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ACHIEVING INFORMATION BOUNDS IN NON AND
SEMIPARAMETRIC MODELS!

By Y. Ritov anp P. J. BicKEL

The Hebrew University of Jerusalem and
University of California, Berkeley

We consider in this paper two widely studied examples of nonparamet-
ric and semiparametric models in which the standard information bounds
are totally misleading. In fact, no estimators converge at the n~“ rate for
any a > 0, although the information is strictly positive ‘promising” that
n~1/2 is achievable. The examples are the estimation of [p2 and the slope
in the model of Engle et al. A class of models in which the parameter of
interest can be estimated efficiently is discussed.

1. Introduction. Consider the standard simple random sampling model
on a sample space X: X, ..., X, ii.d. according to P € P, a set of probability
measures on X dominated by u. Let p denote the density of P and 6: P —» R
be a parameter. Suppose P is a regular parametric model, that is,

1. P={P,,: 6 €R, n € R™, where if s(6,n) =[dP, ,,/dul"/? the map
(8, n) — s(6, n) is continuously Fréchet differentiable from R™*! to L,(u),
with derivative §(8,7) an m + 1 vector of elements of L,(u).

2. The Fisher information matrix, 1(6, n) = 4[ [$,(8, n)$ (0, n) i)+ 1yx(m+1)
(where the §; are the components of §), is nonsingular.

Then it is known [see, for example, Hajek (1972)] that if ¢ is identifiable it
can be estimated at rate 1/ Vn. In fact, there exist 6, of “maximum likeli-
hood” type which have the property that, if I'! is the first element of 171,
then

L,X(n'?(6 - 8)) - N(0, I''(6, 7))

uniformly on compact subsets of R™*! and I'! is the smallest asymptotic
variance achievable by uniformly converging estimates.

Levit (1978), Pfanzagl (1982) and Begun, Hall, Huang and Wellner (1983)
have used an idea of Stein (1956) to extend those lower bounds to P nonpara-
metric or semiparametric, provided that 6 is pathwise Hellinger differentiable
on P.

In this paper we investigate the question: Under the conditions of the above
authors, are the bounds necessarily sharp if we drop the restriction that P is a
regular parametric model?
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926 Y. RITOV AND P. J. BICKEL

We begin, in Section 2, by showing in the context of two widely studied
examples, estimation of [p?, and of the regression coefficient in the model of
Engle, Granger, Rice and Weiss (1986) that the answer is, in general, no. In
fact, the rate n~1/2 is not even achievable pointwise. Although the arguments
are specific, they can evidently be generalized to show similar results for much
broader classes of parameters. A general view of these phenomena is given in
Donoho and Liu (1988).

In Section 3 we show that the information bounds are valid for a general
class of semiparametric models. The class includes the regular parametric
models and is rich enough to contain models having essentially any tangent
space structure.

2. The bounds are not sharp. The first example we consider is
P = {P on [0, 1]: P absolutely continuous with density p < M},

where M is a finite constant and,

6(p) = [p*(x) dx.

Since the functional 6(p) is differentiable along every Hellinger path in P,
the regularity conditions required for validity of the information bound are
satisfied. This functional appears in the asymptotic variance of the
Hodges—-Lehmann estimator. Similar functions (the integral of the square of
the derivative of the density) appear in the theory of optimal density estima-
tion.

It is well known [Pfanzagl (1982) and Donoho and Liu (1988)] that the
information bound in this case is

(2.1) 4Var p(X) = 4[(p(x) — 6(p))"p(x) dx.

Hasminskii and Ibragimov (1979), following work of Schweder (1975), exhibit
an estimate 6, such that vn (8, — 6(p))/2[Var p(X)]'/? converges in law to
N(0, 1) uniformly on {P with densities p such that ||p|, + ||P’|l. < L}. Yet we
can establish the following.

THEOREM 1. For any € > 0, there exists a subset P, C P (compact in the
topology induced by the variational norm and having diameter less than &)

such that for every sequence of estimators én and every a > 0, there exists
P € P, such that

(2.2) liminf P[|6, — 6] = n=] > 0.

A consequence of this result is that the rate of convergence on P,, as
defined, for example, by Stone (1980), is slower than n~% for any a« > 0. In
fact, no sequence of estimators which is n~* consistent at each point of P,
exists. So the information bound is totally misleading for P.
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To see what goes wrong, we consider the behaviour of a plausible type of
estimator. It is proved in Pfanzagl (1982)—see also Bickel, Klaassen, Ritov and
Wellner (to which we refer in the sequel as BKRW)—that if 6.4 is efficient,
then

= 0(p) + 2071 ¥ (p(X,) — 0(p)) + 0,(n"1/2).
i=1

The naive approach to estimating 6 efficiently is to try 8 = 6(p,) +
2n7 17 [ pn(X ) — 8(p,)] for p, an estimator of the density. For simplicity,
suppose p,(:) is based on an auxiliary sample. If 8 = Oeﬁ +o (n 1/2) we
would expect

E(6p,) = fpz(x) dx + 0,(n"1?).
But,

E(81,) — [p*(x) dx = 2[p,(x)p(x) dx — [pX(x) dx ~ [p*(x) dx

= — [(Bulx) = (%)) dx.

According to Bretagnolle and Huber (1979), to have this last term be of order
n~1/2 uniformly for p € P we need a Holder condition of order at least 3 on p
in P, viz. | p(x) — p(y)| < c|x — y|'/2. A positive result when p is so restricted
has been obtained by Ibragimov and Haminskii (1979). This argument cannot
be translated into a proof since we have considered only estimates of a
particular type in the discussion of the rate at which p can be estimated. In
fact, a cleverer construction [see Bickel and Ritov (1988)] shows that a Holder
condition of order ; suffices. However, we hope the point is clear. The
calculations leading to the information bound are local. They are irrelevant to
actual performance if you can’t even get to within o,(n~'/*) of 6(p).
We begin with a simpler construction which establishes the following.

THEOREM 2. For any sequence of estimates 8, there exists a compact P, for
which the uniform rate of convergence is slower than a,, for any sequence
a, — 0, viz.

(2.3) liminf sup P||6, — 6| > a,| > 0.
n PO .

Note that (2.3) implies the existence of € > 0 such that

liminfsupP[]@;, -0|> e] > 0.
n Po

The main idea of the proof is a ‘‘Bayesian” construction. We exhibit a
sequence of prior distributions ,, assigning mass 3 each to finite subsets H,,
of {P: (P) =1+ %a,} and H,, "of {P: 6(P) = 1 + %a,}, whose size k(n)?1o
such that the posterior probabilities of H,,, H,, given X, ..., X, are, with
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probability tending to 1, still equal to 3. More explicitly, the members Djins
l=1,...,k(n), of H;,, j=0,1, are equally likely a priori and are chosen so
that, with probability tending to 1,

k(n) n k(n) n

kR~ N(n) 2 l_[pozn(X) =k~ (n) X l_Ipu,.(X) = ]_[p(X)

1=1i= 1=1i=1
where p is the uniform distribution on (0,1) (though this is inessential).
Define P, to be this countable collection of P;,,’s together with their limit, the
uniform distribution. An immediate consequence from which (2.3) follows is
that,

mf[P[|a - 6| > a,|m,(dP) > },

and this establishes the theorem. This construction differs from similar con-
structions appearing in the density estimation literature where the corre-
sponding H,,, H,, are simple (consist of one point).

Proor or THEOREM 2. Here is the sequence of priors, the union of whose
carriers is a set having the uniform distribution on (0,1) as its limit. We
prescribe 1, through some auxiliary variables.

(1) Let

c,, with probability 3,

a =
" 2c,, with probability 3;

the sequence ¢, |0 is to be chosen later.
(2) Let Ay,...,A,,, m = n? be independent identically distributed random
variables independent of «, and equal to +1 with probability 3.

, is the distribution of the random density p given by
p(G+y)(m+1)7) =1+Aa,h(y), i=0,....m0<y<]l,

where (say)

I/\

¢ 0 1
h(z) = L,
2

I/\
I/\ /\

-1 -1,

The support of each m, is finite and [|p.— 1| < 2¢, with =, probability 1, so
the union of the supports of m, is a sequence tending to the uniform
distribution. Now, if P corresponds to the random p,

a2

6(P) = [p*(x)dx=(m +1)7" }: [ (1+dsa,h(3))dy =1+ —.
This construction, since m = n?, has the property that the 7, probability
that at most one of the observed X,,..., X, will fall into any of the intervals
[i/(m+ 1), i+ 1)/(m+ 1) is 1 — O(n"1!). But one observation in a cell
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gives no new information on whether «, = c, or 2c, and so the posterior
probability,

2
n

T80 =1+ —
(2.4) { 12

! 1
-+ .
>+ 0. (D)

c?
Xl,...,Xn} =1'rn{0=1+ -gn

Xl,...,Xn}

Let c, = 3a/2. Then (2.4) implies that
inf P[0, = 01> &,/ X0, oy s XKo) =, 3,
or, for any 8, = 5,,(X1, LX),
fP[]@n - 0| 2 a,|m(dP) = 3.
Then
limninfsng“(')\n -6|>a,] 2 limninffP[]én — 0| >a,|m(dP) = 3

and (2.3) follows. To check (2.4), note that if at most one X; falls in each
interval, the posterior distribution of (a,, A, .., A,)is

m(a, gy, AplXy, ., X,)

(25 = 2_(m+2)i1]0{

=TT+ Aah(T)),

i=0

1+ 1

A;
g fa(¥) +

—-A; 5,
T f (D)} e X X))

where

fE(y) =1+ ah(y),
i i+1 )

5. =

12

1, ifth ists X, € ,
1 ere exists J; [m+1 m+1

0, otherwise,
and Y, is the fractional part of (m + 1)X; . By symmetry, from (2.5),
Wn(an =c, Xy, Xn) = %
and (2.4) follows. O
Theorem 1 again uses a Bayesian construction. For the conclusion we can-
not reduce our problem from estimation to testing but have to construct a

prior distribution with infinite support whose Bayes risk for the loss function
1,(0,6) = 1(|8 — 6| > a,) is bounded away from 0.
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Proor oF THEOREM 1. We exhibit a P, contained in the ¢ ball around
U(0,1) and m, concentrating on P, such that for all « > 0,

(2.6) liminfipffP“@" — 6] > n=*|mo(dP) > }.
n 9,

Then (2.2) follows. Otherwise, we could exhibit a > 0, 9,1 such that for all P,
P[|6, — 6| =n=2] >0,

which by dominated convergence would imply
JP[18, = 6] = n==]wo(dP) - 0,

contradicting (2.6). Here is . Let a;, A,(0),...,A,(2* — 1), k=1,2,... be
independent, a, = 0 or 1 with probability 1, each A,(i) = + 1 with probability
1 each. Define the random functions

A1), 27k <x < (i +3)27",

(2.7 hi(x) = —A,(3), (i+3)2F<x<(i+1)27%

Finally, the random density p is given by
p(x) =1+ ¥ cazhy(x),
k=1

where the c, are positive ¥5_;c, <¢/2. Note that since [h,(x)dx =0,

0(P) =1+ ) ai?
i=1

m—1 o
=1+ Y aZ?+ ) a?2.
i=1 i=m
Let B = (ay,...,a,_,) and m,,; be the conditional distribution of all the a’s
and A’s given B. For any bounded loss function L(6, a),

(28) infE, L(6,5) = inf fE,,OBL(O,S)v(dB) > figle,,oﬁL((),a)v(dB),

where 6 ranges over all estimates of 6 based on X;,..., X, and v is the
marginal distribution of B. Therefore, there exists a value B, of B such that
the Bayes risk of m, is no smaller than the Bayes risk of 7z = m,. Under
T, if m = [3log, n] any interval of the form [i27™,(i + 1)2™™) contains at
most one of X,..., X, with probability > 1 — (2n)~'. Arguing as before,
under 1r,, except on a set of probability O(n~!) the conditional distribution of
A={A,(i): 1 <i<2*% k>m}gven X,,..., X, is the same as the marginal
distribution. We claim that the same is true of the conditional distribution of
a ={a,,..., k > m}. Write the joint density of (a, A, X, ..., X,) with respect
to the measure u, where, under u, the a,’s and A,(i) have the distribution
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specified earlier and X, ..., X, are independent of a, A and are uniform (0, 1)
as

n m—1 o
Il (1 + X cpapeh(X) + X ckakhk(Xi))-
i=1 k=1 k=m
The posterior density, if at most one X, is in each interval [i /2%, (i + 1)/2%),
k > m, is proportional to

l;-ll(Ai(Xi) + X Ckakﬁk(Xi)Aki),

, k=m

where A(x) =1+ S lc,apoh,(x), A, = Ay(j) iff j is such that X, e
[j27%( + D27%) and

+1, ifX;e[j27%(j+ 3)27),
Ek(Xi) = . . 1 —k . —k
-1, ifX;e[(j+3)27%(j+1)27%).
Then the posterior probability that («,,, 1, ..., @) = (@%, 4, ...,a% ) given
X, =x,..., X, = x, is proportional to

m+t ©
E,L{ 1:-[1 (Ai(Xi) + Y cpape(X)A, + P Ckakfk(Xi)Aki)

2 k=m+1 k=m+t+1

— 0 — 0
><]'(am+1 SO0t Xy T am+t)} .

But the «, and the A,; are independent under w. Multiplying out the product
and using the symmetry of the A,;, we obtain that the posterior probability is
proportional to I1"_; A,(X;) and our claim follows. To complete the argument
note that, under , if B,, = X5_,, c(a? — 3),

P[B,>3%%]>Pla,=1, ¥ ciei-3) 20] >

k=m+1

by the symmetry and independence of «,, and a2 — 3, k=m +1,.... A

similar argument shows

m?

P[B, < —3c%] = 1.
Hence, if at most one X; falls in each {nterval,
ir;fP[|0 —a|23c2|X,,..., X,]
> min{P[B,, > 3c%|X,,..., X,|, P[B,, < —1c%|X,,..., X,]}
>3 +0,(nY), |

since, except on a set of probability O(n~1), the marginal and conditional
distributions of B, agree. So the Bayes risk of m,, for the loss function



932 Y. RITOV AND P. J. BICKEL

L,(6,a)=1[|0 —a| = 3c%2] is =1+ 0®™Y. If ¢, =9¢qlogn] !¢ say,
then (2.6) follows from (2.8). O

In the model of Engle, Granger, Rice and Weiss (1986) we observe X, =
W,,Z,,Y,),i=1,...,n, where

(2.9) Y=BW+HZ) +¢

and & ~ N(0, 02). The joint distribution of (W, Z) and ¢ are unknown. In
recent work, Chen (1988) and Cuzick (1987) have exhibited, under various
smoothness restrictions on ¢, estimates B which are asymptotically
N(0, I"!/n), where

(2.10) I=02E(W-E(W|Z))>>0

unless W is a function of Z. Local calculations yield this as the information
bound whenever W € L,. Let

P = {All distributions (W, Z, Y ) given by (2.9) such that I >0 and well defined} .

TueoreM 3. (1) Even if o = 0 [or, equivalently, I given by (2.10) equals
], there exists a subset P, of P such that for all estimates B3,

(2.11) supP[|[§n - B| > s] >0 foranye> 0.
P,

(2) For o> 0 there exists a compact subset P, of P such that for all
estimates 3, and all y > 0,

liminfsup[lé - Bl > n"7] > 0.
n PO

We argue as for Theorem 2.

Proor oF THEOREM 3. (1) We give the simpler construction for o = 0 and
P, noncompact and sketch if for & > 0 and P, compact. Here is the prior ,,.
Take W = +1 with probability + and 0 < Z < 1.

Let a,A,...,A,,, m =n3 be iid. and equal to +1 with probability 3. If
a=—1,then 8 =0, Z~ U(0,1) independent of W and #(z) =0. If a = 1,
then B = ¢ and the conditional density of Z|W and #(-) are given by

1-a A i i+1/2
=1-A. = . < -
p(zlw) W, H2)=eb, e <<l
(2.12) . .
1+ A ; A 1+ 1/2 1+1
= + . = — . < < .

Again with probability 1 — O(n 1), the posterior of A, ..., A,, is the same as
the prior distribution. Note also by construction that BW + #(Z) = 0. So, with
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probability 1 — O(n™1),
Pla=1W,Z,Y,i=1,...,n] =Pla=1W,Z,,i=1,...,n]

iy Fio

is proportional to,
(2.13) E{ [T(1-aW)™(1+ AiWi)l“”},
i=1

where W, Z,,...,W,, Z, are fixed. If Z, falls in [j,/(m + 1),(j; + D/(m +
1)), we define 8, = 1 if Z, is in the first half of that interval and 0 if it is in the
second. The expectation in (2.13) is again 1 and we conclude that the posterior
distribution of « is the same as its prior and hence that the Bayes risk of , is
bounded away from 0. (2.11) follows.

(2) If o = 1 (say), proceed as follows. Let «,A,,...,A,, be as above. Sup-
pose P[W=0]=P[W=1]= 1 and that the conditional distribution of Z
given W = 0 is U(0, 1). Under =, if « = —1, B = 0 and Z given W = 1 is also
U(0, 1). Let

; _ [a,A, i/(m+1)<z<(i+3)/(m+1),
n(2) = —a,A,;, (i+3)/(m+1)<z<i/(m+1).
Ifa=1,8=c, and
p(zlW=1)
(2.14)  (1-0,4,, i/(m+1)<z<(i+3)/(m+1),
148,84,  (i+3Y)/(m+1)<z<(G+1)/(m+1).

With probability 1 — O(rn~1'), there is at most one Z; in each interval
[i(m + D4 G + D(m + 17!). Conditional on that event, being given
(W, Z,,Y,) is the same as being given (W,,V,,Y;), where V, is the fractional
part of (m + 1)Z,. Further, the posterior distribution of g is the same as the
conditional distribution of B given {(V,, Y;): W, = 1}. Given W, = 1, V; is U(0, 1)
by (2.14) since the conditional distribution of A;, given W, = 1, where Z; €
(J;/(m + 1), (j; + 1)/(m + 1)), is the same as its prior.
Finally, the conditional density of Y; given W, = 1, V,, a = 1, is
3 (1-0,)¢(y—c,—a,)+ (1 +b,)d(y —c, +a,)
= &(y) +y0(¥)(c, — a,b,) + O(ch +a}).

If a,=cL7% b,=c2, §>0, the density of Y, given W,=1, V,, a =1 is
(A + c272h(y) + O(c3 + a?)), where [¢(y)h(y)dy = 0. One can show the
joint distribution of {(V,,Y;): W, = 1} under a = 1 is contiguous to that under
a = 0 provided c272° = O(n~1/2). Hence, by taking c, = n='/%*¢ & > 0, arbi-
trary, we can deduce that 8 cannot be estimated at a rate better than n~1/4*¢,

O
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3. Validity of the bounds for a class of models. We consider semi-
parametric models with the following structure:

(3.1) P- UP, P,cP,, Vm

m+1» ’
m=1

and P,, regular parametric. That is, we can write
Pm = {P(H,n”‘): S ®’ nm = (171’ . .’nd—l)’ with d = d(m)

andn, €E,,j=1,...,d — 1, E;, © open subsets of R}.

-

P <.

2. The maps (8,7™) — P, ,n, are 1-1 for all m. Further, if PP, =P, N
P,,, m' > m, then the first d(m) coordinates of n™ agree with n™.

3. The maps (6,7™) = s(8,7™) = (dPy ,m/du)"/? € Ly(u) are continuously

Fréchet differentiable with derivative $(8,7™) = (5,...,$,)0,17™), §; €

Ly(w),j=1,...,d.

4. The information matrix,

1(6,7™) = 4[[s:is:j(0,n'") d“]dxd = [ B nml:d;(0,0™)] yrar

is nonsingular for all (8, n™), where (6, n™) = 2(s/s)X6, n™) is the deriva-
tive of the log likelihood.

In words, every member of P belongs to a nice parametric model whose
dimension d can, however, be arbitrarily large. A moment’s thought will show
that most if not all semiparametric models proposed in the literature can be
thought of as the closures (for weak convergence) of such P. For example, the
symmetric location model {P: P is absolutely continuous on R, symmetric
about some 6 € R} is the closure of P as in (3.1), where P ,»,, for example,
has

lOg p(é),n”‘)(x) = h(x -0, ﬂm),
where
d-1
R'(x,n™) = ¥ m1(x| < by,),
k=1
where d = 2™ + 1, b,,, = mk2™™, k =1,...,d — 1. That is, we assume that
the log density of X — 0 is a symmetric quadratic spline with knots at +5,,,,
which is constant for |x|] > m. Such models have been considered by Faraway
(1987) and Stone (1986) among others. It is well known [see Le Cam (1956)

and Bickel (1982)] that there exist estimates 6,,,,7,,, which are efficient on
P,,. In particular, '

A

(32) an - 00 = n_l Z [Om(Xi) + OPO(n_1/2)’
i=1
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where

- s™l s¥

lOm = 2 :

ls#?
and
s{ =81~ H(‘§1|['§2’ ) éd])’

II(k|L) denotes the projection of & € L,(u) on the closed linear subspace L in
the L,(u) norm, | -|, and [$,,...,§,] is the linear span of {s,,...,$,}.
fmn — Mo has a similar expansion but we can only note that
(8.3) Mmn — Mo = OP0 n=1?%).

These relations hold for each m fixed, all P, € P,,, as n — «. Frequently, we
achieve (3.2) and (3.3) using the maximum likelihood estimates of 6, ™ under
P, Forany P P, let n = (ny,...,m4p)), and d(P) is the smallest m such
that P € P,,. For the model P, the information bound in estimating 6 at
P, =Pg, ., 1s given by

[27(Po;0) = §é = 1| (8uléa00,m))
where

£5(84,m0) = closure of the linear span of {$5(69,70),...,5$,(00,m0),.--}-

Here, for m > m(P,), we consider P, as a member of P,, i.e., corresponding
to (64, ng") such that P, = P,
Suppose I(P,y; 0) > 0 for all P0 € P. Let

(3.4) (89, m0) = 25~ (80, Me)(81(80,M0) — TL(81(B0; 70420, 10)) /(P03 6))
be the efficient influence function for estimating 6 in P at P; [ depends on
(00, 7]0)

THEOREM 4. Suppose that if Py, ,m) € P,,, 8, = 0o, n;* = ng", then

(3.5) M(v1¢5(6,, mi")) = T1(v1¢2(65,m0))
for all v € Ly(n) and
(3.6) limksup | [0, )], <,

where || - ||, is the sup norm.
Then there exists 6, such that,

n
b,=0,+n" 'Y (X)) + op(n~1?),
i=1
where [ = [(6, 7).
Moreover, the 6, are at least locally regular. That is, for all P, € P,

{P:|r]<1}isa regular parametric submodel of P, 7, = O(n‘l/ %), we have
L, (n'/ 26, — 6(P. ) tending to a limit law 1ndependent of {P,}.
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The construction is essentially to pick the lowest dimensional submodel P,
which is close enough to the empirical distribution, then treat 7, as fixed,
compute the efficient estimate %, , of 7, in that model and then “solve the
equation;”’

(3.7 Zn; [(6,%m ) =0.
i=1

The resulting estimate is well behaved if P € P. However, if P € P — P, we
necessarily have , — » and no guarantee that the solution of (3.7) is even
consistent, much less efficient. In fact, the examples of the previous section
make it clear that there is no hope for such a general consistency theorem. The
question remains whether one can formulate reasonable conditions on the
structure of [ and the behaviour of the distance in suitable metrics P,, and
members of P — P as a function of m which yield the validity of the informa-
tion bounds for members of P. An attempt in this direction is the work of
Severini and Wong (1987). However, we do not pursue this, in part, because we
believe that the checking of any such conditions in models of interest will be at
least as difficult as the construction of efficient estimates by one of a number of
heuristic methods which have been developed—see BKRW, Chapter 7 for a
discussion.

_ Proor. Let dy be the Kolmogorov distance between distributions. Let
0,y n> Mmr D€ as in (3.2) and (3.3) and let

P be the corresponding member of P,,.

Let 71, be the first m such that d(P, P,) <¢,, where ¢, - 0, n'/2%, — o,
P, is the empirical distribution. Evidently, if m, = m(P_ , ),

Py[rh, =my] - 1.
Moreover, }A’,ﬁn © (éﬁlnn, fim,n) = (B0, m9) + O, (n~'/?. Therefore, by (3.5),

. . 2
(3.8) f(l(Bn,nmnn) — 1(6,,1,)) 5%(8,,m,) du = 0,(1),
for all sequences P, , , € P, with |6, — 6y = O0(n™"?), |n, — n4| =
o(n=12),
Moreover, using (3.6), we see that,

/f(en’ ﬁﬁznn)s2(9n’ ﬂn)dﬂ
= 2/[(0n ﬁmon)(s(en’ nn) _’ s(on"ﬁmon))s(én’ﬁmon) d/“‘
A 2
(39) + Op0(||3(9n,77n) - S(Bn’ nmon)” )
= 2fi(0n’ ﬁmon)(éZ(en’ﬁmon)" . "émo(om’ﬁmon))

X (nn - ﬁmon),s(en’ ﬁmon) d:u’

+ 05,170 = Aimgn]) + Op (150, M) = 5 (B Aimgn) I)-
The first term on the right in (3.9) is 0 by (3.4). The last two terms are
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op{n~"/?) by (3.2) and (3.3), so

(3.10) fl~(0n,ﬁ,;l"n)sz(6n, n,) du =0, n~1/2),

Together, (3.8) and (3.10) yield the existence of én——see Klassen (1987), for
example. O

Thus the @n are at least locally regular and n'/ 2(én — 6,) is asymptotically
normal (0, I~ *(P,; 8)), i.e., achieves the information bound.

Note. (1) Conditions (3.5) and (3.6) are trivially satisfied by the symmet-
ric location example. Condition (8.6) can be interpreted as a robustness
condition for efficient estimates in P,,. That is, on the model P,,, efficient
influence functions are bounded and bounded uniformly in small Hellinger
neighbourhoods of any P.

(2) It is easy to check that if in the model of Engle, Granger, Rice and Weiss
we, for instance, let P,, be such that #(Z) and log P(W = 1|Z) are repre-
sentable as splines with d(m) knots, condition (3.5) is satisfied. Although
condition (3.6) fails for ¢ Gaussian, [ is of the form & times functions which
are uniformly || - ||, bounded and (3.7) continues to hold.

(3) A further peculiarity of these models is that, if we only consider the.
asymptotic behaviour of én at fixed (6, n), it is asymptotically inadmissible.
However, when we consider its behaviour over ““contiguous’” neighbourhoods
in P, it is uniquely asymptotically minimax. More precisely, let {P,, |¢| < 1} be
a regular parametric submodel of P passing through P, = P, 4, Correspond-
ing to this model is its score function at (6, n,) given by (say) sq 'v, where
v € £,(8,,m,). Consider § = é,ﬁ"n. By Le Cam’s third lemma, if 6, = 6,(¢) =
0(P,,-12), m, = n,(t) = n(P,,-1,2), then

(3.11) L(en,nn)ﬁ(g - On) - N(2tfvs{" du, i||s{“||_2).
On the other hand, by the same argument,
Ly o Wn(6—6,) > N(0,I71(Py;0)).
Now,
. . . 2
I(Py;6) = %”31 - H(Sl|§2(00’770))||
,2
sl
< )
So, at (6,4, o), i.e., t = 0, both Vn (6 — 6,) and V(8 — 6,) are asymptotically
normal with mean 0 and the asymptotic variance of Vn 8 is smaller than that

of 6. However, evidently, on each parametric submodel, for any bounded
bowl-shaped loss function [,

lim infliminfsup{E(o e (t))l(n1/2(§ - On)): It] < Mn_l/z} = supl(d),
M n nien d

higher than the comparable asymptotic minimax risk for 6.
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This is a superefficiency phenomenon. The estimator b is, in view of (3.11),
not locally regular, ie., the limit of L(gmnn)(x/r? (6 — 0,)) is not independent
of ¢.
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