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IMPROVED CONFIDENCE INTERVALS FOR
A NORMAL VARIANCE

By GLENN SHORROCK

Université du Québec a Montréal

The usual confidence interval for the variance o2 of a normal distribu-
tion is a function of the sample variance alone. In this paper, we construct
confidence intervals for o2 that also depend on the sample mean. These
intervals have the same length as the shortest interval depending only on
the sample variance and have uniformly higher probability of coverage. The
coverage probabilities of these intervals and others are compared.

1. Background. Stein (1964) constructed a point estimator for the nor-
mal variance o2 with smaller mean squared error than estimators based solely
on S2 = L(X, — X)? [where X;,i = 1,2,...,n, are iid N(u, c?)]. His estima-
tor effectively pooled the sample mean X and S? together whenever the small
relative size of X? indicated that the mean of the population was close to zero.
In this way, he was sometimes able to gain the equivalent of another degree of
freedom and so improve on the usual estimator.

More formally, Stein chose ¢ = ¢y(X2/S?) to minimize E[(¢S? — o2)?
(X2/8%), u = 0] for each value of X2/S2 He showed that the point estimator
min[¢,(X2/82)S2 82/(n + 1)] has smaller expected squared error than
S2/(n + 1), uniformly in (u, o-2).

Brown (1968) extended Stein’s result to a larger class of estimators and loss
functions. In the squared error case, he chose ¢ = ¢, to minimize, for fixed
c > 0, the conditional expected loss E[(¢S? — 0?)?(X2/S?) < c,u = 0]
and proved that

.52, if X2/82 <,
S2/(n + 1), otherwise,

has smaller expected squared error loss than S2/(n + 1), uniformly in (u, o2).

Because admissible estimators are usually Bayes rules or the limits of Bayes
rules [see, for example, Brown (1971)], and these are usually analytic func-
tions, it appears unlikely that Stein’s point estimator is admissible. The
inadmissibility of Brown’s point estimator was shown in Brewster and Zidek
(1974), who consider a ‘“smooth’ version of Brown’s estimator: They chose
@ = ¢(y) to minimize E(L(c?, ¢S?)|X%/S? <y, u = 0), where L(-, ) is one
of a class of bowl-shaped loss functions and y is the observed value of X2/S2.
This smooth estimator ¢(y)S? is generalized Bayes and, when the loss func-
tion is squared error, it is admissible [Proskin (1985)].

For the interval estimator problem, Tate and Klett (1959) tabulated the
endpoints of the shortest confidence interval for o2 that depends only on S2.
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Cohen (1972), in a more general formulation that allowed the presence of
several unknown means, used Brown-type estimators to construct confidence
intervals with the same length as Tate and Klett’s interval and uniformly
higher probability of coverage. His intervals shifted the shortest interval
slightly closer to zero whenever X2/S? < ¢, for some constant c.

The general form of loss function considered in Brewster and Zidek (1974),
while not of the form considered by Cohen (1972), also applies to interval-
estimation problems. Brewster (1972) illustrated this by constructing general-
ized-Bayes confidence intervals for two of these problems.

In this paper, we construct confidence intervals which improve upon the
shortest interval for o? that depends only on S2. These intervals are ana-
logues of the various point estimators previously mentioned; in each case, we
use the same formulation of the problem, form of interval and loss function as
Cohen (1972) and the same strategy for improvement: We shift the interval
depending only on S? slightly closer to zero whenever the sample evidence
indicates that w itself is close to zero. The confidence interval analogue of the
point estimator in Brewster and Zidek (1974) that we find is generalized Bayes
among scale and orthogonal invariant intervals with the same length.

2. Introduction. Let
X1= (Xl’X2""’ Xn) and X2= (Xn+1, Xn+2,..., Xn+p)

be two independent random vectors where X; ~ MVN,(0,c2I,) and X, ~
MVN,(n, 0%I,) with mean vector p = (1,41, lp 495, /.Ln+p).

Let S2 = Z" 1X2 and T2 = Z:‘*,{’HXz Then S? ~ o%x2 and T? ~ o%x2(n)
where n = [|u||?/0® and where x2 and x2(n) represent, respectively, a central
chi-square distribution with n degrees of freedom and a noncentral chi-square
with p degrees of freedom and noncentrality parameter 7. A sufficient statistic
for the unknown parameter (o2, p) is (S% X,).

The problem of finding good confidence intervals for o2 can be considered
as a decision problem. We let I(S% X,) = (¢,(S2% X)), 9,(S2,X,)) be a confi-
dence interval for o2 and say that the risk we incur in using I(S?% X,) is the
probability of not covering the true value of o2 i.e.,

R((o%,n),I) =P(c? ¢ 1(S%X,)).

This decision problem remains invariant under the group G of transforma-
tions (&, T') that map

(8%,X,) — (K282, kTX,),
(02,n) > (k%2 kTn),
¢1(S X2) - k2¢l(5’2 2) I’ = 1’2’

where k& > 0 is any positive real number and I' is any p X p real orthogonal
matrix. The invariant confidence intervals under this group have the form
(p(Z*)S?, p,(Z*)S?), where ¢, and ¢, are positive functions and Z2 = T2/
(82 +T?.
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We will restrict attention to invariant confidence intervals for o2, depending
jointly on S2 and Z?2, that have the same length as the shortest confidence
interval for o2 that is a function of S? alone. For a normal variance, the form
of the shortest level (1 — a) confidence interval that depends only on S? is
(S$%/a,,S8?%/b,), where a, and b, are such that [’f(x)dx =1-a and
frrda,) =f,4b,) [f,(-) denotes a chi-square density with n degrees of
freedom]. Thus we consider intervals of the form (¢(Z2)S2,(¢(Z%) + ¢)S?2),
where ¢ = 1/b, — 1/a, and ¢ is some positive function of Z2.

Because the upper and lower limits of the invariant confidence interval
depend on (02, p) only through the noncentrality parameter n = ||u||?/o2, the
risk of the invariant confidence interval also depends only on n and we may
assume, without loss of generality, that o2 = 1. In order to reduce the problem
to the consideration of central chi-square distributions only, we take advantage
of a well-known property of the noncentral chi-square distribution and postu-
late the existence of a Poisson random variable K with mean 7 /2, such that
the distribution of T'? conditional on K is chi-square with p + 2K degrees
of freedom. Because Z2 = T2/(S% + T?), we have, conditional on K, that
(T? + S2) and Z? are independent, that (T'2 + S?) is distributed as a central
chi-square random variable with n + p + 2K degrees of freedom and that Z?
is distributed as a beta random variable with parameters p/2 + K and n/2.

3. Construction of a Stein-type confidence interval. In this section,
we see that if we choose the shifted interval that maximizes the conditional
probability of covering o2, given Z2 = 22 and K = k, we are led to a confi-
dence-interval analogue of the point estimator in Stein (1964).

We seek, for each value of Z2? and K, that ¢ which maximizes

(3.1) P(goSZS(rzs(qo +¢)S%Z% =2, K = k).

This probability is proportional to
¢+c 1 1 d
‘/:P fn+p+2k+4 1-22y y

and because the integrand of this last expression is a unimodal function of y,
the maximizing ¢ = ¢(k, 22) is the unique solution of

1 1 1 1
fn+p+2k+4 1— 22 ; =fn+p+2k+4 1— 22 o+ec '

The Stein-like confidence interval is Ig(S?2 Z?), where I4(S? Z?) =
(¢ (Z)S2, (¢, (Z?) + ¢)S?) and ¢,(22) = min[¢(0, 22),1/b,,].

THEOREM 3.1. The coverage probability of the interval I4(S2, Z?%) is uni-
formly greater than that of (S2/b,,S%/a,), for all values of the noncentrality
parameter, n.
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The theorem will be proved with the help of the following lemma, which is
due to Brewster (personal communication).

Lemma 3.1. Let f, g be two unimodal densities and let ¢ = ¢, maximize
JEFf(x) dx and ¢ = ¢, maximize [?*°g(x)dx. Then, if f/g is an increasing
function, o> ¢,.

Proor oF THEOREM 3.1. By Lemma 3.1 and the monotone likelihood
property of the chi-square density, ¢((%, z2) is a decreasing function of & for
each fixed 22> 0 and so ¢(k,2%) < ¢(0,22). Also, by the unimodality of
frsp+on+a(1/((1 = 2%)y)), the probability (3.1) increases as ¢ decreases to
o(k, z%). Using these facts and conditioning on K and Z2, we see that

P(0?€I4(8%2%)|Z22 =22, K=k) > P(c?€(8%),,5%/a,)|Z2 =22, K =Fk).

But ¢ = 1/b, maximizes [¢7°f,,,(1/y)dy, while ¢(0,0) maximizes
St fnip+4(1/y) dy. Thus, by Lemma 3.1, we have ¢(0,0) <1/b,. However
¢(0,22) is continuous in 22, so ¢(0,22) < 1/b,, for some z? lying in an
interval to the right of zero. The result follows when we take expectations over

Z? and K. m]

4. A generalized-Bayes confidence interval. If we choose to find the
interval that maximizes the conditional probability of covering o2, given
Z? < r and K = k [instead of the conditional probability (3.1)], we are led to a
confidence-interval analogue of the point estimator in Brown (1968).

We let ¢ = ¢,(r) maximize the conditional probability of coverage,

(4.1) P((psto'zs((p +c)Sz|Zzsr,K=O),
for all r. This probability is proportional to

(4.2 eree (Mp( 2 14
) f fn+4(y) p(l_ry) Y

@

and the integrand of this last expression is a unimodal function of y. Thus,
¢o(r) is the unique solution of the equation

1 P r 1
2l e

The interval analogue of Brown’s estimator is

1
¢ +c

P r 1
Plil-re+c

(S2%/b,,8%a,), if Z2>r,
(eo(r)S2,(po(r) +¢)82), ifZ2<r.
When r = 1, it can be shown that this interval coincides with (S2/b,, S%/a ).
By conditioning on K and arguing similarly to Theorem 3.1, we can demon-

strate the following result [full technical details of the proofs in this section
can be found in Shorrock (1988)]:

Il(Szyzz;r) = {
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THEOREM 4.1. The coverage probability of the interval I1,(S2 Z%r) is
uniformly greater than that of (S2/b,,S?/a,), for all r € (0, 1).

Both Theorems 3.1 and 4.1 have demonstrated the inadmissibility of the
usual confidence interval for the normal variance (S2?/b,, S?/a,). Following
the strategy of Brewster and Zidek (1974), the interval I,(S? ZZ%r) can in
turn be improved upon by an interval with a second cutoff point, say r, > ry,
which takes different action depending on whether Z2 <r,, r; <Z2 <r,, or
Z?% > r,.

Similarly, an interval with m cutoff points, say I,(S?% Z%r,ry,...,7,,),
can be improved upon by adding one more cutoff point. This suggests taking
the limit of confidence intervals I,(S? Z%r,ry,...,r,,) as we fill up the
interval [0, 1] with cutoff points. The limiting interval that we obtain is
I5,(8% Z2) = [¢y(Z*)S?,(¢,(Z?) + ¢)S?], an analogue of the generalized-
Bayes point estimator in Brewster and Zidek (1974). The following result is
stronger than that given in Brewster and Zidek (1974); they show that the
generalized-Bayes point estimator dominates the usual one but not that it
dominates it strictly.

THEOREM 4.2. The coverage probability of the interval I5,(S?, Z?) is strictly
greater than that of [S2/b,,S%/a,], for all n > 0.

The proof of the theorem requires the following lemma:

LemMA 4.1. Let g(x) be a bounded function of x such that |g(x)| < B and
168(x3 fyiox(x)dx = 0,V k 2 0. Then g(x) = 0 a.e. on (—o,x).

ProOF oF THEOREM 4.2. The endpoints of 1,(S? Z%r, ry,...,r,,) tend to
those of I5,(S2, Z?) and so, by the bounded convergence theorem, for each %,
(4.3) P(0? € Igy(S? 2?)|K = k) = P(0? €[S?/b,,8%/a,]|K = k).
Taking expectations over K, we have

P(o? € Igy(S?, 2%)|n) 2 P(0? €[S%/b,, 8%/a,[[n).
Suppose this inequality is not strict. Suppose there exists 1, > 0 such that
P(o? € Igy(S?, 2%)|n,) = P(0® €[ 8%/b,, 8%/a,]|n,) = 1 - @,

where 0 < a < 1. Now, for n > 0, P(K = k|n) > 0, V £ > 0. Thus, by (4.3),
P(o? € I5,(S?% Z?»)K=k) =1 - a, VY k > 0. But, using the conditional inde-
pendence of S2 and Z2, we have

Plo? e Iny(s%, 2K = k) = [{ [ 1) ds?}fyon(et) @,
1/(u+c)
where u = ¢,(t?/(t* + s?)) and by Lemma 4.1, this implies that

1
[/u f.(s?)ds?=1-a, Vi2>0.
1/(u+c)
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Because ¢ = 1/b,, is the unique solution of the equation
1
[7° fulstdst=1-a,
1/(p+c)

we have that b, = ¢(T2/(T? + S?)) = ¢,(Z?). But this is a contradiction,
because ¢, is an increasing function. O

The confidence interval I,(S2, Z?) is also generalized Bayes among scale-
and-orthogonal-invariant confidence intervals for o2 of the same length.

THEOREM 4.3. Among all confidence intervals of the form [p(Z2)S?2,
(p(Z?) + ¢)S?], I,(S2, Z?) is generalized Bayes with respect to the improper
prior density

m(n) = %f:e_"z/z(l +2) % dz.

Proor. By a change of variables, we have

(4.4) m(n) = Bflyﬁ“2e"/y dy, where B =p/2.
0

Let X and W be iid exponential random variables with mean 1 and let
Y = exp(—W/B). Then (4.4) is also the density of the product XY. Because the
kth moment of XY is k!/(1 + k/B), the same is true for (7). Using this, the
marginal distribution 7(%) of K can be simplified to

p/2
E+p/2°

While (k) is clearly improper, the posterior distribution of K given Z?2 is well
defined, because

m(k) =

p/2+k—-1 n/2-1

2 p & T((n+p)/2+k) (2% 1 -2z?
2 (Z2 k) (k) = =
L, fewZR®) =5 X T F+p/2
which, by the ratio test, converges for Z2 < 1.
Using formula 26.4.6 of Abramowitz and Stegun (1965) to expand the F,(-)
in (4.2), we can show that (4.2) equals

/w Y fisoz 0(S%12% K) f(Z3K = k)m(k) ds?,
1/(¢p+c)p=¢

which, in turn, is equal to the posterior probability of coverage, given Z2, of an

interval of the form (¢S2% (¢ + ¢)S?). Thus, because Iy, maximizes (4.2), it

also maximizes the posterior probability of coverage and so it is. generalized

Bayes with respect to 7(n). O

2

5. Numerical results. Some sample probabilities of covering o2 were
computed for I4(S?2 Z?), the Stein-type confidence interval, and for
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coverage (%)

A
n=20 SELEIN e c— c—
Brewster-Zidek
90.8 1
90.6 1
90.4 1
90.2 <
\ _
90.0 j,
- v . - > 1
0 10 20 30

Fic. 2. Probability of coverage for the Stein and Brewster—Zidek confidence intervals when
(1 —-¢)=10.90, p =10 and n = 5, 10, 15 and 20.

I5,(S?, Z?), the generalized-Bayes confidence interval, at a nominal (1 — ¢) =
0.90 level. The results for (1 — &) = 0.95 are qualitatively similar. Further
comparisons of these intervals with the interval found in Cohen (1972) can be
found in Shorrock (1988).

These computations were performed on a DEC VAX-11 using IMSL rou-
tines DCADRE and ZBRENT.

In Fig. 1, the probability of coverage of the intervals I4(S?% Z?%) and
I,(S2%Z?) is graphed for five different values of p, when n = 10.
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Figure 2 is similar to Fig. 1, except that p is fixed at 10 and it is the central
degrees of freedom n that are allowed to vary from 5 to 20 in steps of 5.

Comparing Fig. 1 with Fig. 2, it would appear that, while both the central
and noncentral degrees of freedom play a role in determining the maximum
improvement over [S%/b,, S2?/a,], the central degrees of freedom have a
greater effect on the amount of improvement possible.

When n =29 and p = 29, the maximum probability of coverage of the
generalized-Bayes interval is 0.923, a 23% reduction in the probability of not
covering the true variance. When n = 29 and p = 29, the Stein-type confi-
dence interval, I4(S? Z?), has a maximum probability of coverage of 0.917
and the interval given in Cohen (1972) is uniformly dominated by I4(S?, Z2).
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