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UNIFORM ASYMPTOTIC OPTIMALITY OF LINEAR
PREDICTIONS OF A RANDOM FIELD USING AN
INCORRECT SECOND-ORDER STRUCTURE!

By MICHAEL STEIN

The University of Chicago

For a random field z(¢) defined for ¢ € R ¢ R? with specified second-
order structure (mean function m and covariance function K), optimal
linear prediction based on a finite number of observations is a straightfor-
ward procedure. Suppose (mg, K,) is the second-order structure used to
produce the predictions when in fact (m,, K;) is the correct second-order
structure and (m, K,) and (m,, K,) are “‘compatible’” on R. For bounded
R, as the points of observation become increasingly dense in R, predictions
based on (m, K,) are shown to be uniformly asymptotically optimal
relative to the predictions based on the correct (m, K,). Explicit bounds on
this rate of convergence are obtained in some special cases in which
K, = K;. A necessary and sufficient condition for the consistency of best
linear unbiased predictors is obtained, and the asymptotic optimality of
these predictors is demonstrated under a compatibility condition on the
mean structure.

1. Introduction. This paper investigates the effect of misspecifying the
mean and covariance function of a random field on optimal linear predictions
of the random field. Optimal linear prediction is commonly used in geology and
hydrology, where it is known as kriging [Journel and Huijbregts (1978)].
Consider a random field 2z(¢), ¢t € R c R? with Ez(¢) = m(¢) and
cov(z(2), 2(t)) = K(¢,t). The pair of functions (m, K) defines the second-order
structure of the field. If (m, K) is known, then for any finite set of observa-
tions, the optimal linear predictor of any unobserved value of z(‘) can be
readily calculated. For example, if Zy = (2(¢,),..., 2(¢ty)), then the optimal
(minimum mean-squared error) linear predictor of z(¢,) is

Ez(ty) + cov(2(to), Z)[eov(Zy, Z4)] " (Zy — EZy).

In practice, (m, K) is at least partially unknown and must be estimated from
the data. We will not directly address the effect of using estimated second-order
structures on linear prediction. Instead, we will investigate the effect of using a
fixed but incorrect second-order structure. This work focuses on the situation
where R is a bounded region and ¢4, ¢,, ... is a dense sequence of points in R;
the behavior of predictions of z(-) based on 2(¢,), ..., 2(¢5) as N increases is
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the object of study. This asymptotic approach of an increasing number of
observations over a fixed region is also used by Yakowitz and Szidarovszky
(1985) and Stein (1988). Yakowitz and Szidarovszky (1985) show that the
kriging predictors of z(¢,), ¢, € R, based on an incorrect covariance function
K is mean-square consistent when z(-) is presumed to be second-order station-
ary with the spectral density S(w) of the presumed covariance function K
satisfying
liminfS(w)w|? > 0

|w|—

for some q. In this paper, we show that an asymptotically optimal linear
predictor is obtained if the second-order structure used to produce the predic-
tion is incorrect but “‘compatible” (defined below) with the actual second-order
structure. This result can also be obtained using a very general theorem by
Blackwell and Dubins (1962) which compares conditional distributions under
equivalent measures. We will give a different derivation for the particular case
of linear prediction which will enable us to obtain bounds on the rate of
convergence to optimality. A rather different approach to the problem of using
incorrect second-order structures is taken by Diamond and Armstrong (1984),
Sukhatme (1985) and Warnes (1986), who consider the effect on kriging
predictions of perturbing the covariance function a small amount given a fixed
set of observations.

Corresponding to every second-order structure (m;, K;) on R there is a
unique Gaussian measure P, with mean function m; and covariance function
K;. We will say that (m,, K,) and (m,, K,) are compatible on R if P, and P,
are mutually absolutely continuous. This definition is a natural extension of
the one given by Stein (1988) in which it was assumed m, = m. Compatibility
is a property of the second-order structures (m,, K,) and (m,, K,), and the
region R; it is not necessary for the random field z(-) to be Gaussian for the
definition to apply. Conditions for the mutual absolute continuity of Gaussian
measures in terms of the mean and covariance functions are given for homoge-
neous covariance functions in one dimension by Ibragimov and Rozanov
(1978), Chapter 3, and in higher dimensions by Yadrenko (1983), Chapter 3.
By definition, these conditions also allow us to determine the compatibility of
second-order structures.

In Section 3, we derive some general asymptotic optimality properties of
predictors based on an incorrect second-order structure that is compatible with
the actual second-order structure. Suppose (m, K,) and (m, K,) are compat-
ible on R, where (m,, K,) is the correct second-order structure, and ¢, ¢,, ...
is dense in R. We consider predictions based on z(¢,),...,2(¢y) as N in-
creases. Then the mean-squared difference between predictions based on
(m,, K,) and (m,, K,) relative to the mean-squared prediction error based on
(m,, K,) goes to 0 uniformly over all linear functionals of 2(:) on R with finite
second moments (Corollary 3.1). Moreover, the difference between the mean-
squared prediction error obtained by using (m,, K,) both to predict and to
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evaluate the mean-squared prediction error and the actual mean-squared error
of this prediction tends to 0 uniformly relative to the presumed mean-squared
prediction error under (m,, K) (Theorem 3.1).

In Section 4, upper bounds on the rates of this uniform convergence are
computed under various conditions when K, = K;; that is, only the mean
function is misspecified. When 2z(:) is in fact Gaussian, these bounds are
related to the variation distance between the conditional distributions of z(-)
under the two mean functions. The bounds can be obtained by approximating
an element of a Hilbert space by an element of a finite-dimensional subspace.
This problem has been considered as it applies to optimal design for estimating
the regression coefficients of a stochastic process in one dimension by Sacks
and Ylvisaker (1966, 1968, 1970, 1971), Wahba (1971, 1974), Eubank, Smith
and Smith (1981), and in two dimensions by Ylvisaker (1975). In this work, we
obtain results for less smooth mean functions than are considered in previous
works. An order-of-magnitude sharper bound is obtained for differentiable
processes when only the value of the process at each observation point is
available, and not the derivatives of the process at these points. These results
are extended to two dimensions, and apply to a much broader class of
processes than considered by Ylvisaker (1975).

In Section 5, two general theorems on asymptotic properties of best linear
unbiased predictors are obtained. We suppose Ez(¢) = B'g(t), where B is an
unknown vector of coefficients and g(¢) = (gi(¢) - -+ gP(¢)) is a known func-
tion. The best linear unbiased predictor has minimum error variance among
all linear predictors with expected error of 0 for all values of B; it is given
explicitly in (5.2). A necessary and sufficient condition for the mean-squared
consistency of a best linear unbiased predictor is given. Under the stronger
condition that (0, K) and (g’, K) are compatible for i = 1,..., p, the best
linear unbiased predictor is shown to be uniformly asymptotically optimal
relative to the best linear predictor (i.e., assuming B is known).

The basic message here is that as the observations in some bounded region
get increasingly dense, it becomes inconsequential to distinguish between
compatible second-order structures for purposes of linear prediction in that
region. While it is not necessarily true that incompatible second-order struc-
tures give predictions that are asymptotically different, the examples in Stein
and Handcock (1989) show that they can give predictions with very different
asymptotic behavior in many cases. Thus, in order to guarantee good linear
predictors based on an estimated second-order structure, it would be of value
to be able to distinguish between incompatible second-order structures with
high probability based on observations within the region of interest. When the
random field z(-) is Gaussian, there is some evidence that this can be done.
Gaussian measures are either mutually absolutely continuous or orthogonal
[Ibragimov and Rozanov (1978), page 77]. Thus, if z(-) is observed everywhere
on R, (m,, K,) is the correct second-order structure and (m,, K,) is an
incompatible second-order structure on R, this fact can be determined with
probability 1. If z(-) is observed at a large number of locations throughout R,
we would thus expect to be able to make this distinction with high probability.
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Results of the author (1987, 1989) on the behavior of minimum norm quadratic
estimators of the parameters of a model for a covariance function give some
support for this position. Thus, a plausible conjecture would be that for
Gaussian random fields, those distinctions between second-order structures
that are possibly asymptotically important to make for purposes of prediction
(i.e., between incompatible second-order structures) are distinctions that can
be made well.

2. Compatibility and Hilbert spaces. Suppose z(¢), ¢t € R, is a random
field with finite second moments and second-order structure (m, K), with m
and K continuous. Let Hzp(m, K) be the closed linear hull of 2(¢), ¢ € R, with
respect to the inner product

(2(2),2(8) m,x = K(£,8) + m(t)m(¢').
Then Hg(m, K) is a separable Hilbert space of real random variables. More-
over, there exist mean and covariance operators, which we will also call m and
K, such that for h;, h, € Hy(m, K), Eh; = m(h,) and cov(h,, hy) =
K(hy, hy). We will freely switch between the functions m and K and the
operators m and K, the meaning being apparent from context.

If (0,K), (m,K) and (m, K,) are compatible on R, then Hp(m,K) =
Hp(m, K,) = Hp(K) [where we define Hp(K) = Hg(0, K)], which follows
from elementary considerations on the equivalence of Gaussian measures
[Ibragimov and Rozanov (1978), page 71]. Thus, in this case, it makes sense to
talk about the second moments of elements of Hp(K) under (m, K) or
(m,, K;). The subscript i will be used to denote expectations under (m;, K,),
so that, for example, E;h; = m (k) and cov(h, hy) = K,(h,, hy) for b, h, €
Hy(K).

3. General results. Suppose (0, K,), (m, K,) and (m, K,) are all com-
patible on R. Consider a linearly independent sequence 7, 1o, ... € Hi(K,)
and let ¢, ¢¥,,... be the Gram-Schmidt orthogonalization of the sequence
under (0, K,). Let H,(K,) be the closed linear hull of ¢, ¢, ... using the
inner product defined by (0, K). If n,,n,,... form a basis for Hy(K ), which
will be the case if 0, = 2(¢,), t,,¢,,... are dense in R, and K is continuous on
R X R, then of course Hy(K,) = Hg(K,). For ¢ € Hp(K,), the best linear
predictor of ¢ based on ¥y = (¢, ..., ¢¥y) under (m,, K,) is

‘/;N =Eo(¢) + ky(¥y — Eo(Wy)),

where ky = (Ko(¥, ¥y, ..., Ko(y, ¥y)). Let e(¢, N) = ¥y — ¥ be the error of
this prediction. Similarly define e (¢, N) to be the prediction error of the best
linear predictor under (m,, K;). Suppose we assume (m, K,) gives the sec-
ond-order structure when in fact (m,, K,) is the correct second-order struc-
ture. Then

Eeo(y, N)2 — Eqeo(9, N)z

3.1
( ) EOeO(‘/” N)z
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is a measure of the discrepancy between the presumed mean-squared predic-
tion error (Ejeq(y, N)*) and the actual mean-squared prediction error
(Eieo(, N)®). If both the numerator and the denominator of (3.1) are 0 (so
that the prediction is both presumed to be perfect and is in fact perfect), define
(3.1) to equal 0. We will use the convention that 0/0 = 0 throughout this

paper.
We now consider the behavior of (3.1) for ¢ € Hy(K,) as N — . First,
¢ € Hy(K,) implies

¥ =2 cu,
i=1
the limit existing in L? under either (m, K,) or (m,, K,), where T ¢? < =,
We can then write

2]

eo(¢, N) = ¥ c;,(¥; — Eory).

i=N+1
Define
bjk = Kl(l//j’ ‘l’k) - Ko(‘/’ja '/’k)
and
M= E1‘//j - Eo'/’j-
Now, (m,, K,) and (m, K;) compatible on Hp(K,) imply their compatibility
on Hy(K); hence [Ibragimov and Rozanov (1978), page 81]
jk=1
and [Ibragimov and Rozanov (1978), page 78]
(3.3) Yy pi < o,
j=1
Thus, for all ¢ € Hy(K,),
Eieo(¢, N)* — Egeo(y, N)?
Eqeo(y, N)2

|Z°;k=N+1 cjck(bjk + '“'j'“‘k)l

w 2
L5 _N+1Cj

IA-

- 1/2
[ ) (bjk"'#j#«k)z]

jE=N+1
by the Cauchy-Schwarz inequality. From (3.2) and (3.3), it follows that
Eieo(¥, N)* — Egeo(¢, N)?

= 0.
Eeo(y, N)z

lim sup
Noo yeHL(K,)

This result can also be derived from a very general theorem due to Blackwell
and Dubins (1962) on the variation distance between conditional distributions
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on equivalent measures. The present derivation will allow us to make state-
ments about the rate of convergence. The operator on [? defined by the
infinite matrix (b)), + p ;)7 -, satisfies

Y (b + /"'j/"‘k)z < ®,
jE=1

so it is completely continuous [Akhiezer and Glazman (1961), page 58]. Let Dy
be the operator on [2 defined by the infinite matrix (b;, + p;u #)jk=n+1- Then
Dy, is also completely continuous, so its spectrum is discrete away from 0
[Akhiezer and Glazman (1961), page 118]; hence, for ¢ = (¢q, €y - - - ), we have
[Friedrichs (1973), Section 27]

Lih-N+1 c;cr(bjp + I-‘j#k)

sup = =Apxl0
cel? Dy

and
T %ensrcica(by 1tkg)
1nf2 J of / 5 J =Ax10
cel j=N+1C€j

as N - », where Ay and Ay are, respectively, the largest and smallest
eigenvalues of D,. We obtain the following theorem.

THEOREM 3.1. As N — o,

E,eo(y, N)? — Egeo(9, N)*

sup =An 10
yeHy(Ky) Eoeo(‘//, N)2 o
and
Eleo(l//,N)z_Eoeo('/’,N)z A 10
yeHy(K,) EOeO('I’, N)Z N ‘

_ Switching the roles of (m,, K,) and (m,, K,), we can define the operator
Dy, with largest and smallest eigenvalues Ay and Ay, respectively, such that

Eye,(¥, N)® — Eje (¢, N)?
sup

=A,y 10,
weHy(Ky) Ee\(¥,N)? o

(3.4)
Eye (¥, N)2 —Ee(y, N)z

in = Ay 10.
IIIEH‘p(Ko) Elel(l/,’ N)2 v
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These results can be used to obtain a bound for the difference in predictions
under (m, K,) and (m,, K,). For E e (¢, N)*> > 0,

Ege(#, N)* _ Ege(, N)* Erey(, N)* Ereo(y, N)*
Eoeo(‘//,N)2 Eie\(y, N)2 Eieo(y, N)Z Eqeo(y, N)Z

(3.5)
< Ee (¥, N)2 Eey(y, N)2

B Ee (¢, N)2 Eyeo(w, N)2 ’

where the inequality uses the fact that e,(¢, N) minimizes the expected
squared prediction error under (m;, K;). Since ey (¢, N) is uncorrelated with
Yy under (m,, K,),

EOel(dI’ N)2 = EO[(el((/I’ N) - eO(d’) N)) + 80(([)‘, N)]2
— Eo(ey(, N) — eo(, N))* + Egeo(w, N)?,
and it follows from (3.5) that

Eo(es(y, N) = eo(9, N))* _
Eoeo(‘!’,N)2 -

+ Ee (¢, N)2 —Ee(y, N)2
Elel(‘/” N)2

X

E0e0(¢I7 N)2

1+ E1eo(‘/’,N)2 _Eoeo(‘/’,N)z) _1,

and by applying Theorem 3.1 and (3.4), we obtain the following corollary.

COROLLARY 3.1. As N — o,

Ey(ey(y, N) — eo(w, N))? At A ;
yeHy (K Eseo(w, N)® -

and

E(eo(w,N) — e,(¢, N))? 3 _
e, N) —ey(y ))sAN+AN+ANAN%0.

sup 5
veH(K) Ee(y,N)

That is, for ¢ € Hy(K,), the predictions obtained under (m,, K,) are
uniformly close to the predictions obtained under (m,, K,).

4. Explicit bounds with equal covariance functions
4.1. General discussion. Obtaining bounds on A, (or A,) appears to be a

rather difficult problem in general. The situation simplifies considerably when
K, =K, =K, so that the two possible models only differ in their mean
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functions. In this case, it is easy to show that

J=N+1

Without loss of generality, take m, = 0 and m; = m.
The fact that (0, K) and (m, K) are compatible is equivalent to the exis-
tence of a v € Hx(K) such that for all ¢ € Hg(K) [Parzen (1963)]

(4.1) E\y = E.y,

so that E,vz(¢t) = m(¢) for t € R. In fact, v is just the Radon-Nikodym
derivative of P; with respect to P,. For given ¢, ..., ¥y € Hp(K), let Hy be
the subspace of Hp(K) generated by ¢,,...,¥y and H_j all elements of
H,(K) orthogonal to Hy. Then

N (Eo(vy))’
N yeH _y EO'/’Z
If vy, € Hy, then
Ay = sup (EO(V - VN)'/’)Z up (EO(V - VN)‘/’)Z
(4.2) N veH y Eyy® T y#0 Eyy®
= E,(v — vy)?,

where the inequality is an equality if vy is the element of H) satisfying
E,vy = Evyy for all ¢ € Hy. That is, Ay can be bounded by approximating
v with elements of H.

If in fact 2(-) is Gaussian and K, = K; = K, it is not difficult to show that
the variation distance between the measures P, and P, given ¢,..., ¢y is
independent of #,,...,¢, and equals 20(0.5A%?) — 1, where ®(-) is the
cumulative distribution function of a standard normal random variable. If Ay
is small, then the variation distance is approximately (27)~1/2A%2. Blackwell
and Dubins (1962) showed that the variation distance between conditional
distributions based on equivalent measures converges to 0 almost surely. In
the case of equivalent Gaussian measures with equal covariance functions, the
results in the next sections allow us to give explicit bounds on this variation
distance.

4.2. One-dimensional process. Sacks and Ylvisaker (1966, 1968, 1970,
1971), Wahba (1971, 1974) and Eubank, Smith and Smith (1981) have consid-
ered the problem of approximating an element of a Hilbert space by an
element of a finite-dimensional subspace as it relates to choosing design points
for estimating the regression coefficients of a continuous-time stochastic pro-
cess. As noted in the review paper by Cambanis (1985), the same problem
occurs in designs for the prediction of integrals of random quantities or for
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signal detection. These papers all assume that m(t) can be represented as

(4.3) m(t) = folK(t,s)p(s) ds,

where p(-) satisfies some smoothness condition. The fact that m(¢) can be
expressed as in (4.3) implies that (m, K) and (0, K) are compatible on [0, 1]
[follows from comments by Wahba (1971), page 1036]. Suppose that z(¢) has
exactly n — 1 mean-squared derivatives and Hy p 1s the subspace generated
by zYX¢;) for j=0,...,p; 0=ty <t < -+ <ty=1 where p<n— 1.
Then under certain conditions on K, an asymptotically valid expression for A
as N — = is obtained for p = n — 1 which is of order N~2" [see Sacks and
Ylvisaker (1968) and Wahba (1971, 1974)].

In this section we will derive upper bounds on A, under conditions on m
and K not covered in previous works as well as sharper bounds when p = 1.
While upper bounds on Ay are not sufficient for obtaining optimal or asymp-
totically optimal designs for estimating regression coefficients, they do allow
one to obtain bounds on the efficiencies of certain designs [Sacks and Ylvisaker
(1971)] besides being of interest in the problem at hand. We will assume that
K is homogeneous so that

K(t) = [eith(dw),

where F(dw) is the spectral distribution. Let Lz(F) be the real linear hull of
the functions e*“’ of w, ¢ € R, closed with respect to the scalar product

(P15 P2)F = fqol(w)goz(w)F(dw).

If ®(dw) is the stochastic spectral measure corresponding to F then ¢ €
Hy(K) implies there exists ¢(w) € Lz(F) satisfying

v = [o(w)@(dw).

The correspondence between ¢ and ¢(w) is a unitary isomorphism of the
Hilbert spaces Hgz(K) and L z(F) [Ibragimov and Rozanov (1978), page 17]:

Eop ¢, = (®1,P2)p-

We can make use of the correspondence to obtain bounds on A ~ under certain
conditions on F.
Suppose R = [0,1] and F(dw) = f(w) dw, where for a positive integer 7,

(4.4) flw) <B(1 +w2) "

and

(4.5) liminf f(»)(1 + 0?)" > 0.
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Under these conditions, all elements of Lz(F) can be written in the form
n—1

(4.6) T ci(i) + (1+iw)" [(c(t)ei dt,
Jj=0 0

where the ¢;’s are real and c(¢) is square-integrable on [0, 1] [Ibragimov and
Rozanov (1978), page 30]. Let ¢(w) be the element of L ;(F) corresponding to
v € Hp(K) as defined in (4.1). Then ¢(w) can be represented as in (4.6). Thus
it is natural to investigate how well ¢(w) can be approximated by an element
of some finite-dimensional subspace of Lz(F) under additional restrictions on
the ¢;’s and c(?).

For f(-) satisfying (4.4) and (4.5), the process 2(-) will have exactly n — 1
mean-squared derivatives. The element in L (F) corresponding to zV(¢) for
j <n-—1lis(iw)e™". Let Ly , be the subspace of L(F) isomorphic to Hy ,
and define Ly = Ly ,. Moreover, let Py , be the operator that projects
elements of Ly(F) onto Ly , and Py the operator that projects onto Ly, so
that

inf o - owlir =l ~ Pr p0ll-
onELNp

From Theorem 3.1 and (4.2), for any @5 € Ly ,, ll¢ — oyll% is a uniform

bound on the ratio of the squared bias of a prediction error to its variance

when the mean function is taken to be 0 when in fact the mean function is [see

Ibragimov and Rozanov (1978), page 91, or Yadrenko (1983), page 137]

(4.7) m(t) = [e-iwt¢(w) f(0)do.

Define A, =t, — ¢,_;. Assuming f(-) satisfies (4.4), we have the following
bounds.

THEOREM 4.1. Suppose m(-) is as in (4.7), c¢(-) as given in (4.6) has an
absolutely continuous m — 1th derivative and c™X(t) is square-integrable on
[0, 1], where m is a positive integer and m < n. Then for g(t) = c()e™,

2mBe: N (A, \P"
o = Puncstlly s ey (]
[ !

(m — 1) 52 ftk g™(t)® dt,

tp_1

which if A, = 1/N for all k,

wBez 1
- m)(¢)? d.
[(m - 1)1]%22m-1N2m &

THEOREM 4.2. Assume ¢(w) is of the form

o(w) = [olc(t)eiwt dt,

which is equivalent to assuming c(t) = p(¢) in (4.3), and suppose |c(t)| is
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uniformly bounded by C on [0,1]. Let y = N max A z- Then forn > 1,

16BnC? N
”(P - PN‘P”I«% < m[%'(n - 1)]2 max(l,(4y(n - 1)/n!)2)N‘2"+1.

THEOREM 4.3. Suppose A, = N~! and

q9

e(w) = L ¢,(i0) + (1+iw)" [ e(r)ei dt,
Jj=0 0

where the c;’s are real, c(t) is bounded and q,r < n — 1. Then

le = Pyollp = O(N-2n2mes@ ),

Before proving these results, let us compare them to previous work. If m(-)
is as in (4.3) with homogeneous K then from (4.3) and the definition of (),

m(e) = [!| [ e or o) doo(s) as,

and after changing the order of integration we see that

(4.8) #(w) = [p(s)et ds.
0
Letting r(s) = p(s)e ™ and defining R(s) by R'(s) = r(s) and R(1) = 0,

o(w) = flr(s)e(1+i‘°’s ds
0

= —R(0) - (1 +iw) [ R(s)e® " ds.
0

Repeating the integration by parts, we conclude that ¢(w) can be written in
the form (4.6), where p(-) square-integrable implies ¢(™(-) is square-integra-
ble. Thus, in the case where ¢(w) can be expressed as in (4.8), the N—27
convergence rate in Theorem 4.1 easily follows from Wahba (1974). The main
advance here, then, is the bound on the approximation of ¢ by ¢ ~ When c(#) is
not so smooth, which corresponds to m(¢) not being as smooth as is implied by
(4.3). Typically, for f(w) satisfying (4.4) and (4.5), m(¢) satisfying (4.3) trans-
lates into conditions on the 2nth derivative of m(t) [Wahba (1976), page 179].
In contrast, using Theorem 10 by Ibragimov and Rozanov (1978), page 92, we
see that conditions on ¢(™)(¢) translate into conditions on the n + mth deriva-
tive of m(¢).

Theorems 4.2 and 4.3 give results when only z(-) and not its mean-squared
derivatives are observed at ¢, ..., ¢y. Under weaker conditions on the covari-
ance function, Cambanis and Masry (1983), Equation (2.7), obtained

le — Pyollz < A(y/N)*" 2,
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where A is a constant independent of N. Thus, Theorem 4.2 lowers the bound
by order of N~1, although it is possible that the correct order of magnitude of
the bound is N~2" [Cambanis and Masry (1983), page 86, and Eubank, Smith
and Smith (1981), Theorem 5.1]. Theorem 4.3 gives a bound for mean func-
tions that cannot be expressed as in (4.3).

ProoF oF THEOREM 4.1. For [ =0,1,...,n — 1,
(1+ iw)nftktle‘l”"”‘ dt
0
. ! . . .
= e+ 3 (1 +jw)" 7 T (=1)11 /(1 = j)!
j=0
+(-D A +i0)" N,

which is clearly in Ly ,_,, so that for b;,’s constants,

N n-1

(1+i0)" Y X b ft’e(””")tthLNn 1
k=1 j=0

Then

e . on (1 ;
le = Punoselle < [ fl@)|(1+i0)" [erieXg(t) dt

2

N n-1
—(1+ iw)" Y, Z f kpig+io)t grl g
k=1 j=0
N _ 2
*® 1 . .
< Bf_oo '/;) elwt{etg(t) Z Z kt']etI(tstk)} dt| dw

2

N n-1
= 217[3[01{9?(’5) - Z ntle I(tstk)} dt
k=1 j=0

2

¢ ' N n-1
=278 Y fk ez‘{g(t) - lZ_‘. ; zt’}

where the first equality is by Parseval’s relation. Defining 7, = (t r T ti_1)/2,
it is clear that we can choose the b;,’s such that

N n-1

MDY bjztj = mZ_ gV(m) (¢t — Tk)j/j!,

l=k j=0 j=0
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SO

l¢ = Py, ,- 1‘P"F<2‘“'BZf *g(t) - g(J)(Tk)(t_Tk) /J] dt

k=1"tr-1

t(t—S)m 1

=278 Z [ g™)(s) ds]

[(m ~ 1)'] kzlftk )

— 5)Xm=Dgm)(g)? ds] dt

by Jensen’s inequality. Letting A, = ¢, — ¢,_,,
[* et - Tk)[ [{(t = 5)*m P gm(s)? ds]

L1

A 2m—1 t .
- 2t (m) 2
< 2 ftb-le ffkg (s)"ds|dt
Ak 2m—1[
<|—= e2dt " gm™(s)?ds + [te2dt( g™ (s)? ds]
2) el [ieaf,
Ak 2m .
<\ esz g™ (t)* dt,

tpo1

and Theorem 4.1 follows. O

Proor or THEOREM 4.2. For n > 1, we have
2

do,

o -n . N .
(49) llo —Pyeli<pf (1+0®) "\ [c(t)ei dt - ¥ aje’n
- 0 k=0

for any set of real a,’s. We will bound this integral using polynomial interpo-
lating quadratures [Krylov (1962), Chapter 6]. For £ = 0,...,n — 1, let

t, _ u(t ) dt
4.10 b, = ["e(t) ————,
(4.10) O G

where u(¢) =(t —t¢ty,)---(t —t,_,). For a real function h(¢) whose nth
derivative is bounded by M [Krylov (1962), page 81, Equation (6.1.9)]

th-1 nt M tn—1
[to" c(t)h(t) dt — kgobkh(tk) sﬁfto le(¢)u(t)|dt -

McC

1
< (g - t)" "
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Applying this bound to the real and imaginary parts of e'“! separately, we
have

n—1 2C
(411) | ["Te()eitdt = T byeit| < ol (tyoy ~ 10)" "
to k=0

We can similarly approximate the integrals from ¢,_; to t,,_;, up through
bj—1xn—-1) to t,_1) where j(n — 1) <N <(j + 1Xn — 1). To approximate
the integral from ¢;,,_,, to £y = 1, let

1 u(t) de

b= [ o) :

titn-1) (¢ —ty_p)u'(tns)
for k=0,...,n — 1, where now u(?)=( — tyXt —ty_y)  (t —ty_pi1)
Then

n—1
c(t)ei“t dt — Z byelwiN-+

tJ(n 1

Thus, using (4.11) and (4.12), it is possible to choose the a,’s in (4.9) such that

n+1

2
(4.12) < _lwln(tN —tN_n+1)

1 . N .
fc(t)e“"‘ dt — Y a e’
0 k=0

(4.13)
2C 1 A n+1 N i1
< —lo|® - .
- n!lwI [(n )llsnka?N k] (n—l )
We need a better bound for large w. Considering b, as defined in (4.10),

u(2)

t
bl<C["————
| k' /;0 (t—tk)u'(tk)

n n—1
<Cltos =t0"[(,_min &)

Since each a, is made up of at most two “b,’s,”

n—-1
4.14 a s2C[n—1 maxA] mlnA .
( ) |axl ( ) k<N * 1<k<N
It is easy to see that it is possible to eliminate some of ¢,,...,¢y_, such that
the remaining points 0 = ¢§ <] < -+ <tj, = 1 satisfy
2y

max (¢, —¢ -,
 max (¢ i-1) <

min (Z} — ¢
lsksN( k k= 1)
and

N
N > N
o
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Thus, using (4.14), it is possible to choose a’’s such that

| < Cl4y(n - 1]"
k|l = N ’

so that

1 ) N .
fc(t)e“"‘ dt — Y ajei“t
0 k=0

N
<C+ Y |ayl
k=0

<2C[4y(n - 1)]" = C,,

independent of w and N. Moreover, from (4.13), the a’’s can also be chosen so
that

1 . N .
fc(t)e“"‘dt - Y ajeivt

4C peafl@l)”
( x < Sl l2y(n - 1)] (—)

N
_oflety’
2N’

Using (4.9), Theorem 4.2 then follows from

ny 12
le - Paoli<pf” (14 w2)‘”[min(cl,cz(%) )] do
4Bn

<
2n — 1

max(CZ,CZ)N~2n+1, ]

ProorF oF THEOREM 4.3. We only outline the derivation, as many of the
details are similar to the previous case. The assumption that A, = N~!
simplifies the proof, but this result can be generalized to allow for unequally
spaced observations. First we consider approximating (iw)™ by an element of
L. Let

(Ag =" Auoy) =m!N™Alle, .,
where A, is the n X n matrix with the abth element (b — 1)*~! (define
0°=1),and e, =(0---010 - -- 0, where the 1 is in the pth place. Define

n—1

hm,N(w) = Z )‘jeiwj/N~
Jj=0
Then the A j’s have been defined so that
n—1
N"”hm’N(Nv) =) )«jei”j
j=0

has the Taylor series expansion (iv)™ + O(|v|*). Since £ A,e"*/ is bounded, it
follows that there exists a constant C; such that

|(iv)™ = N"™h,, n(Nv)| < Cy min(jv|*, [v|™)
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for all ». Letting w = Nv, we obtain
|(i0)™ =k, y(@)| < C; min(l0"N~"*", |0|™)

for all N and w. It follows that for m < n — 1 and f(w) satisfying (4.4),
e N 2
| f@)|(i0)™ =k, y(w)] do
(4.15) _ O(fw(l + wz)_" min(wan_2n+2m, me) dw)
0

— O( N—2n+2m+1) .

Define
(n-m-1)/N v(¢) dt
b, = t - s
i<, ‘OGN G

where
n—-m-—1
v(t) = JI (¢-JN71).
Jj=0
Then there exists a constant C, such that
n—-m-—1
(iw)’"[o"“’”‘”/Nc(t)eiwt dt —hp (@) L beti/N
j=
n—-m-—1
< (iw)’"[o(”"”‘”/”c(t)eiwt dt — (i0)™ Y, beiei/N
j=0

n—-m-—1
+{(iw)m—hm’N(w)} Y bjei‘"j/N
Jj=0

< %min(lwr‘N‘”*”‘ |w|™)
<N , .
It follows that there exist d,...,dy and a constant C, such that

< Cy min(|o|"N~"**™, |o|™).

N
(iw)’"[olc(t)eiwf dt — Y deii/N
Jj=0

Hence, for f(w) satisfying (4.4),

N
(iw)'”jolc(t)eiwt dt - Y djetei/N
j=0

2

dw

[ e

= O( N—2(n—m)+1).
Using (4.15) and (4.16), Theorem 4.3 follows. O

(4.16)
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4.3. Two-dimensional process. We now give an analog to Theorem 4.2 for
two-dimensional processes. Assume 2(¢), t € R ¢ R2, is a random field with
homogeneous covariance function whose spectral density f(w), » € R2, satis-
fies

(4.17) f(o) <B(+ 0]?) ",

where n > 1. Moreover, suppose the mean of z(:) corresponds to ¢(w) €
Ly(F), where ¢(w) can be written as

(4.18) o(w) = [Rc(t)eiw’t dt,

where c(+) is bounded on R. We only consider R rectangular, and without loss
of generality, assume R = [0,1] X [0,1]. We further suppose that the N
observations are on a rectangular grid Ty. Specifically, z(-) is observed at

(x;,y;), where i =0,...,N, and j=0,...,N, where 0 =x,<x, < --+ <
¥y, =1,0=y,<y; < --* <yy,=1and N=(N; + 1)(N, + 1). Define L,
as the span of ei“?, t €Ty,

A, = —_

1 lgzile(xk Xp-1),

A = max - ’
2 RN, (yr — Ye-1)

and y = N2 max(A,, A,).
THEOREM 4.4. Suppose () satisfies (4.17) and ¢(-) is given by (4.18),

where |c(+)| is bounded by C on R. Then there exists a constant C' depending
only on n and C such that

le - Pyol2 < BCy>2N-"+1,
PRrROOF. A direct generalization of (4.9) is given by

2

do,

N N,

fc(t)ezwtdt_ Z Z a ez(wlxj+w2yk)

lo = Pyelz<B[ (1+w?)™"
R Jj=0k=0

where w = (0,,w,). For j,k=0,...,n — 1, let

Yno1 (Eno1 noln ll (x—x)(y —y,)
bjk - /.;'o fxo c(x y) 1131 %l;[}%[(xj = x)(Yr = Ym) ] dudy.

Defining b;, in this way gives exact quadrature for any real function of the
form

n—-1n-1

(4.19) h(x,y) = Z Z hjkxjyk;
Jj=0 k=0
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that is,
x n—1
n—1 n—1
[ e ) h(x,y) dedy = L buh(x;, ).
Yo %o j. k=0
Thus, for a given w,
Yn-1 ¥n-1 n-1
f [ c(x,y)cos(w,x + wyy) dxdy — Y b, cos(wx; + wyyy)
Yo X0 J, k=0

<C yn_l[x"_l|Rw(x,y)|dxdy,

Yo X0

where R (x, y) is the difference between cos(w,x + w,y) and the polynomial of
the form (4.19) that interpolates cos(w,x + w,y) at (x;, x;) for j,k=0,...,
n — 1. Using the expression for the error of this interpolatory polynomial
[Steffensen (1927), page 206], it follows that

(%,-1 _xo)n n (Yn-1 _yo)n n
|R(x,9)] < LR g emT00 )

(xn—l - xO)n(yn—l - yn)n
(n1)*

| W W9 ln .
Thus,

yn— xn—l 1 n n
[T IR ) | dedy < — (201 = 20)" (o1 = 30) i

Yo X0
1 n+1l n
+?(yn—l =50)" (%1 — %o)| @]

)n+1

1 n
+—2(xn—1 — Xp (¥n-1 _yo)n+ |w1w2| .

(n!)

Arguing as in the one-dimensional case, there exist a;,’s and a constant C,
independent of w and N such that

N N

fc(t)eiw’t dt — Z Z a}kei(wlxj+w2yk)
R j=0Fk=0

< CINAIAZ(A'ilwlln + AL w,|" + AIAY| 0,0, |n)

We can also show there exists a constant C, independent of N and w such
that
(A,4,)"

a,|l<Chp——,
2 ?(8,8,)" "
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where

4, = min (x, — x
1 lskle( k k-1)

and

é, = mln 1)
2 i Nz(yk Ye-1)

Then, as in the previous section, it is possible to find a;,’s and a constant C,
independent of N, w and vy such that
N, N,

fc(t)euotdt _ Z Z a ez(wlxj+wzyk)

Jj=0%k=0

: ol \" [ lwal \* [ l@1@]\"
Sc3,yn+1m1n(1,(NT1/—2) + ('N—1272‘) +( Zlvz ) .

Theorem 4.4 then follows from

2n.+2 2y~ [ 4] i | ws| "
”¢’ PN‘P”F<BCY * [,[lwlle/z(l +|w|) {(N1/2) * (N1/2

n, 2
|w1w2| 2\~ "
+(T) dw +f|>N1/2 1 + || ) do|. O

Generalizing Theorems 4.2 and 4.4 to a d-dimensional hypercube, the
appropriate bound is of the order N~?"/9+1 where N is the total number of
observations. Ylvisaker (1975) has obtained an asymptotic expression for the
best approximation of an element of H,(K) that can be expressed as in (4.3)
(where s and ¢ are now vectors of length 2) based on observations on a
rectangular grid. He also assumes that the covariance function is of a rather
restricted form which does not include differentiable processes.

5. Consistency and asymptotic optimality of best linear unbiased
predictors. Consider a random field 2(¢) defined for ¢ € R,

2(t) = B'g(t) +e(t),
where g(t) = (gX(#), ..., g”(t)) is a known vector-valued function, 8 a vector
of unknown coefficients and e(#) a zero mean random field with known

covariance function K(¢,¢'). Let Hgy(g, K) be the closed linear hull z(¢), ¢ € R,
with respect to the inner product '

(5.1) (2(2),2(¢) g, x = K(t, 1) + g(£)'8(t).

Suppose g, Y1, ... € Hp(g, K), and let g, = g(¢,) and K;; = K(¢;, ¢;). Define
Yy =Wg,..., ¥y, Gy =(8q,...,8x), Ky the N X N matrix with ijth ele-
ment K;; and ky = (K, ..., Koy)'. Assume K is positive definite for all N.
Then the best linear unbiased predictor (BLUP) of ¢, based on ¥, is defined
to be the predictor of the form v'¥, that minimizes var(¢, — v"¥y) subject to
the unbiasedness constraint g, = Gyv. The BLUP exists if and only if g, €
C(Gy), where C(A) means the column space of a matrix A. In this case the
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BLUP is given by
(52) i = {k;,K;,l + (g — GyKn'ky) (GyK'Gy) GNKI‘Vl}\IfN,

where (GyK5'G})™ is any generalized version of GyKxz'GY. Let Hy(g, K)
be the closed linear hull of ¢, ¢,, ... with respect to the inner product defined
by (5.1).

THEOREM 5.1. The BLUP of , is mean-square consistent if and only if
410 € H ‘l'(g ’ K )

Proor. Suppose the BLUP does not exist for any N so that g, & C(Gy)
for all N. Let Pyg, be the projection of g, onto C(G,) with respect to
Euclidean distance. Then it is clear that ||g, — Pyg&oll » 0 as N — « so that
Yo € Hy(g, K), completing this case.

Now suppose g, € C(Gy) for some N, in which case, there exists N, such
that g, € C(Gy) and rank(Gy) = rank(Gy) =g for all N > N,. For all
N > N,, we have the spectral decompos1t10n

GyKyN'Gy = Z ®iNBiNBjn»
where o;x 2 @oy = - Z @y >0 and Bins - - -» Byn are orthonormal vectors
of length p. Consider the particular generallzed inverse of Gy K5'Gy given by
Iy = glqu-l_\}ﬁjNBJ,'N'
For N > N,, from (5.2), ’

q
(5.3) var(yo — ) = Koo — kxyEn'kn + ¥ 0t (80 — GnEx*hy)Bin]"
Jj=1

Now, ¢, € Hy(g, K) means

lim mln || o — v’\IfNng’K =0,
N—)oo

and by straightforward calculatlon,
miI}V"'//o - v"I’N"Z,K
veR , . -1 )
= Koo + 8680 — (Giv&o + kn) (GAGy + Ky) (Gigo + ky)
= Koo + 8680 — (Gygo + ky)
- "L - '
(5.4) x{K5' = Ky'Gy(I + GyKy'Gy) GNKNI}(GNgO +ky)
= Koo — ki Ki'ky + (g0 — GyKr'ky) (I + GyK51GY) ™
x(go — GyKy kN)

=Ko — kyKy'ky + Z (1+¢n) [(go GNKleN)BJN] .

j_
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For N > N, ¢y is bounded from below by ¢,y > 0. It follows that (5.4)
tends to 0 if and only if (5.3) tends to 0, so Theorem 5.1 is proved. O

As an application of this result, suppose ¢; = z(¢;), K(-,-) is continuous at
(to, o), &(+) is continuous at ¢, and ¢, is a limit point of {¢;};_,. Define £y, to
be the nearest neighbor to ¢, among ¢,,...,¢y. Obviously, |z(¢y) —
2(ty)I2 k> 0 as N — », so that 2(¢,) € Hy(g, K). By Theorem 5.1, the
BLUP of z(¢,) based on 2(¢,), ..., 2(¢y) exists for N sufficiently large and it is
mean-square consistent.

If (g%, K) and (0, K) are compatible on R for i = 1,..., p, then for ¢, €
H(K), the BLUP of ¢, based on ¥, is asymptotically optimal relative to the
best linear predictor (the minimum variance linear predictor when B is
known). More specifically, assume without loss of generality that Cov(¥y) =
I, in which case the error of the best linear predictor is

(5.5) e(y, N) = o — [B'go + ki (¥y — GyB)]
with
var(e(y¢, N)) = Ko — kiky,
and the error of the BLUP is
(5.6) E(W, N) =yo— [kiy + (& — Gyky) InGy] ¥y
with
var(é(y, N)) = Koo — kiky + (80 — Guky)In(8o — Gikn),

where
q
Inld =) ;BB
Jj=1

Define Apy(B) to be the largest eigenvalue of the operator Dy as defined in
Section 3 where (m,, K) = (0, K) and (m, K,) = (B'g, K).

THEOREM 5.2. There exists ¢y — 0 such that

Eé(y, N)? — Ee(y, N)?
sup

q
< c+en)A ).
Ve H ) Ee(y, N)* E, Lo+ e hnlB)

Since Ay(B;)10as N - o« for j = 1,...,q (see Theorem 3.1), we have that
BLUP’s are uniformly asymptotically efficient relative to best linear predictors
over all elements of Hy(K). The error of the BLUP given in (5.6) can be
obtained by replacing B in (5.5) by 3, where f is any least squares estimator of
B based on V¥,. Thus, Theorem 5.2 is not surprising since Theorem 3.1
essentially says that using a fixed but incorrect value of B yields asymptoti-
cally optimal predictors.
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Proor or THEOREM 5.2. Since Jy | J and rank(Jy) = q for N sufficiently
large, there exists e, — 0 such that

q
Iy < X (@, + &x) BB
j=1
Then

q
(80 = Givkn)In(go — Givky) < L (9, + en)[(80 — Givky)B,]’
j=1

q
= I (o +en) [Be(w, M),

where E;(*) indicates expectation under ((8; + B)g, K). Since

2 _ 2
sup Eje(d” N) Eﬁez(ll’, N)
YEH(K) Ege(y, N)

Theorem 5.2 follows from Theorem 3.1. O

= AN(Bj)y

Stein (1988) showed that if in fact K, is the correct covariance function and
(0, K) and (0, K,) are compatible on R, then the BLUP of ¢, based on K is
asymptotically efficient relative to the BLUP based on the correct covariance
function K, if the BLUP based on K| is consistent. Theorem 5.1 resolves the
issue of the consistency of the BLUP. If (0, K) and (g%, K) are compatible on
R for i =1,..., p, then the results in Stein (1988) can be extended to show
that the BLUP based on K is uniformly optimal over all ¢ € Hy(K) relative
to the BLUP based on K. This result can be combined with Theorem 5.2
yielding that the BLUP based on K is uniformly optimal relative to the best
linear predictor based on K, over all ¢ € Hy(K).
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