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Let X;, X,,... be iid observations from a mixture density f(x) =
[f(x|6) dG(6), where f(x]6) is a known parametric family of density
functions and G is an unknown distribution function. This paper concerns
estimating the mixing density g = G’ and the mixing distribution G.
Fourier methods are used to derive kernel estimators, upper bounds for
their rates of convergence and lower bounds for the optimal rate of
convergence. Sufficient conditions are given under which the kernel estima-
tors are asymptotically normal. Our estimators achieve the optimal rate of
convergence (log n) /2 for the normal family and (log n)~! for the Cauchy
family.

1. Introduction. Let {f(x|6), 8 € O} be a known parametric family of
probability density functions with respect to a o-finite measure w. The density
function f(x) of a random variable X belongs to a mixture model if

(1) f(x) = f(x;G) = [f(x]6) dG(6),

where G is a probability distribution function. This paper concerns estimating
the mixing density function g = dG/d6 and the mixing distribution function
G based on iid observations X;,..., X, with common marginal density f(x).

We consider kernel estimators for mixing densities and distributions. A
sequence of functions K, (x) is a kernel for a functional A = A; of G if
lim, E;K,(X) = A; under suitable conditions. A kernel estimator for A is
basically the average of iid random variables n™'L7_, K, (X)).

ExampLE. 1 (Normal). Suppose that f(x]0) = o(x — 0), ¢(x) =
(2m)~1/2¢~**/2, Then e'"/2Ee'X is the characteristic function of G, so that a
kernel for the mixing density g = G’ can be obtained by making use of the
Fourier inversion formula.

In Section 2 Fourier methods are used to derive kernel estimators for
mixing densities and upper bounds for their rates of convergence. In Section 3
kernels for mixing distributions are obtained by integrating kernels for mixing
densities. Asymptotical normality of the kernel estimators is obtained under
conditions on the growth of the second moment of the kernels.
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Lower bounds for the optimal rate of convergence are given in Section 4. Let
g, = G! be a sequence of mixing density functions such that the sequences
{IT7_, f(x;;G,)}and {I1}_, f(x;; G)} are contiguous. Then the order of g, — g,
g = G', can serve as a lower bound for the rate of convergence for estimating
the mixing density. Our problem is to find “bad” contiguous sequences and
quantify the rate of g, — g. To motivate our method, let us consider

ExampPLE 1 (Normal, continuation). Let g,(0) = G§(0) = ¢((6 — w) /o) /0o
be a normal mixing density. Then f(x]0)g,(0)/f(x;G,) is a normal density (in
0) with variance o2/(1 + o2) for every fixed x, so that

Jexplid,01f(x10)g0(8) d6| = exp[ —dZa?/(2(1 + 02))] f(x; Go) .

Letg, =g, + (w/d, Ncos(d ,0) — e,)g,, where 0 <w < 1/2,d20%/(1 + 0?) =
log n and the constant e, is chosen such that g, is a probability density
function. Then it can be shown that |f(x;G,)/f(x;G,) — 1| < 1/ Vn, so that
the sequences {I]J'Ll f(xj;Gn)} and {I]J'-‘:1 f(xj;GO)} are contiguous. There-
fore, 1/d, ~ (log n)~'/2, the order of g, — g,, is a lower bound for the
optimal rate of convergence for the class of G with a bounded second deriva-
tive, if we are interested in estimating mixing densities. This idea of using
Fourier methods to construct contiguous sequences will be developed in detail
under a smoothness condition on the family f(x|6).

We shall consider location families
f(x16) = fo(x —0), p(dx) = dx, 0 € (—o,0),

2
@) f(t) = [e*fo(x) dx #0, V¢,

throughout the paper. Some of our arguments can be extended to exponential
families, but these extensions are incomplete and omitted to save space. For
the location case, both the rate of convergence for our kernel estimators and
the lower bound for the optimal rate of convergence are essentially given in
terms of the tail of the characteristic function f§ of f,. The rates are slower
for f§ with thinner tails. Since smooth density functions have characteristic
functions with thin tails, the optimal rates of convergence are related to the
smoothness of the family f(x|8) with slower rates corresponding to smoother
families. See the discussions after Theorems 1 and 6. For the sake of space, we
only consider the rates for the largest class of G with minimum smoothness
conditions to which our methods are directly applicable. Three examples, the
normal, Cauchy and double exponential cases, are considered in each section.
The rates for these examples are summarized in Table 1. Our kernel estima-
tors have the optimal rate of convergence (log n) /2 for the normal case and
(log n)~! for the Cauchy case.

Problems related to mixture models were proposed by Robbins (1951, 1955)
in connection with the empirical Bayes approach to compound decision prob-
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TABLE 1
Lower and upper bounds for the rates of convergence

Estimating density g Estimating distribution G

Rate Lower Rate Lower

Family e achieved bound achieved bound
Normal et (logn)~1/2  (logn)='2  (logn) 12  (logn) /2
Cauchy eIl (log n)~1 (log n)~ 1 (log n)~ 1! (log n)~1

Double Exp. (1 +¢2)71 n~ 7 n-1/6 n~1/5 n-1/4

lems, by Kiefer and Wolfowitz (1956) in connection with estimating an un-
known parameter in the presence of infinitely many nuisance parameters and
by many others in various contexts. Estimating mixing densities and/or
mixing distributions has been studied by Deely and Kruse (1968), Jewell
(1982), Kiefer and Wolfowitz (1956), Laird (1978), Lindsay (1983a, b), Robbins
(1950) and Rolph (1968) among others. Various consistent estimators have
been proposed, but their rates of convergence and asymptotic distributions are
unknown. Recently, Edelman (1988) proposed an estimator for the “empirical”’
mixing distribution function for the normal case and gave an upper bound
(log n)~1/* for its rate of convergence. The relationship between a part of this
work and some of Edelman’s results is discussed in Section 3. Estimating
mixing densities and the optimal rate of convergence were also studied inde-
pendently by Stefanski and Carroll (1988) and Carroll and Hall (1988).

Throughout this paper we denote by P = P; and E = E; the probability
and expectation corresponding to G, respectively, by H* the characteristic
function of any distribution function H and by h* the Fourier transform-
ation of any integrable function h, so that A*(¢) = [e'*h(x)dx for any
[1h(x)|dx < .

2. Kernel estimation for mixing densities. In this section we give
kernel estimators for mixing density functions and their rates of convergence
in the L? norm |&| = (f|h(x)|? dx)'/? and in the mean square error at fixed
0 = a. The asymptotic normality at fixed 6§ = a is also given under a condition
on the growth of the variance of the kernel.

A sequence of functions K,(x,a) is a kernel for g(6) = G'(6) = dG/d6 at

=q if

(3) j:;stn(x,a)f(xW)u(dx) do—>1 asn— o, V0 <8 <o,

Under certain regularity conditions on G, (3) implies that EK (X, a) — g(a),

so that the statistic

+
) x+ = max( x’ 0) b

(4) 8,(a) = [n”l Zn‘. Kn(X,-»a)]
j=1
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can be used to estimate g(a). As 2,(a) is the nonnegative part of a sum of iid
random variables, we can bound the mean square error E[g,(a) — g(a)]? (and
therefore the rate of convergence) if we can find upper bounds for
Var(K,(X,a)) and |[EK (X, a) — g(a)|. It is clear by (3) that the choice of
K (x,a) depends on the family f(x|6) and the measure w.

Consider the location case (2). Similar to the normal case, Example 1 in
Section 1, the expectation of the random variable e'*X /f{(¢) is the characteris-
tic function g*(¢) of G. By the Fourier inversion formula,

(21r)_1fk*(t/c)e‘”“g*(t) dt > g(a) asc—o »

for any smooth integrable function 2 with £*(0) = 1, so that we can define a
kernel by

(5) K(x,a) = (2m) " [R{E*(t/c,)e" ™ @ /fF(t)}dt, 0 <c, 1o,

where R{z} is the real part of z and k(x) is a probability density function such
that

) k(x) =k(—-x), fx2k(x)dx<oo, flxk’(x)ldx<00,
k*(t) =0, Vg > 1.

Since k*(¢/c,) is the Fourier transformation of c,k(c,x),

JE.(x,a) f(x]6)n(dx)
(1) = R{ [ [@n3(0) e(t/c0)e = y(x - 0) drar)

= (277)’1R{fk*(t/cn)e”“"“)dt} =c,k(c,(a—0)),

which implies (3). Hence, K, is a kernel. There are many density functions
satisfying (6). For example, k(x) = (6 /7)|(2/x)sin(x /4)|*, whose characteris-
tic function is proportional to the density function of the average of four
independent unif(—1,1) random variables with 2*(0) = 1. In the sequel we
shall always use the notation

C, = f|x|k(x)dx, C, =fx2k(x)dx, c3=[|k*(t)|2dt,

e(x) = [ yk(y) dy + supy?k(y).
x y=x
The constants ¢, in (5) should be chosen to ‘“balance’ the bias and the
variance of the kernel estimators. In view of (7) we shall choose large ¢, to
ensure small bias EK, (X, a) — g(a). On the other hand, if ¢, is too large,
then by (5) the variance Var(K (X, a)) is hard to control, since fj(¢) — 0 as
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t — o, The properties of our kernel estimators are studied in Theorems 1 and
2, where the constants ¢, and upper bounds for the risks are expressed in
terms of the tail of |f§*(¢)|. Let us first consider the L? norm. Define

(8) &, = #(M,) = {G: G has a density g with ||tg*(¢) | < M }.

THEOREM 1. Let the estimator 8, for the mixing density g = G' be defined
by (4) with the kernel K ,(x, a) given by (5) and constants c,, satisfying

(9) 1/n<c fo*(cn)|2/cg, Cp <, | fo(c,)| = ltrlxl:?lf(;k(t)l

Then

(10) lim E|g, - g||2 =0, V Guwith adensity g such that ||g|| < ,
n—o

(11)  sup c2Eql8, — gl” < [eoCs + (M,C)7] /(27), Vn>1.
GEjl(Ml)

Clearly, the smoother the density f, is, the faster |f(¢)| vanishes as ¢ — «
and by (9) the slower the upper bound ¢, ?0(1) in (11) for the risk E;||&, — g||?
converges to 0. By (9) we see that the constants c, are of polynomial order in
n (Example 3) if f(¢) is of polynomial order in ¢ for large ¢ and c, are of
logarithmic order (Examples 1 and 2) if f(¢) is of exponential order. As far as
the rate of convergence is concerned, the choice of %£(-) and c, does not matter.
Of course, one can choose them to minimize the right-hand side of (11). But
this requires the knowledge of M, or a good estimation of |tg*(¢)|. We shall
not discuss the problem of estimating the “best” k(-) and/or ¢, here.

EXAMPLE2 1 (Normal, continuation). Since f(x|0) ~ N(6,1), we have
) = e /2 so that

K,(x,a) = (211-)_1fcos(t(x —a))et”2k*(t/c,) dt.
Choose, ¢, = yalogn, 0 < a < 1. It follows that

sup (log n)Egl|2, — g|* < [Covane~ (log n)** + C2ME/a] /(2m).
Geg(M))

ExampLE 2 (Cauchy). Suppose fy(x) =1 +x2)"!/7. Let ¢, =alogn,
0 < a < 1. Then '

sup (logn)*Eg| g, — g|° < [Csan®~'(log n)® + CZMZ/a?| /(2m).
GeHH(M,)

ExampLE 3 (Double exponential). Suppose f,(x) = e *! /2. Let ¢, = an'/7,
0 < @. Then

limsup sup n%"E4|2, - gl < [a5Cy + CEM2/a?] /(27).
n—o  Geg(M,)
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Proor oF THEOREM 1. Since K,(x,') is the real part of the Fourier
inversion of k*(¢/c,)e'* /f§(¢) for fixed x, it follows from the Plancherel
identity that

2wE [KX(X,0) do/ < [|k*(¢/c,)/f3(®)[ dt/n

< [cnf|k*(t)|2 dt]/[nl fa"(cn)lz]

= e,Cy/[nl f3(e)[].
By (7) EK, (X,-) has the Fourier transformation k*(¢/c,)g*(¢), so that for
ligll < o,
2 2
21rf|EKn(X,0) —g(0)|°do = f|k*(t/c,,)g*(t) - g*(t)|"dt - 0.
Since by (4)

o 2 2
E”gn_gllst”Kn(X’)" /n+||EKn(X’)_g“ ’
we have (10) by adding the two inequalities together. For (11) we have

2mciE8, — | < coCy + ¢ [|k*(t/c,)g*(t) — g*(1)|" dt
< coCy + CF[|tg*(2) [ dt. 0

Now consider a fixed point § = a. We shall give the asymptotic normality
for our estimators as well as upper bounds for their rate of convergence. A
mixing density g satisfies the Lipschitz condition at 0 = a if

(12) |g(a +6) —g(a)| <M,l0|, Vo] <3s.
Define
Gy = Gy(a, 8, M,)

13
(13) ={G: g = G' exists in [@a — §,a + 6] and (12) holds}.

THEOREM 2. Let the estimator 8,.be as in Theorem 1 such that (5) and (9)
hold.

() If g = @ exists at 0 = a, the lim, E|g,(a) — g(a)[* = 0.
(ii) For anyn > 1,

2
sup  c;Eglg,(a) —g(a)]
Gedya,d, My)
(14)

< —z(%ﬂ fe(2)|dt + [e(c,8) (872 + My) + MyCy]".
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(iii) Suppose that lim, _,., EK2(X, a) = ,
(15) lim sup|K,(x,a)|/{/nEK2%(X,a) =0, liminfc2EK%(X,a)/n>0.

Let 62 = 6X(a) = L?_; KXX;,a)/n. If g'(a) exists, then

Vn (&,(a) —g(a))/6, >4 N(0,1)  if 0 <g(a) <,
Vn£,(a) /8, »5[N(0,1)]" ifg(a) = 0.
(iv) Suppose that g"(a) exists and lim, _,, x3k(x) = 0. If
lim <3/[n] f3(c,) 7] =0,
then

lim c¢2(2,(a) — g(a)) = g"(a)fxzk(x) dx/2, in mean square.

ReEMARKs. (1) If [|f§(2)| dt = =, then the first term on the right-hand side
of (14) can be replaced by cofgcz"cnlf(;"(t)l dt/[272]. (2) Since x%k(x) has a
bounded Fourier transformation with compact support, lim, _,, e(x) = 0. (3)
The inequality (14) is still meaningful when § = .

Condition (15) simply ensures that the bias of the kernel estimator has a
smaller order than the standard deviation. In this case part (iii) shall be used
to obtain the asymptotic normality (Example 3). If the standard deviation is of
smaller order than the bias, then the limiting distribution is degenerate and
part (iv) shall be used (Examples 1 and 2).

ExampLE 1 (Normal, continuation). Since [|fF(¢)|dt = V27,

A 2
sup  (logn)Eg|g.(a) —g(a)|
Gebya,s, My)

Va (logn)®? 1 2
< —7‘772—7—7—';1_—0— + ;[8(5\/6! log n )(5_2 + M2) + 01M2] .

If g"(a) exists, then
lim (log n)(&,(a) - £(a)) = £"(@)C;/(2a), in mean square.

ExampLE 2 (Cauchy, continuation). Since [|f§(¢)|dt = 2,

sup  (log n)’Eglg.(a) — g(a)?
Geya,s, My)

a(log n)?

2. 1-a

1
it g le(Balogn)(877 + M) + C, M)
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If g"(a) exists, then
lim (log n)%(8,(a) — g(a)) = g"(a)Cy/(2a?%), in mean square.

ExampLE 3 (Double exponential, continuation). Since [|f§(¢)|dt = ,

lim sup sup n*"Eglg.(a) — g(a)|2 <a®/(27) + C2MZ/a®.
no®o  Geba,s, My)

Let 62 =L"_; KXX;,a)/n. If g'(a) exists, then (15) holds by Lemma 1 in
the Appendix, so that

Vn (8.(a) - g(a))/6, >4 N(0,1)  if g(a) >0,
Vng.(a)/8, =5 [N(0,1)]" if g(a) = 0.

ProoF oF THEOREM 2. (i) To bound the variance at 6§ = a, we have by (5)
and (9)

Var(K,(X,a)) < EK%(X, a)

<@ " [ [R*t/e,) /13O [k (s/e,) /5 ()]
o X Eexp [i(t — s)(X — a)] dsdt

< (@m) 7 [ [ e I fie - ) dsds

(16)

- - 2c,
< (2m) "2¢,| £ (e)| 7 [ | f3(w) | du.
It follows from (7) that
EK,(X,a) = —fc,,k(x) dG(a — x/c,)

fcn[G(a —x/c,) — G(a)]k'(x) dx

—g(a)/xk’(x) dx + 0(1)[: |xk'(x)|dx + o(1)[|xk’(x)|dx,

which implies the mean square consistency by (4) and (16), since — [ xk'(x) dx
= [k(x)dx = 1. '
(i) Let ey(x) = sup, ., y2k(y) and ex(x) = [; yk(y) dy. By (7) and (12)

¢,|EK (X,a) —g(a)| <c,

fa+sc,,k(cn(a —9))g(0)do — g(a)‘ +&4(c,8)/82
a—é6
(17) <[

+£1(¢,8) /8% + 2g(a)ey(c,,8) /8
<&4(c,8)/8% + 2g(a)ey(c,8)/8 + MyC;.

aak(x)[g(a +x/c,) — g(a)]dx
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By the Lipschitz condition,
1> ]‘”‘Z;(a) do > fa+5[g(a) ~ M,|0 — a|] do = 25g(a) — M,52.
a—¥8 a—¥8

Hence, we have part (ii) by (16) and (17).

(iii) Basically the asymptotic normality follows from the Lindeberg
central limit theorem. Since EK,(X,a) — g(a) and EKX(X, a) - «,
Var(K,(X, a)) = (1 + o(1)EK2(X, a), so that by (15)

€, = max|Kn(x,a)|/\/no-,l2
—(1+ 0(1))max|Kn(x,a)|/\/nEK,f(X,a) = o(1),

where 07 = Var(K (X, a)). Let Y, ; = [K,(X;,a) — EK,(X, @)/ {/no?. Then
P{|Y, ;| < 2¢,} = 1, which implies by the Lindeberg central limit theorem that

Vn|n™t Zn: K,(X;,a) - EKn(X,a)]/o-n = i Y, =4 N(0,1).
j-1 j=1

(18)

Taking the Taylor expansion of g(a + x/c,) — g(a) at the last step of (17), we
have by (15)

K, (X, a) - g(a)] /o, = O(1)e,[EK,(X,a) - g(a)] = o(1).
Since
P{n7'L"_ K, (X;,a) = 8,(a)} > 1 for g(a) >0
and P{n"'L"_, K, (X;,a) < 0} - 1/2 for g(a) = 0,
Vn (&,(a) - g(a))/0, =5 N(0,1)  if0 <g(a) <=,
Vn(8,(a) - g(a))/o, =5 [N(O,1)]" if g(a) = 0.
It follows from (18) that
E[62/02 - 1] < (1 + 0o(1)) EK4(X,a) /(no?)
<(1+0(1))e2EK%(X,a)/0? = 0(1).

Hence, 6,2/0;2 — 1 in probability and part (iii) follows the Slutsky theorem.
(iv) Taking further Taylor expansions of g(a + x/c,) — g(a) in (17), we
have part (iv) by (16). O

3. Estimating mixing distributions. Let the kernel be the same as in
Section 2,

(19) K,(x,a) = (2m) 7" [R{E*(t/c,) e /f5(t)}dt, 0 <c, 1w,

with a density function % such that (6) holds. We shall use the integration
/. K,(x,0)d0 as our kernel for the mixing distribution and the statistic

(20) G.(a) = min((@n(a))+,1), G,(a) = fa n~t Zn: K.(X;,0)doe,
o T
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as our estimation for G(a). In this section we study the integrability of the
kernel (19) and the asymptotics of G, for the location case (2).

Let H(-) be a distribution function such that [j|1 — H*(#)|t 'dt +
[TIH*@®)|t™ " dt < . Assume that [§|1 — ()|t~ dt < . Then

/ k*(t/c,)e’™ — fo(t) H¥(t)
0)

dt < o,

so that we can define

k*(t/c,)e"™ — fi(t) H*(¢)
itfo(¢)

1 )
(21) J,(x,a) = H(a) — %/e"”“

By the Riemann-Lebesgue lemma

lim J,(x,¢) =0 and lim J,(x,a)=1.
a— oo

a— —®

It follows from the Fourier inversion formula that

fbKn(x,o) d6 = R{J,(x,b) — J,(x,a)},

which implies that K,(x,-) is Riemann integrable and (¢, K,(x,0)d6 =
R{J,(x, a)}. Hence, letting F,(x) be the ECDF of Xj,..., X,,, we have

G,(a) = R{% Zn; Jn(Xj,a)}
(22) /-t

1 RH(t/e,) EAE) — fE(HA()
~H@ -5 R{e 0)

We first consider the L2 loss. The following theorem is proved in the Ap-
pendix.

THEOREM 3. Assume that [|x|fo(x)dx < «. Let G, be defined by (20) with
the kernel in (19).

(i) Let ¢, be such that 1/n <'cy|f¢(c,)I?/cn, 1f§(e,)| = minj <c,|f§(#)]
and c, 1. Then

1+ C?

anG”Gn - G”2 < cOfFo(x)(l — Fy(x))dx +
(23)

cn
+7fG(0)(1 — G(0)) do,

where F(x) = [*, fo(y)dy.
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(ii) Let c, be such that 1/n < colfg(c,)?/c2, |f(c,)| = miny<c,|f3@))
and c, 1. Then
A Cz G* ¢ 2
1Bl G, ~ G| < COfFo(x)(l — Fo(x)) dx + Gile@
(24) 2

cn
+;fG(0)(1 - G(9)) do.

REMARK. [ Fy(xX1 — Fy(x)) dx <  if and only if [|x|fy(x) dx < «.

Let (X;,6,) be iid random vectors such that X;|6, ~ N(6,,1) and 6, ~ G.

122 )

Choose c,, = ya log n. Then our argument in the proof shows that
Viog n Eg||G, — G, | < et logn [V7 + (1 + C2)/(mla),

(log n)EG”Gn -G, ”2 <n*llogn/Vm + C'12||G*(t)||2/(277'a),

where G, is the ECDF of 6,,...,6,. The upper bound of Edelman (1988) for
estimating G, in the normal case is comparable to (25). The quantity [ G(8) X
(1 - G(0)db/n = E||G, — G||* in (23) and (24) is the risk of estimating G by
the ECDF G, based on the extra knowledge of 6,,...,0,. Given the observa-
tions X;,..., X, the estimator G,, is not necessarily a distribution function.
However, it can be shown that we can always construct a distribution function
G? based on G, such that |G° — H| <||G, — H|| for any distribution
function H.

Let us consider a fixed point 6 = a. Under certain moment conditions on X ,

k*(t/c,)G*(¢) — H*(¢)
¢ . dt.
174
Since H is arbitrary, we can take H* = (k*(¢ /¢,)G*(¢), which implies that

(25)

1 .
EJ(X,a) = H(a) — Efe-“

(26) EJ,(X,a) = fG(B)cnk(cn(a - 0))do.

By (6) k(x) = k(—x) and the right-hand side of (26) converges to
(27) G(a) = [G(a +) + G(a -)]/2,
which equals to G(a) if G is continuous at a. Theorem 4 is also proved in the
Appendix.
THEOREM 4. Assume that E(log(1 + |X|))? <  and G satisfies the Lipschitz
condition
G(a+0) + G(a—9)

(28) >

—G(a)| <|0|M;<», V0<6<S5.
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Choose ¢, such that 1/n < colf§(c,)?/lc, log* ¢, 1%, |f¢(e,)l =
miny <c,|f§(¢)| and ¢, 1». Then

lim supc?,EG|Gn(a) - Q(a)|2 < co(2/m)* + M2C2.

n—o

ExamPLE 1 (Normal, continuation). Let H(-) ~ N(a,1). Then
R{J (x,a)} =1/2 — (27) " ft'l sin(¢(x — a))k*(t/c,)e’ /2 dt.

Since [Fy(xX1 — Fy(x))dt = 1/ Var, by Theorems 3 and 4 we have

) Jogn 1+C* K
Jlog nEg)|G, - G|* < =22 L BB f6(0)(1 - 6(0)) db,
Vmrn ma n

logn  CZlG*@®)|* | logn
Vrnl—@ 2ma n

(log n) Eg||G,, - G| < [G(o)(1 - G(9)) do,

and if [log%(1 + |x|) dG(x) < » and (28) holds, then

. A 2 M.?;ZCI?
limsup (log n) E¢|G,(a) — G(a)| < .

n—w

ExampLE 2 (Cauchy, continuation). Since E|X| = «©, Theorem 3 is not
applicable. If [log(1 + |x|) dG(x) <  and (28) holds, then by Theorem 4

lim sup (log n)zEGIGn(a) - Q(a)l2 <M2CZ/a?.

n—o

ExamPLE 3 (Double exponential, continuation). Let ¢, = an'/®. We have
JF(x)X1 — Fy(x)) dt = 3/4. If [G(6)X1 — G(9)) dB < =, then by Theorem 3

lim supn1/5EG"én - G"2 <8a'/4 + (14 C?)/(wa).
Let ¢, = an'/. If [ G(6)(1 — G(0)) dO < =, then by Theorem 3
lim supn'/3Eq| G, - G“2 < 3a'/4 + CZ|G*(t) ||2/(27ra2).

Let ¢, = a(n/log? n)"/®. If [log%(1 + |x|) dG(x) <  and (28) holds, then by
Theorem 4

lim supn'/3(log n)_2/3EG|én(a) - (_?(a)l2 < 16a*/m2 + M2C2/a®.

n—o
Both Theorems 3 and 4 require moment conditions on F, as well as G.
However, these moment conditions are not necessary if we estimate
G(b+) +G(b—-) G(a+) +G(a—)
2 2 )

(29) G(a,b) =G(b) - G(a) =
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Define
_ b B 1 itx(e—ita _ e—itb)k*(t/cn)
(30) I(x,a,b) = faKn(x,o)de = Ef[R{e T }dt,
n +
(31) G,(a,b) = min(( )y In(Xj,a,b)/n) ,1),
j=1

(32) Gy = Fy(a,b,8, M;) = Z4(a,s, Mg) N F,(b,8, M,),
where Z4(a, 8, M) = {G: (28) holds for G}.

THEOREM 5. Let the estimator Gn(a, b) be given by (81). Choose the con-
stants c,, such that

()] = ¢ fo'(en)|,

1 Co 9
— < —=|fCe), min  o—
(33) n |¢1<2/|b—al

13 ()| = el £ (e, |-

min
2/|b-al<]t|<c,
() For any a <b, lim,, _,,, E|G,(a,b) — G(a,b)|2 =0
(i) Let eo(x) = [ yk(y) dy. Then
sup ¢2Eq|G,(a,b) - G(a, b)|2
GeZya,b,s, My)
2c
< —5 [I£8(D)]de + 4 eq(c,0) /6 + MyC]"
(iii) Suppose that lim, _,, EIX X, a,b) = =,
lim sup|I,(x,a,b)|/{/nEI%(X,a,b) =0,

(34) e
liminfc2 EI%(X,a,b)/n > 0.

n—-o

Let 62 =62(a,b) = L IXX;,a,b)/n. If ga) = G(a) and g(b) = G'(b)
exist, then

Vn(G,(a,b) — G(b) + G(a))/6, -, N(0,1) if G(b) — G(a) € (0,1),
VnG.(a,b)/5, -, [NO,D]"  ifG(b) = G(a),
n (G, (a,b) —1)/8, >, ~[N(0,1)] " if G(b) - G(a) = 1.

(iv) Suppose that g'(a) = G"(a) and g'(b) = G"(b) exist. If
lim, ., ¢3/[n| f§ (c,,)| 1=0, then

lim ¢(G,,(a,5) — G(b) + G(a))

= [g'(d) - g'(a)][xzk(x) dx/2, in mean square.
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Proor. By (33) for || < c,,

—ita —itb

e M —e - |6 —al 2 - 2
— | < m R < .
thee, |t (2) TR O] = el felen]

The argument of (16) provides a bound for the variance term. For the bias
term we have

|EIn(X’a’b) _Q(a’b)l
='f{[G(b +x/c,) —G(b)] — [G(a +x/c,) — G(a)]}k(x) dx

<2M, [|xlk(x) dx + 2 k() dx,
éc,

by (8) and the Lipschitz condition. The rest of the proof is similar to that of
Theorem 2 and omitted. O

ExampLE 1 (Normal, continuation). The estimator G, (a, b) is given by (31)
with

I(x,a,b) = w‘lft‘lsin(t(b —a)/2)cos(t(x — (b +a)/2))

k*(t/c,)e’/2 dt.
It follows from part (i) of Theorem 5 that

sup (log n)Eg|G,(a,b) — G(a,b)|"
Geya,b,s, M3)

V8log n 4
< W + Z[e(&/alogn)/é + M3CI]2.

Since the standard deviation is of smaller order than the bias, we do not apply
part (iii). If g'(a) and g'(d) exist, then by part (iv)

lim (log n)(G,(a,b) — G(b) + G(a))
=[g'(d) — g'(a)]éz/(2a), in mean square.
ExampLE 2 (Cauchy, continuation). Similar to the normal case, we have

sup  (log n)’Eg|G,(a,b) — G(a,b)["
Gedya,b,s, My)

4logn 4 2
+ — [e(dalogn) /6 + M,C,]",
[44

- ,n.Zanl—a
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and if g'(a) and g'(d) exist, then
lim (log n)(én(a, b) — G(b) + G(a))

= [g'(b) — g'(a)]Cy/(2a?), in mean square.
ExampLE 3 (Double exponential, continuation). Let ¢, = an'/®, a > 0. Then

lim sup sup n?°Eg|G,(a,b) — G(a,b) |2 < 2a3/m + AM2C2E/a?.
n—w  Gedya,b,s, My
Let 67 = £7_, IX(X;,a,b)/n.If g(a) and g(b) exist, then by Lemma 1 in the
Appendix

Vr (Gu(a,b) = G(b) + G(a)) /6, -5 N(0,1)  if G(b) — G(a) € (0,1),
VnG,(a,b)/6, >4[N(0,1)]"  if G(b) = G(a),
Vi (Go(a,b) - 1)/6, 5 —[N(0,1)]" if G(b) - G(a) = 1.

4. Lower bounds for the optimal rate of convergence. We study
lower bounds for the optimal rate of convergence in this section. Our basic idea
is borrowed from Le Cam (1972) and Hajek (1972) among other papers on
asymptotic information and efficiency. Instead of directly using the LAN
condition, we observe that a lower bound for the rate of convergence can be
obtained for any pair of contiguous sequences in infinitesimal neighborhoods
of f(x;G). As demonstrated by Example 1 in Section 1, Fourier methods can
be used to derive contiguous sequences. We consider estimating mixing densi-
ties and distributions in two separate sections.

4.1. Lower bounds for estimating mixing densities. We shall try to find
density functions g, = G/, j = 1,2, such that f(-;G,) and f(:;@,) are rela-
tively close but not g, and g, for a given sample size n. Let g, = G} be a
density function and G be a distribution function. For constants 5,,d, > 0
and e, define

(85) dG(0) = (1 —w)dG(0) + wg,(6) db, O<w<1,

(36) dG,(6) = dG,(0) + [w/(4d,)][cos(d, 68 — b,) — e,] () db.

It follows from the Riemann-Lebesgue lemma that lim d,»w &l f(x;Gy) —
f(x; Gl = 0, so that f(-;G,) and f(-;G,) are at least as close as o(d; ) and

|G{ — Gj| is bounded from below by some thing of order d;! for large d,.
Note that we have contiguous sequences if the o(d}!) is actually O(n~'/2).

THEOREM 6. Suppose there exist a density function g, = G} and nonnega-
twe functions p(t) and u(x) such that p(t)/t |0 as t > » and '

(37) fe”"f(xIO)go(G) do| <p(t)u(x) f(x;Go), Vie=1,p(1) =1




ESTIMATING MIXING DENSITIES AND DISTRIBUTIONS 821

Let G be a distribution function with derivative g(a) at 6 = a. Let G, and G,
be defined by (35) and (36) with

(38) e, = [cos(d,0 —b,)g(6) db € (~1,1),  p(d,)/d,<n ">

Then for any estimator g,(a) based on X1, ..., X,

n

max P,{d,|2,(a) - g(a)| > g loos(d,a ~ b,) - e,[eo(a))
(389) J=L2
> [2(1 + e2M)] 7,
where P;=Pg, E;=Eg, g; = Gj, j=0,1,2, and M =1+ 3E(u(X) +
E,u(X))?/16. Furthermore, if G has a denszty gand M < =, then
(40) r:nfl max d; d2[E;|§,.(0) — gj(¢9)|2 de > 0.

ReMaRks. By the Riemann-Lebesgue lemma lim e, = 0. If g,(a) > 0 and
b, = d,a, then (w/8)|cos(d ,a — b,) — e,|g,(a) is bounded away from 0. (2) If
G0 S f then such pairs (G, G,) are dense in %, j = 1,2, where 4] and %,
are deﬁned by (8) and (13), respectively. (3) The constant M does not depend
onn,d,, b,ore,

For the location case the integration on the left-hand side of (87) is the
convolution of fy(x) and e***g,(x) for fixed ¢. Since e***g,(x) has the Fourier
transformation gg(¢ + s), we have

[eiof (x10)£4(0) 46 = (2m) ! [e~*f(s) g3 (¢t + 5) ds,

so that p(¢) is basically a mixture of the tail of f§ near ¢ if gf has very thin
tails. The examples below suggest that p(¢) and |f§(¢)| have similar behavior
for large ¢t. For smooth f,,, we have f§ with thin tails and slow lower bounds
for the optimal rate of convergence.

CoROLLARY 1. Suppose that the conditions of Theorem 6 hold with
EGOuz(X ) < w and G, € Z(M,,) for some M,, < ©, where %, is defined by
(8). Then for any estimator &, and M, > 0,

inf  sup dszG(gn(O) — g(0)) de > 0.
n=1l GeZ(M,)

Proor. Let G;, j = 1,2, be defined by (35) and (36) with G € (M, /2)
and E;u*(X) < . Slnce

ltgz(2) | <ltg ()| + (w/(8d,))(2]tgs(t + d,) | + 2le,| IItgf;‘(t)II)
=|tgr(®) | + (w/4)(|(¢ + d,)g5(2) /d,. || +|tg& ()] /d,),
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there exists a (small) w > 0 such that ||tg;~"(t)"< M, for all j=1,2 and
n > 1. The corollary follows from (40) and the fact that M < «. O

COROLLARY 2. Suppose that the conditions of Theorem 6 hold with
E; uX(X) < @ and G, € Fya, 8,, Myy) for some 5, > 0 and My, < =, where
&, is defined by (13). Then for any estimator g, and constants & < » and
M, > 0O there exists an ¢ > 0 such that

inf sup  Pg{d,|g.(a) —g(a)| >} > 0.
nz1l Geya,s, My)
ExampLE 1 (Normal, continuation). The condition (37) holds with
Go~N(0,0%),  p(t) = exp[—(¢* = 1)o?/(2(1 + o?))]
and
—o? /(21 +0?)

u(x) =e

so that d,, = ﬁ + (1 + o7 2)log n, which implies by Corollaries 1 and 2 that
there exists an ¢ > 0 such that for any statistics g, or &,(*),

inf  sup lognEg|3, — 8”2 > &g,
n=1Ges(M,)

inf sup  Pglylogn|g, —g(a)| > ¢} > e.
n>1 Geya, s, My)

Hence, our estimators achieve the optimal rate of convergence (log n)~1/2 for
the classes ¢, and <%,.

ExampLE 2 (Cauchy, continuation). Let g,(8) = o/[7(c? + 6%)]. Then by
the Cauchy residue theorem for ¢ > 0,

Je“F(x10)go(0) do

. -1 -
(o/m%) [e"(1 + (x = 6)°) (02 + 6?) ‘de
ge te* (0?2 +x2—1—-2xi) +e " (x2+1— 0%+ 20xi)

(o + 1+ 22][(e - D + 7]

. (c+1) /7
=exp[—mm(l,o)t]mh(x,t,a'), say.

By algebra sup{|h(x,t,0)|: —® <x < », ¢t > 0} = M(0o) < =, so that
JeF(x10)g0(6) a0

which implies that (37) holds with p(#) = exp[ —min(1, o X|¢| — 1)] and u(x) =

< exp[ —min(1, 0)|¢t|] f(x;Go) M(0), V¢,
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e ™G OM(o). It follows that d, = 1 + (log n)/[2 min(1, o)]. By Corollaries 1
and 2 for some & > 0,

inf sup (log n)’E4||g, — g|* > ¢, inf sup Py{(logn)|g, — g(a)| > &} > e.
n>1 GeH n>1ge,

Hence, our estimators achieve the optimal rate of convergence (log n)~! for
the classes ¢, and %,.

ExampLE 3 (Double exponential, continuation). To derive lower bounds for
the optimal rate of convergence, we set g,(6) = e~ !°! /2. Since

j‘eitoe—|x—o|—|0|d0 ¥ N 2(ei* — 1) Vx>0
. 4 +¢2 t2+2it )’ -
o 9) do . 1 4 N 2(e’* — 1)

<8/t%, Vx>0,
so that p(¢) = t~2 and u(x) = 8. Since ||g4||> = 1/2, by Corollaries 1 and 2 for
some ¢ > 0,

inf sup n'/3Ey||g, — g > e, inf sup Pg{n'5|g, — g(a)| > ¢} > «.
n>1ges n>1Ges,

4.2. Lower bounds for estimating mixing distributions. Now it is easy to
study the case of estimating mixing distributions. Let g, = G} be a density
function and G be an arbitrary distribution function. Define dG(6) by (35)

and
(41)  dG,(6) = dGy(8) + (w/4)(cos(d,0 — b,) —e,)80(0) db.

THEOREM 7. Suppose (37) holds such that p(¢) |0 as ¢t = «. Define G, and
G, by (35) and (41) with constants e, in (38) and p(d,) < n~'/ Then for
any Borel function h and estimator G,(h) for G(h) = [ h(8) dG(0) based on
X X,

max P,{[G,(h) = G (k)| = G| [1(6) cos(d,0 = ,) = e,)o0) )|

> [2(1 +e2M)] 77,

where P, j=12, and M are as in Theorem 6.

We omit the proof since it is almost identical to that of Theorem 6. Define

42y _ Z4(a,b,8, M) N {G:G(a+) = G(a—),G(b+) = G(b-)}.
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COROLLARY 3. Suppose that the conditions of Theorem 7 hold with a
differentiable density function g, = G}, such that EGOuz(X ) <o, [|g4(0)|do <
© and go(a) + go(b) > 0. Let d, be such that p(d,) = 1/ Vn . Then for any
6 > 0 and M; > 0 there exists an & > 0 such that for any estimator én(a, b),

inf sup PG{d,,|Gn(a,b) - (G(d) - G(a))| = e} > 0.
nx>1GeLa,b,s, My)

ProOF. Let the constants d;, b, and e] be such that d’|b — a|/2 = 2k,
+ m/2 for some integer k,, d, <d, <d,+ 4m/|b — a, b, =
d,(b +a)/2 and e; = [cos(d,0 — b},)g,(6) d6. Then p(d.) <1/ Vn and by
Theorem 7

sup PG{anGn(a, b) — (G(b) — G(a))|
Geg4a,b,8, My)

wd
> —
= gon

[ (cos(d10 — ;)  e3)0(6) do(}

> [2(1 + e?M)] 7,
which implies the corollary, provided that

lim inf >0,

d;, [*(cos(dy0 — by) — e1)go(6) do

since d,/d; — 1. Integrating by parts, we have by the Riemann-Lebesgue
lemma

dy [*(cos(d;,0 — by) — e;)g0(0) do

= £o(0)sin(d;0 = b1)[, ~ [“sin(d;0 - b;)g4(0) do

‘ +fbg0(0) do [sin(d;,6 — b;,)g4(6) d6

= 8o(b)sin(2k,,m + 7/2) — go(a)sin( =2k, m—7/2) 4+ 0o(1)
=8o(a) +g(b) +0(1). o
ExampLE 1 (Normal, continuation). Similar to the case of estimating mix-
ing density

inf sup Ps{\log n |G, — (G(b) - G(a))| > e} > ¢, forsome e > 0.
n=1Gega,b,5, My)

Again, our estimators achieve the optimal rate of convergence (log n)~1/2 for
the class 7.
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ExampLE 2 (Cauchy, continuation). Similar to the case of estimating mix-
ing density

inf sup Pg{(log n)|G, — (G(b) — G(a))| > €} > &, forsome ¢ > 0.
n>1 GeZ(a,b,s, M3)

Our estimators also achieve the optimal rate of convergence (log n)~! for the
class ;.
ExampLE 3 (Double exponential, continuation). For this case we have

inf sup Py{n'/%|G, — (G(b) — G(a))| > e} > ¢, forsomee > 0.
n>1 GegY(a,b,s, My)

APPENDIX

ProoF oF THEOREM 3. Since [|x|f,(x)dx < =, J, (x,a) is well defined and
K (x,-) is Riemann integrable. Since the Fourier transformation of H — G is
(G* — H*)/(it), by (22) and the Plancherel identity

W k*(t/c,) BH(E) = F(GH®) [
2m)E|G, — E dt.
@mElG, -6l s | 7RO
Let 6, ~ G and X,|0, ~ f(-16,). Since E[e'*1|0,] = f§(¢)e'"*1, we have
Var(eit¥1) = E|e”X1 _ f(;“(t)e”"1|2 + Var( f(;k(t)eitel)
= E|ei“X1“’l) - F5"(t)|2 +| ]‘(;"(zt)|2E|e"“’1 — G*(¢) |2.
It follows from the Plancherel identity that

(2m) " [E|e™ - G*(¢)|*+ 2 dt = E[]Gy(6) - G(9)|*do

= [G(6)(1 - G(0)) do,

(2m) " [E|eXi0 — Fg(t) [t 2 dt = [Fy(x)(1 - Fo(x)) dx,
so that E|G, — G||? is bounded by
flk*(t/cn)l Var(fn*(t))dt+ flk*(t/cn)EFn*(t) —fg"(t)G*(t)I &t
2m|tf(2) | ‘ 2|t (¢)|
Sflk*(t/cn)l Var(;?” 1) dH[l(k*(t/cn') - l)fé“(zt)G*(t)l s
2mn|tfF ()] 2m|tf§(t) |
JFo(x)(1 — Fy(x)) dx
< . + [G(8)(1 — G(6)) do
T JG(o)(1 - G(9)) do/n

L IG*(t)(k’;(chn) - 1| .
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Hence, (23) and (24) follow from

f|G*(t)(k*(t/cn) ~ 1)/t dt < [_ + 2[°° < %[(f|x|k(x) dx)2 + 1],
J16*()(k*(t/c,) — 1) /t[" dt < c;z(flxlk(x) dx) lG=(e) . o

ProoF oF THEOREM 4. By (21)

Jemikn(t/c,) X — 1] /(tfs (1)) dt

2

(2m)?Var(J,(X,a)) < E

2
< £3Cen)| B2 (e = 1)t e}
0
Since [e’2™ — 1|2 = 2(1 — cos(27¢)) = 4 sin(7¢) and

[ Isin(rt) /| de < [fsin(rty/tde + ¥ k1 [Tsin(rt) de
0 0 0

l<k<x
< fl(frt — (wt)®/81+ ()5 /BY) Jtdt + (2/m)(1 + log* x)
0
<m+ (2/m)log" x,
[°|(e“x —yt|dt = 2j°x/2”|sin(ws)/s|ds < 27 + (4/m)log* (cx/27),
0 0

Vx=>0.
It follows that

(2m)*Var(J,(X, a)) <| f§(c,)| " Efdm + (8/m)log* (c,| X | /(2m))}"
<[ £§(en)| 8/ + 0(1))*(log" c,)*.
Hence, by (26)
¢2EglGy(a) ~ G(a)["
<c2Var(J,(X,a))/n + c2|EJ(X,a) — Q(a)|2

< (2m) 22| fa(e,)| 2(8/m + o(1))*(log* ¢,)?/n
2

+ cnfG(O)cnk(cn(a - 0)) dé — G(a)

< co(4/m2)% + 0(1)
2

+‘fwcn[G(a +x/c,) + G(a —x/c,) — 2G(a)]k(x) dx
0

500(4/w2)2+0(1) + (fM3|x|k(x) dx)z. O
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Proor oF THEOREM 6. We shall first prove (39) under the additional
assumption that E,|A,| <M, where A, = L7_, log(f(X;;Gy)/f(X;;GY)) is
the log-likelihood ratio. By symmetry we may assume gy(a) > g,(a). Let p be
the left-hand side of (39) and R be the event that §,(a) > [g(a) + g,(a)]l/2.
Since d,[g,(a) — g{(a)] = (w/4)cos(d ,a — b,) — e,)g,(a), it follows from the
definition of p that P{R} < p and P,{R°} < p. Therefore,

1/2 < P{|A,| <2M} < P{R} + P{R°|A,| < 2M}
<p + E; e’ 2MI(R) = p + Py,{R})e*™ < p(1 + *M).

Let us prove that E;|A,| <M. Set v(x) = f(x;G,)/f(x;G,) — 1. Since
d,>1 by (388), it follows from (35) and (36) that [v(x)| <
wf(x,G,) /@2 f(x;G) < 1/2, which implies that

Zn: v(X;) -2 Zn: vI(X) <A, = X log(1 + v(X;)) < Zn‘, v(X;).

Jj=1 Jj=1 j=1 j=1
Since f(x;G,)/f(x;G,) is a likelihood ratio, E,u(X) = 0, so that

n n
E\|A,| <E, Y v(X;) + 2E, Y (X))
(43) i1 i1
< 2nEp%(X) + \/nElvz(X) .

It follows from (38) and (37) that

eal =| [ [P(x0)m(d)cos(,0 ~ b,)80(0) )
<[] [(xi0)u(ds)e - 00gi(0)

< [p(d,)u(x) f(x;Go)u(dx) = p(d,) Equ(X)
and that
lv(x)| =| f(x;Gy)/f(x;Gy) — 1
(44) < [w/(4d,)][p(d,)u(x) f(x;Go) +|e,|f(x;Go)]/f(x;G)
< [p(d,)u(x) +le,|] /(4d,) <n ?[u(x) + Equ(X)]/4.

Hence, E,;|A,| <M by (43) and (44).
Let us prove (40). It follows from (39) that

2 I,naXdrztEj”gn gJ||2
j=12
>—d721(E1”gn gl”2 EZ”én g2”2)

> [2(1 +e2)] " [(w/8)°|cos(d,0 ~ b,) — e,’g2(0) do.
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Let h(8) = min(g2(6),C) for some C > 0. Then [h < . It follows from (38)
and the Riemann-Lebesgue lemma that

liminff|cos(dn0 -b,) - en|2g§(0) de
> limfcosz(dne —b,)h(6)do

= 1im[(1 + cos(2d,60 — 2b,))h(6) d6/2 = [h(a) de/2 > 0.
The proof is complete since [|cos(d,0 — b,) — e,|?g2(8)d6 > 0,V n. O

We use the following lemma to check the conditions (15) and (34) for Exam-
ple 3.

LeEmMA 1. Suppose fy(x) = e ¥ /2. Let K,(x,a) and I,(x,a) be given by
(19) and (30). Then

lim c,j5EG|K,,(X,a)|2 = (277)_1f(a;G)||t2k*(t)||2,
lim ¢ %l L(X, a)[ = (27) (f(a5G) + F(6: ) ek*(0) "

Proor. We shall first prove the lemma based on the fact that for any
real-valued function A(x) satisfying [x2|h(x)|dx < © and h*(¢) = 0, V|¢| > 1,

(45) lim (2mc) " ffe_i“_s)"f*(t — s)h*(t/c)h*(s/c) dtds

= f(a)|h* (1) |,

lim (2m¢) ™" ffe_"“_s)gf*(t — s)sin(¢7)sin(s7) h*(t/c)h*(s/c) dtds
(46) CcC—®

= (f(a) + F(B)|R*(2)["/4,

where ¢ =(a +b6)/2 and 7=(b— a)/2. Since .j sin(t(x — a))k*(t/c,) X
(1 + t2)dt = 0, by (45)

EKX(X,a) = (2m) " [ [e7=af¥(t — s)(1 + £2)(1 + %)
X k*(t/c,)k*(s/c,) dtds
= (2m) Zep [ [T (t — 5)(t/c,) k¥ (2/c,) (5/¢,)"
X k*(s/c,) dtds + o(c3)
= (2m) ' F(a; )| e2R* (D) | + o(c?).
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Set h(x) = k'(x). By a similar argument EI*(X, a, b) is equal to

sin(7t) sin(7s)
t

2 [fe—i(t—s)ff*(t —s)

X k*(t/c,)k*(s/c,) dtds

(1 +¢2)(1 +s?)

2
_ %[[e—i(t—s)af*(t — §)sin(r¢)sin(7s)

X(t/c,)k*(t/c,)(s/c,)k*(s/c,) dtds + o(c?)

2c3 2
= —(f(a;G) + f(b; )| R*(t)|° /4 + o(c?)

T

3
= SL(f(@5G) + (5 @)k (0)[* + o(c2).
Now let us prove (45) and (46). Let u = ¢ + s and v = ¢ — s. Then
(277)_1ffe‘i(“s)“f*(t — s)h*(¢/c)h*(s/c) dtds
= (271')_1ffe—i”“f*(v)h*((u +v)/(2¢))h*((v — u)/(2¢)) dudv/2.
Set hy(x) = (2m)h%(x). Then h%(¢) = [ h*(t — s)h*(s) ds and
Jr((w + ) /(20)) (v = w) /(2¢)) du
= 2c[h*(w)h*(v/c —w)dw = 2ch¥(v/c),
so that
(c2w)_1ffe'i(‘_s)“f*(t —8)h*(t/c)h*(s/c) dtds
= (2m) 7" [e7af*(v)hi(v/c) dv
= ff(a —x/c)h(x) dx = f(a)fhl(x) dx +o0(1)

= f(@)h%(0) + o(1) = f(a)|h*|* + o(1).
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This proves (45). For (46) we have

(277)_lffe_i“‘s)5f*(t — s)sin(¢7)sin(s7) h*(t/c)h*(s/c) dtds

= (2m) " [ e ¢ *(v)[cos(vr) — cos(ur)]A*((u +v) /(2¢))
X h*((v —u)/(2¢)) dudv/4.

Since {A*(w)h*(z — w), —o < z < =} is uniformly continuous with support
[—1,1], by the Riemann-Lebesgue lemma
[cos(m)h*((u +v)/(2¢))h*((v — u) /(2¢)) du

sup
v

= 2csup
v

fcos(r(2cw —v))h*(w)h*(v/c — w) dw‘ =o(c),
which implies that

(c21r)_lffe_i(‘_s)§f*(t — s)sin(¢7)sin(s7)h*(¢/c)h*(s/c) dtds
=(@2m)! [e_i”‘ff*(v)cos(vr)h’{‘(v/c) dv/2 + o(1)

= (2m) 7" [le7™® + e *] f*(v) hi(v/c) dv/4 + o(1)

= [f(a) + F(B)]|h*|*/4 + o(1). o
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