¢ " é(1-p)

3. Proofs. The proofs draw on recent results on the geometric ergodicity
of Markov chains, well-known results from renewal theory and a central limit
theorem for weakly dependent Banach-space-valued random variables. A key
technique is the identification of a ¢-mixing dependence structure in certain
semi-Markov processes.

3.1. Hypothesis test. We have a system of ¢ independent and identical ion
channels, each of which may be described by an alternating process, i.e.,
X,(¢) = 1 or 0 when channel i is on or off (running at equilibrium). The first
objective of this section is to establish a weak convergence theorem for the
observable vector process

I(T) = <[OTI(s,t)dt:s=O,1,2,...,c>, as T — .

We will show that I(T') may be expressed as a partial sum of {J(j)}, a
¢-mixing sequence and then apply an invariance principle to derive the



1100 A. R. DABROWSKI, D. MCDONALD AND U. ROSLER

limiting distribution. It is awkward to show that the {J(;)} are ¢-mixing
directly. Instead we will work on the random functions defined by X(¢) on the
interval ]j — 1, j] and prove that these Banach-space-valued random variables
are ¢-mixing. The second objective of this section is to use the above results to
construct a hypothesis test on the independence assumption of our model
when c¢ is unknown.

DerINITION 3.1.1. ¢-mixing. Let {Y,: n > 1} be a sequence of random
variables taking values in a separable Banach space. Let .#? denote the o-field
generated by the variables Y, Y, ,,...,Y,. The sequence {Y,: n > 1} is said to

be ¢-mixing with rate ¢(-) if for some ¢(n) |0,
|P[A  B] - P[A]P[B]| < é(n) P[A],
forall Ae.#} Be.#;,, and k,n > 1.

To establish that the sequence of R°*!-valued random variables {J(j):
J=1,23,...} are ¢-mixing, it suffices to show that for each channel
(ie{1,2,...,c)}), the sequence

(3.1.2) {H{X,(j+7)=1)}:0<r<1)}:j=0,1,2,3,...)

is a ¢-mixing sequence of random variables (which take their values in the
space of right-continuous functions on ]0, 1] into {0, 1}). The ¢-mixing property
of (3.1.2) and the assumed independence of the ion channels imply that the
sequence

(8.13) {({{X(j+7)=1}:0<7<1}:i=1,2,...,¢):j=0,1,2,...}

is also ¢-mixing. The overall mixing rate is bounded by the sum of the
component mixing rates. For each fixed j, the variables of

(3.1.4) {{({H{X(j+7)=s5:0<7<1}:5=0,1,2,...,¢):j=0,1,2,...}

are measurable functions of the corresponding variables of (3.1.3). Conse-
quently the sequence (3.1.4) is ¢-mixing with rate no worse than that of (3.1.3)
(ie., {y;: i = 1} ¢-mixing = {f(y,): i = 1} is ¢-mixing). Finally, the variables
{J(j): j = 1,2,8,...} are measurable functions of the corresponding variables
in (3.1.4). The ¢-mixing property of (3.1.2) will be established in Lemma 3.1.5.

LEmMA 3.1.5. Consider the alternating process X (t). Fix a € o7. We iden-
tify returns to this state a as an embedded renewal process. Suppose that the
distribution function, R, of the renewal periods is such that there exists a
distribution function K with

1-R(t+s)

0 <1-K(s),
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uniformly for all s > 0 and all t > 0 with 1 — K(¢) > 0. Further, assume R is
spread out, i.e., some convolution power of R has a nontrivial absolutely
continuous component. For simplicity take R(1 — ) < 1. Assume also that for
some s > 0,

fwestK(dt) < 4.
0

Then the sequence ({{X(j+7)=1}: 0<7< 1} j€ Z%} is ¢-mixing and
&(n) = O(p™), fora p < 1.

Proor. We consider the embedded renewal process, with arrival times
{S,: n €7}, where S, <0 for n <0 and with interarrival distribution R.
When S, has distribution g, we denote the associated probability measure by

P,. When the renewal process is stationary, we write P, (& = equilibrium

measure). To establish the lemma, we will prove that for some constants B
and p <1,

(3.1.6) sup |E(f|%,) - E.f| < Bp".
fesn"

Here E, is the expectation associated with P,
Fo=cl{{X(j+7)=1}:0<7r<1}:j=-1,-2,...},
Fr=c{{{X(j+7)=1}:0<7<1}:j=n,n+1,n+2,n+3,...}

and f€ %" means that |f| < 1and f is % "-measurable. The excess process
is defined as V, = inf{S, — ¢: S, > t}. We have by the Markov property of V,
that for all fe 9",

E(f1%) = E(E(fI{V, <n} + fI{V, > n}|F,, V)| F4)
= E(E( fI{V, < n}IVy)|F) + E(fI{V, = n}| F,).
Moreover, by the Markov and renewal properties [where L(x) = E(f|V, = x)]
E( fI{V, < n}IVy) = E(E( fI{V, < n}|V,, V,)IVo)
= E(E(f|V,y, V,) {V, < n}|Vy)
= B(L(V,) I{Vy < n)[Vy).
Now
E(f1%) = E(E(L(V,) I{V, < n}IVo)| %) + E( fI{V, = n}| %)
(3.17) = E(E(L(V,)IVo)|F,) + E( fI{V, = n}| %)
— E(E(L(V,) I{V, 2 n}|V,)| %)

Now define H(w, - ) = P[V, € -|.%,)(w) to be the conditional distribution of
S,. By hypothesis, 1 — H(w,[0, s]) < 1 — K(s) uniformly in » and s. Recall
that ¢ represents the equilibrium measure. Then Theorem 4.2 of Nummelin
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and Tuominen (1982) states that there exists a positive constant p < 1 such
that

| P5,[V, € -1—2(-)]| = O(p™).
Hence,

| B[V & 1= e()] = O(p! =),

where [n — x] is the greatest nonnegative integer in n — x. Therefore
[PV, < 1 = o) () = 0 [ "o+ (dn)| - 0o,
if p is close to 1. This holds uniformly for H(-) € {H(w, - )}, since

fwest(dx) < fmes"K(dx) < 4,
0 0

for some s = —In p small. Finally, (3.1.7) and the above imply that
|E(f1F0) — E.(f)]
=|E(E(L(V,)IVo)| %) + E(fI{Vo 2 n}|F,)
—E(E(L(V,) [{V, 2 n}|V)|%,) — E.(f)]

<

+ 2| P[V, = n| %]

fOL(x)PH[Vn € dx] —fOL(x)s(dx)

<

[OL(x)PH[Vnde]—[OL(x)e(dx)

<0(p").
The formal definition of ¢-mixing follows from (3.1.6). O

+2(1 - K(n))

REMARK. The condition in Lemma 3.1.5 that the renewal distribution R
be controlled by a distribution K with finite moment generating function
is satisfied when each channel is a finite state-space Markov process. Note
also that Lemma 3.1.5 is valid even if there is only a single suitable renewal
point a.

It is clear that |le|| <1 and ||J(j)|| <1 in the Euclidean norm on R°*!,
Under the conditions of our model and by Lemma 3.1.5, the sequence {J(;):
J = 1} is stationary and ¢-mixing with rate ¢(n) < Kp", for some constants
K >0 and 0 <p < 1. Theorem 1 of Dehling (1983) or Proposition 2.1 of
Kuelbs and Philipp (1980) now state that the central limit theorem holds for
the sequence {J(j): j > 1}. Specifically,

nTV2 L (J() ~ ) =5 N(O,T),

Jj=1

where N(0, T') denotes a (¢ + 1)-dimensional normal law on R°*! with zero
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mean and the covariance matrix T = (T(r, s)) defined in Section 2.1. The
series defining the components of T' are necessarily convergent.

LeEmMA 3.1.8. Let {Z;: i = 1} be a ¢-mixing stationary centered sequence of
R%-valued random variables whose mixing coefficients (k) < K p* for some
0 <p <1and K > 1. Suppose also that ||Z,||, < . Denote the ith coordinate
of Z; by Z{" and for k > 0, define

1 n—*k
e = EZRZ(, and A = ——— T 207,
i=1

For k <0, define r, and 7, analogously. Set

k(n)
Yn(u,u) _ Z (,&Ig/;LL,V) _ rlgn,V))
k=—k(n)

and suppose that for the increasing sequence of positive integers k(n), k(n) — o
and k(n) = o(log(n)) as n — «. Then for each (u,v), almost surely

Y+ - 0.,
Proor. The limiting value for Y** is finite by Theorem 1 of Dehling

(1983). We will suppress the superscripts (u, v) in what follows. Let e,l0ata
rate to be set later. For ¢ > 0, Markov’s inequality yields

PlY,| > ¢,]
< (2k(n) + )max{ P[|f,, — ri| > £,/(2k(n) + D]: —k(n) <k <k(n))}
< max{(2k(n) + 1) e IR, — |7 —k(n) <k < k(n)}

q

t—k(n) <k <k(n)y,

n—=Fk

< max{(2k(n) + 1) e 9(n — k) Y,
n ki

=1

1=

where Y,, = Z,Z;,, — €Z,Z,.,. The sequence {Y,;: i > 1} is a stationary ¢-

12 12 12

mixing sequence whose ¢-mixing coefficients ¢,(-) can be bounded as
op(m) <dp(m —k) if m >k,
o (m) <1 if m <k.
Define

Dpo(b) = X (i + 1)(64(i)" and W,(b) = ¥ 7 (i + 1)%pti
for a, b > 0. Then

o

k
Dp(d) < X (i+1D)%(¢(i—k)°+ ¥ (i +1)°
i=0

i=k+1
< K% % (b) < +w.
Theorem 5 of Doukhan and Portal (1983) now states that, for g a positive,
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even integer greater than or equal to 4,
q

E <K'(¢r,q9)(q/2)n?"?,

n—*k
Z Yki
i=1

where K'(¢,, q) is a polynomial in (P,o(3), ,,(3), ..., Py, _2(3)) of degree at
most g and whose coefficients depend only on g. Consequently, for C, depend-
ing only on gq,

q—2

K(8,0) <€, T (®0n(3) + ().

Now
n—*k q q—2
E Z Yki < (q/z)nq/ch Z ((ka(%) + q)gm(%))
i=1 m=0
2 92
< (q/2)(Kn)"#p~*™C, T (¥,(3) + ¥i(3))
m=0
< Mq pp—qk(n)/an/2
and
) nl/2 q
+1 —q, —qk(n
P[|Y,| > &,] <M, (2k(n) + 1)?" g, 9p™ K ’/Q(n—_m) :

The Borel-Cantelli lemma yields our lemma if ¢, = o(1) and
Z (k(n))q+18;qp—qk(n)/2(n1/2/n _ k(n))q <+,

Set ¢, = 1/k(n). If k(n) = o(log(n)), the proof is complete. O

Setting Z; = J(i) — EJ(i) in Lemma 3.1.8 yields that, for £(n) as above, as

n—)OO,

k(n)
Y A9 S T(r,s),
k=—k(n)

almost surely. For the test statistic, we replace EJ(i) by é;. Let Tn(r, s) denote
the statistic obtained after this substitution. Straightforward calculations yield
that T, (r, s) is a consistent estimator of T(r, s).

3.2. Proof of Lemma 2.3.1. Each channel is a stationary semi-Markov
process. By Cox (1962), the probability a channel is emitting at any time ¢ is p.
By the independence of the channels, _

P[X(¢) =s] = (§)p*(1 —p)"".
Part (a) follows by the ergodic theorem, as does (a)). To show (b), let Ni(¢)
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count the number of departures from .27 for channel i before time ¢. By
ergodicity,

. NY(T) 1
lim = ,
T T mrt pg

since up + ug is the mean cycle time. Since N(¢) = <N i(¢), (b) follows. Part
(c)is easy. O

3.3. Proof of Theorem 2.3.2. Define n(j) to be the number of 7 €]0,1]
such that X(j + 7) — X((j + 7)7) = — 1. Thus n(j) represents the number of
departures from an emitting state in .2/ between times j and j + 1. Clearly

T-1 r T-1
N(T)= ¥ n(j) and [ X(t)dt= ¥ /().
j=0 0 Jj=0
Since {(n(j), #(j), j = 0,1,2,...}is a function of the variables of (3.1.4), it is
also a ¢-mixing sequence. The work of Sections 3.1 and 3.2 now yields the
theorem. O

3.4. Consistent estimators of F and G. All channels are assumed to be in
equilibrium. Define

(1 - F(s))
¢(x) = /x —
sx) = [(LZG6)
x |2 %¢]

and

£(x) = (1 = F(s))ds + [7(1 - G(S))ds‘

Rp T Hg
Then
r—1 c—r ME d r c—r

A,(x) = (1= F) [$(0)] 7)) = === [[¢@)] ] [v(x)] "

This follows since r — 1 channels are on at the moment the rth channel

started emitting. Each is in equilibrium. Given that the channel has just

turned on, the density of the excess distribution is given by
Zae,p/zbe.@W(b)Pba:ua,{:(aa(t)//J’a)dt 1 _F(S)

EaE&/Ebe%Tr(b)Pba/‘La ME

Similarly, ¢ — r channels are off at the moment the rth started emitting. We
make analogous arguments for B,(x) and obtain that

c d ]
€ p (x) = - (@] 1o()]]

r -r
—A (x) +
193 I 7¢]



1106 A. R. DABROWSKI, D. MCDONALD AND U. ROSLER

is the density of the duration from an arbitrary point in time during which
r channels are emitting until a transition. Consequently, since the probability
that at an arbitrary point in time we have r channels emitting is bin(r) =
(ﬁ)pr(l — p)~’, we have

d hd - r d c
=& I [bin() ()] [a(=)]'] = - 5o le()]

is the density of the duration from an arbitrary point in time until a transi-
tion. Moreover,

¢ . c—r d r ] _ c—1 _1 _F(x)
Eo bin(r)[y(x)] [—a[qﬂx)] ] —C[[‘f(x)] ] wpt g ]
and
S |- . d c—r r- c—1 —1 ~ G(x)
EO bln(r)[—a[)’(x)] ][q’)(x)] | =c[[§(x)] ]Lm]
Consequently,
L- e = [ 3 ["in(ﬂ["r—Ar(x) o _r)B'(x)”dx
0 ,-0 M Ha

—~ (x)

may be estimated by
r /lG é—r
Ap+ic

T(x) = /Ox éo[(i)
(¢ -

x{ T A (s) + — r)Br(s)]ds
G

A

MHF
Ap+ g

A

1233 m

* (Va1 sy T4 (6-r),
- fo Eo(r)p (1-5) [ﬁFA'(S) + i Br(s)]ds,
Also,

ee1| 1= F(x) c r

cl£(0)] [————] - % bin(r)| ()|
Kp t g r=0 153

This can be inverted to give the estimate for F stated in Section 2.4. The

estimate for G follows similarly.

4. Special cases and examples.

4.1. Consistent estimates of variances. We give consistent estimates for oy,
the standard deviation of F, and for oy, the standard deviation of G.
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THEOREM 4.1.1. Under the conditions of the independent and identical ion
channels model and assuming independent emitting and nonemitting periods,

1 (0'1? + ag)
(4.1.2) lim —Var(N(T)) = c——2,
ToT (kp+ 1e)
1 0.2 2 2 2
(4.1.3) lim ——VarfTX(s) ds=c¢ —5 + ig— __l_/«_zi’«_a_a .
T==T o Kr o MG || (bp+ pe)

Proor. It suffices to consider each channel separately. Recall N‘(¢) repre-
sents the number of departures from the emitting state for channel i before
time ¢. N(¢) counts the renewals of distribution F * G. Hence, by the central
limit theorem for renewal processes [see Feller (1950)], (4.1.2) follows. Simi-
larly, [fX(s)ds represents the sum over ¢ channels of independent periods of
emission. Since the channels are independent and identical, Var [{ X(s) ds is ¢
times the variance associated with a single channel.

This is given in Cox (1962) and (4.1.3) follows. O

Consistent estimators for
lim ~Var(N(T)) and lim —Var [X(s) ds
Tow T T-w T 0

are given in Section 3.1.

4.2. Modified estimates of the distributions. In the analysis of data con-
taining large intervals during which no channels are emitting, the process of
Section 2.4 may not yield good estimates for the distribution functions G(¢) for
large t. This occurs in the motivating biological experiments of this paper
when the ion channels are only very slightly stimulated. In this case it is
useful to estimate B,(x) by the empirical conditional survival function B(x)
and then invert directly. This yields the following estimate of G(x):

A

A . x & . 1/é-1
G(x) =1 —Bo(x)(l —/O ﬂGBo(s)ds) .

A similar reasoning yields the following alternative estimate for F(x):

/w——l _AG(S) ds] .

x 1. Z¢!

Fx) =1 - A(x)

4.3. Confidence intervals for mean on and off times. The following special-
ization is useful in the motivating biological example of this paper. This
theorem provides a confidence interval for uy when F is exponential. This
would be the case for a Markov model having a single emitting state.
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THEOREM 4.3.1. If 1 — F(x) = exp(—x/up), then
N(T)3/2 i
ng(S) ds (I‘LF - I'LF)

converges weakly to a standard normal distribution. Here [y =
1/(N(T)[{X(s) ds.

ProOF.
71
Let 4 (T) =f —X(s) ds.
0 Mp

Since F is exponential with mean u g, its survival function is a constant 1/u 5.
Recall Ni(¢) counts the number of o7 to # transitions of channel i by time ¢.
This is a stationary counting process, which by Theorem 7 of Brémaud (1981),
has stochastic intensity

I{channel i is on at time ¢} /uz.

Since N(t) is the sum of these Ni(¢), it has intensity X(¢)/ur and so
N(T) — #(T) is a martingale. For any time T and 0 < 7 < 1, define

My(7) = N(+T) - [*TiX(s)ds = N(+T) - lfTX(Tu)du.
0 MF MKF70

So M () has intensity TX(T'7)/up. Also define
HT(T) = T—1/2,
gr(7) =c7/(up + 1g)

Yo(r) = fOTHT(u)dMT(u).

We will apply Theorem 2.1 of Aalen (1977) to Y;(7). We must verify the
hypotheses of that result. Clearly as T' — o,

T T 1 +T
/H%(u)—X(Tu)du = — [T X(u) du
0 M E Tur’o
cT KF

e F
pr (ke + Kg)
' cT

TR

Since the jumps of N(7T) are of size 1, we conclude that as T — o,

¢
Y>>, ——mmm W,
e V (kp+ 1)

where W is a Wiener process. Specializing to the marginal at = = 1, we obtain
that T-/2(N(T) — .#(T)) converges weakly to a normal distribution with
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mean 0 and variance c¢/(uy + ug). Hence

N(T)3/2 X
(;I'Ts)d;(ru'F — Wp)
N(T) | /N(T) .
- _(JOTX(s)ds“F i (“F— N(T)foX(s)ds)

N(T)
- _(foTX(S) ds"'"

T ~1/2 Ti
1/N(T) TV (N(T) —fo “FX(s)ds)

converges weakly to a standard normal by Slutsky’s lemma and the facts that

N(T)
(foTX(s)ds“F

[ T
N(T) - MFCMG almost surely. D

4.4. Five examples. The hypothesis tests and estimation techniques of the
previous sections were programmed in FORTRAN on an AMDAHL main-
frame. A PASCAL version for the MacIntosh II was also used. Here we will
apply these techniques to five sets of data: four simulated data sets and one set
obtained from stretch-activated ion channels. The results of the hypothesis
tests are summarized in Table 1. For certain examples we present F (and F if
known) in Figures 1, 2 and 3.

— 1 almost surely

and

ExampLE 1. Two-state Markov model. We simulated the data record of fou
ion channels, where each channel is an alternating renewal process, ie., a
two-state model. The distribution of the emitting period for each channel is
exponential with mean 0.1 and the distribution of the nonemitting state is
exponential with mean 0.2. Figure 1 presents both the true exponential
distribution function F and the estimated distribution function Z.

The estimated distribution function is a jagged nonmonotone line roughly
following F. The fact that this estimate is not itself a distribution function
follows from its definition in Section 2. 4 as a weighted average of the observed
survival functions A L) divided by a ‘continuous decreasing function of an
integral in x. This integral J(x) was computed by interpolating the integrand
numerically and is a continuous piecewise linear function, increasing in x. The
A {(x) are decreasing piecewise constant functions. Consequently, the estimate
F will increase over a region where all the As -(x) are constant and T (x)
increases. On the other hand, if one of the A shifts downward at x, the
estimate will also decrease at that point.

The reader should also note that as x increases, the right tail of the
distribution estimate is based on very few observations. Since each channel
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TaBLE 1
Observed and estimated values for five examples. Descriptive statistics and estimated values of
parameters are presented for each of the five examples listed in Section 4.4. Where independent
and identical channels were simulated, the known values of the parameters are given in brackets
below the corresponding estimates. For each case, the goodness-of-fit statistic of Section 2.2 is
presented with the appropriate degrees of freedom.

Example 1 Example2 Example3 Example4 Example5

Observed Number of

values transitions 2700 9591 5686 8276 1285
Number of
* data vectors 488 1000 822 1000 428
Maximum
current 4 5 9 5 3
Minimum
current 0 0 0 0 0
Estimates Ag 0.098 0.00097 2.33 0.02180 0.01938
(True) (ugp) (0.100) (0.00100)
Lg 0.190 0.01971 5.33 0.15984 19.363
(ng) (0.200) (0.0203)
p 0.340 0.046 0.305 0.12 0.005
(p) (0.333) (0.047)
é 4 10 11 5 50
(c) 4) (10)
x2 Degrees of
statistic freedom 4 3 5 3 2
Observed
value 1.77 1.64 5.33 1.21 32.31

:

1 1

N N 1
0.0 0.5 1.0 15 2.0
Milliseconds

Fic. 1. Distribution functions for Example 1 of Section 4.4. In Example 1 we considered an
alternating renewal process. The distribution function of the length of an open period is known
here to be exponential with mean 1 msec. This function is shown as a dashed line on the graph.
The jagged, solid line is the estimate of the distribution function given by the formula of Section
24.
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1.0

1
0.0 0.5 1.0 15 2.0
Milliseconds

Fic. 2. Distribution functions for Example 2 of Section 4.4. In Example 2 we considered data
simulated according to the model of Colquhoun and Hawkes. The length of an open period in this
case has an exponential distribution with mean 2 msec. This distribution function is shown as a
dashed line on the graph. The jagged, solid line is the estimate of the distribution function given
by the formula of Section 2.4.

censors the observation of long sojourns by the other channels in either the
emitting or the nonemitting states, very few long sojourns are observed. The
right-tail behaviour of F' can become very erratic. In particular, if the A (x)
reach 0 before Z(x) becomes 0, then F will decrease to 0. The authors have
found in their simulated data sets that the estimated distribution function is
generally reliable for x up to the minimum of i and fi,;. The effect is worst
when the (i and (i, are approximately equal; that is, when the censoring

0.6

A 0.4F

0.3

0.1

0.0

-0.1 I L L 1
0.0 0.5 1.0 1.5 2.0

Milliseconds

Fic. 3. Distribution functions for Example 3 of Section 4.4. In Example 3 we considered
experimental data on pond snails. The length of an open period of an ion channel is believed to
have a mean value of approximately 2.3 msec. The jagged, solid line is the estimate of the
unknown distribution function of the length of an open period for a single channel.
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effect is probably the greatest. The plots of Figures 1, 2 and 3 are restricted to
the region where the estimated distribution function is not too wild.

ExampLE 2. Colquhoun and Hawkes four-state channels. We use the nota-
tion and constants of Colquhoun and Hawkes [(1982), page 233], who proposed
a four-state linear Markov chain to model the behaviour of ion channels. We
produced a record of 9591 transitions for 10 superimposed ion channels of this
type. Only state AR is emitting. There are long sojourns in the off states and
relatively long sojourns in the open state. The ready and tired states are very
short.

States: T o AT & A,T & AR

very tired tired ready open, emitting

Generator for one channel:

—-1073.66 1073.66 0 0
104 —(536.83 + 10%) 536.83 0
0 2 x 10* —(1.9 X 10* + 2 x 10*) 1.9 x 10*
0 0 1000 —1000

Transition matrix for the embedded chain:

0 1 0 0
09491 0 0.0509 0
0 0.5128 0 0.4872
0 0 1 0

The sojourns in the open state are exponentially distributed with mean
0.001 sec. The density of the sojourns in the nonemitting states is

f(t) = 12.47exp(—Agt) + 236.2exp( —A;t) + 18750 exp( —Agt),

where Ay = 24.81, A, = 11211 and A4 = 39376.

As we indicated earlier, the time interval omission problem poses an impor-
tant difficulty, particularly in the observation of N(¢). We introduced this into
our data for a bandwidth of 0.050 msec. Opposing jumps in X(¢) closer
together than the bandwidth were discarded. This censored data was subjected
to further artificial censoring for bandwidths 0.075 and 0.100 msec. For each
case, (ip and p were evaluated. The values of the p were erratic and could not
be extrapolated back to bandwidth 0 with any confidence. However the values
of the i were roughly linear. The value predicted for u at bandwidth 0 by a
least-squares line was 0.000962 sec. The actual value is 0.001.

ExampLE 3. Biological data. C. Morris and W. Sigurdson of the Department
of Biology at the University of Ottawa kindly provided us with data on
stretch-activated potassium ion channels in the heart and nerve cells of
Lymnaea stagnalis (pond snails). The estimates are consistent with the results
of previous experiments. The estimated distribution function [ F(x) of Figure
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3] is plotted only for x up to 2 msec. Beyond this point, the function became
very erratic because of the censoring effect described in Example 1.

ExampPLE 4. Nonidentical channels. We generated the data record of five
independent ion channels where two channels have p = 1 and three have p
= 1. Since the convolution of two binomials can be approximately binomial,
our hypothesis test fails to pick up the fact that the channels are not all
identical. This fact is of some practical importance, as a binomial fit to data is
frequently employed in biological analysis. In fact, suppose that the channels
had the same p, but different mean times py and u;. Then the hypothesis
test of this paper, or any test based upon the occupation densities, would not
be able to distinguish between independent and identical channels and the case

of different independent channels with the same p.

ExamMpLE 5. Dependent channels. We generated the data record of four ion
channels where the current record of the fourth channel was a copy of the
current record of the first channel. The first and fourth channels are clearly
dependent processes. The test of this paper provides significant evidence
against the hypothesis of independent and identical channels.
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