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In Section 5 of his thought-provoking paper, Professor Brown discusses
Cox’s ancillarity example and draws a distinction between point estimation
and confidence procedures. He argues for the conditional validity of his
proposed point estimation procedures, since in point estimation no condition-
ally interpretable stochastic claim is made.

It is, however, possible to make a data-dependent stochastic statement
concerning a point estimate without going so far as to provide a confidence set.
This may be done by estimating the (squared) error (& — a)?. The issue has
been considered in various point estimation settings recently by Rukhin
(1988), Lu and Berger (1989) and Johnstone (1988) (the last hereafter denoted
by J). Here I shall indicate briefly how some of these ideas extend to Brown’s
context.

In the setting and notation of Section 3, let L = L({V;},{Y;}) be an esti-
mate of the squared error (§ — a)? of a point estimator § = §({V.},{Y;}). The
quality of L may be evaluated in turn by using (for simplicity) a quadratic loss
E[L - (8 — a)?]? where the expectation is taken over the joint distribution of
V, Y).
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524 DISCUSSION

_ In Section 3, attention is restricted to estimators of the form (3.3.1),
5§=Y - VB3, S), and Lemma 3.3.1 shows the close connection for these
estimators of estimation of & with estimation of B under ordinary quadratic
loss 1B — [~}||2 Consider loss estimators of n(5 — a)? which have the form
L =02+ ¢(B, S). This form is motivated by the identity (contained in the
proof of Lemma 3.3.1)

En(5 - a)* = o + E|If - BI*.
The following analogue of Lemma 3.3.1 says that admissibility of L within the
class of estimators of the same form is equivalent to admissibility of ¢( B, S) as
an estimator of || — B||2 under quadratic loss.
LEMMA. Let 5 and B be related as in (3.3.1). If 4, = ¢(B, S), then
. 212 . 212
E[o? 4y, - n(5 - @) - E[o? + v, —n(5 - o)’

= E{y, - 18 - BIP}* - E{y, — 118 - BI?)".

(1)

The verification of (1), which uses the same methods as the proof of Lemma
3.3.1, is omitted.
Consider first 5 = & and _estimation of L = n(& — a)? Conditionally on S,
B ~ N(B,a2S~ 1) and E[||B BlI%S]l=o trS '. An unbiased estimate for
the risk of o%(tr S~ — #(B)) as an estimator of |8 — B||2 may be obtained
exactly as in Proposition 2.2 of J. Let X = 0~ 1S'/28 ~ N(6, I), where 6 =
0181728 and set y(X) = #(B). Denote the Hessian matrix (D, ;7)) by H(y).
Then

E{o?[tr S~ - 5(B)] - 18 - BI?)’
=20%trS™2 + o2E[2tr ST'H(y)(X) + y¥(X)].

A “completely uncondltlonal” estimator of L, is given by its expectation
ELy=02+0%EtrS ' =0%+ 02/(n — r — 2). However, this is already dom-
inated by a conditionally (given S) unbiased estimator L, = o2 + o2 tr S~
This may be seen dlrectly or via (1) and (2) from which E(EL, — L0)2
E(Ly—Ly)?=02EltrS™ ' —(n —r—2)"'2

More significantly, an improvement of ﬁ may be obtained by solving the
differential inequality 2 tr S~*H(y) + y2 < 0 Again following J, an ad hoc, but
convenient, choice is y(x) = ¢/(x*Sx). For the corresponding estimator Ly=
L, — a27(B), this leads to

(2)

0,4
( Bz S 2["_})2 >
which is minimised by the choice ¢ = 2(p — 4). The estimator L [or better,

max( io, 0)], while not yet completely satisfactory for practice, at least demon-
strates that data-dependent measures of the error of & are available and that

E(L,- Ly’ - E(Ly—Ly)* = —2c(p — 4)0%E
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it is unconditionally advantageous to use them. This is an example of Brown’s
phenomenon at the level of loss estimators.

For more general point estimators & of the form (3.3.1), the Lemma
indicates how one might apply existing work to construct reasonable loss
estimators for (6 — a)?. If one works conditionally on S, as in (3.3.3), then it is
plausible that an improvement on the unbiased estimate of loss of (8 — «)?
will follow as in Section 5 of J and an improvement on the upper bound
02+ 0%trS~! as in Lu and Berger (1989). Construction of loss estimates
corresponding to (3.3.4) and (3.3.5) is less clear, but an interesting problem
perhaps deserving further study.
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The fundamental ancillarity paradox introduced by Brown can be observed
in many other settings. As an example, we herein extend the results of Brown
to the confidence set scenario:

Let X be a p-dimensional normal random variable with mean u € R? and
covariance matrix 3. Consider the confidence procedure

C5(X) = {u: (3(X) — w)'E~1(8(X) — ) <3},
where 37! is an inverse or generalized inverse of 3. The coverage probability
of C;, P(Cs(X) contains w), is the usual criterion used for evaluating proce-
dures of a fixed size (determined by c). It is convenient to rephrase this as a

decision problem, with 8(X) being thought of as an estimator and 1 — P (C(X)
contains u) being the risk function corresponding to the loss function.

L(u,d) = {1, if (d _.#)'2_1(d —p) =c?,
0, otherwise.

Brown (1966) and Joshi (1969) independently showed that 6,(X) =X is

admissible if p = 1,2 and inadmissible if p > 3. Hwang and Casella (1982,

1984) proved that the positive part James-Stein estimator is an improved

estimator under the above loss L.



