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What both frequentists and Bayesians tend to overlook is the fact that data
(and data summaries) are put to many uses and viewed from many perspec-
tives (prior opinions) by a statistician’s audience. Concentration upon which
single procedure to use in analyzing data tends to neglect the diverse interests
of this audience. More attention needs to be paid to the design of the
experiment, The founders (Neyman, Pearson, Wald) of the modern frequentist
approach to inference were aware of this point, and discussed designs based on
minimax procedures as a way to satisfy all users of the data. Where prior
opinion is not highly variable (as assumed by the minimax approach), designs
constructed from a robust Bayesian perspective may be more efficient in
satisfying the needs and interests of a statistician’s audience. A step in this
direction has been made in hypothesis testing by my student Burt (1989), and
for estimation by DasGupta and Studden (1989).
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I am delighted for the opportunity to discuss this interesting paper by
Professor Brown. I have long admired his work both for its technical virtuosity
and for his thoughtful, philosophical discussions of the statistical approach he
advocates. I have often expressed the hope that frequentists would offer
Bayesians some interesting challenges, which Professor Brown does here. He
shows that the frequentist admissibility paradigm (FA) is not compatible with
the principle of ancillarity (AP) and suggests that the latter should be aban-
doned. AP is an intuitively compelling idea, a version of which is implied by the
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restricted likelihood principle of Hill (1988), which in turn is implied by the
subjective Bayesian approach that I advocate. Therefore there is a clear
conflict between basic principles, which must be analysed carefully, to see
which, if any, can hold up. In the history of science it is such conflicts that
often lead to rapid progress.

I shall try to argue that it is FA in the context of infinite partitions that
cannot be maintained. My criterion, which must be an ‘‘objective”’ one in order
for others to accept my conclusions, will be totally with regard to which of the
two principles is most relevant for the practice of statistics, whether inferen-
tial, predictive or decision-making. Without such a criterion for choice, the
question would be merely academic and would reduce to a question of taste.
FA will be defined by Professor Brown himself in his discussion of an article by
Berger (1984, page 126):

My perspective can be described in a few words as that of a
pure, collective, pragmatic frequentist. ..

Here is the basic principle: Statistical (and other) procedures
being used today and being proposed for future use should
be judged collectively and realistically according to their long
term expected consequences... .

The preceding is a statement of general philosophy, not a
mathematical axiom. This principle is to some degree
connected with an acceptance of fundamental axioms of
probability theory such as those of Kolmogorov... .

I regard the spirit of FA as admirable. This spirit underlies all attempts to
eliminate the gibberish from statistics and decision-making. This is especially
important nowadays, when statistical methods are more and more being
applied to important real-world problems, such as environmental matters,
assessment of health care and public policy in general. Historically, there has
been an unfortunate conflict between two quite distinct points of view: one the
view of a creative scientist, such as R. A. Fisher; the other the view of a
policy-maker or perhaps even a bureaucrat. The former is primarily concerned
with unique instances of scientific activity, and not with the results of a
procedure that is repeated many times. For example, in considering the
evidence concerning the greenhouse effect or pollution of the atmosphere, it
does not seem to be of much relevance to consider hypothetical repetitions of
the overall experiment. One wants instead to understand the particular phe-
nomenon in question. Data analysis is of greatest interest in this sort of
problem and can be coupled with the Bayesian approach to deal with inference
and decision-making, as discussed in Hill (1990). On the other hand, the
policy-maker view primarily concerns the consequences of repeated use of a
certain policy. There is no conflict, in my opinion, between these two points of
view. Both are of great importance. I view the latter, however, as the one that
is of primary interest in connection with Professor Brown’s example, and it is
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only this that will be discussed here. The thesis I will maintain is that even for
the policy-maker problem, the FA principle, as employed by Professor Brown,
is not appropriate.

I would like to begin by discussing the Stein paradox. For a time this
paradox confused me, since it too involved a conflict between the FA principle
and the subjective Bayesian approach. In the late 1960’s I began to ask
questions about the operational meaning of inadmissibility, and to my sur-
prise, could find not even a single attempt operationally to justify the admissi-
bility principle. It was simply taken as self-evident that inadmissible
estimators should not be used. It is well known in the history of science that it
is precisely such implicit assumptions that often prove untenable. Examples
are the notions of absolute space and time of Newton, or of simultaneity of
events, prior to the special theory of relativity. Eventually I put forth an
argument in Hill (1974, Section 2) that purported to provide an objective sense
in which one might argue against inadmissible procedures. The analysis is
brief, and I would like to repeat it here, since I think that the application of
this argument is at the core of the issue.

Let 6 be a conventional parameter that determines the distribution of a
random variable X and let d,(X), i = 1,2, be two decision functions that
depend on the value of X. Suppose that we are in a situation that is repetitive
and that L(0,d (X)) is the loss to be sustained if d; is used on the jth
occasion, j = 1,..., M. Then the expected losses, given the value of 6, are
R,(0) = EXwL(() d/(X)), i = 1,2, which are the usual risk functions. Here X
is a generic random variable hav1ng the same distribution as each X;. [There
are in fact some subtleties with regard to this framework of repet1t1ve situa-
tions, due to the possibility of learning from one occasion to another. See Hill
(1974, page 560). However, although oversimplified, I regard the basic scenario
here as valid for the policy-maker problem. For example, one can suppose that
the decision functions are mechanically implemented on a computer, without
the statistician actually observing the X j» 80 that no learning can take place
from one occasion to another.] Suppose now that there is a referee who
generates couples (6;, X;) on a computer, for j = 1,..., M, using a probability
distribution 7 to generate the 6., and some condltlonal distribution for X,
given 6,. Let the referee generate M independent couples in this way. Assume
that the conditional distribution for X, given 6, is known to all concerned,
but not 7. In this case the loss assoc1ated with use of d; on the jth occasion is
L(6;,d (X})). Summing over the M occasions, the actual increment in loss if
d, were used on each occasion instead of d;, would be £ LL(6;, do(X;)) -
L(6;,d (X;))]. The expectation of this 1ncrement from the perspectlve of the
referee who knows m is then K X M, where K is the m expectation of
K(8) = Ry(0) — R(0). If d, is dominated by d, in the sense of inadmissibility,
then R,(6) — R () > 0, with the inequality strict for some 6. So if 7 gives
positive weight to the set of 6 where the inequality is strict, then K > 0. This
evaluation is mathematically valid provided only that Fubini’s theorem holds,
and so would be true for loss functions bounded from below.
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If 7 has positive mass where R,(8) — R,(0) > 0, then I argued that from
the perspective of the referee, who knows , it would be imprudent to use d,
in preference to d,, and referred to any law pertaining to large M (laws of
large numbers, etc.) under which the overall loss could be regarded as likely to
be large if M were large. The reference to a referee is made primarily to
represent the situation where there is some mechanism which generates what
might be called a “true” distribution for 6, so that one can assess the
performance of the two decision functions from the perspective of such a
distinguished distribution. It is not necessary that such a referee exist, but
only the mechanism. Note that if the inequality R,(6) — R,(6) > 0 were strict
only at one isolated point, for example some undistinguished irrational num-
ber, then the argument would apply in its weakest form and K would be
positive only if = were to give positive probability to this point. On the other
hand, if d, were inadmissible in the extended sense, i.e., could be dominated
uniformly for some ¢ > 0 and was in this sense dominated by d, then for any
7 it would follow that the increment in expected loss would be at least ¢ X M.
This suggests that even within the conventional decision theory framework,
admissibility in the extended sense might be a better criterion than admissibil-
ity, since the above evaluation would then not depend upon the choice of .
The inadmissibility that occurs with respect to least squares estimators is
intermediate between these two extreme cases, since the risk function for the
least squares estimator can be improved upon everywhere, but not uniformly
by some fixed ¢. See Heath and Sudderth (1978), who prove that in the
scenario of the Stein paradox, least squares estimators are admissible in the
extended sense. Although not entirely convincing, since in many examples
neither a referee nor a mechanism are known to exist, to the best of my
knowledge this remains essentially the only argument that has ever been
given operationally to justify admissibility as a criterion. The same basic
argument is given by Berger (1984, page 88; 1985, page 257).

I now believe that even this argument requires some qualification in order
to be truly operationally meaningful. It must be noted that a computer has
only a finite memory and in a finite time can produce numbers (or vectors)
only within a certain domain, which can be taken as a grid of equally spaced
points bounded in magnitude by a known constant. I would like to argue that
any supposedly bad consequences to be associated with the use of a statistical
procedure should be required to be demonstrable in the context of a game with
prespecified rules, that can with certainty be played and completed by two
players in a finite time, with a referee 'in charge to keep order, and on a
computer with a known finite bound on its memory. (We need not know the
precise memory, but merely have an upper bound, which I suppose to be
known to both players.) This in effect will constitute my definition of “‘oper-
ationally meaningful”. It should be noted that although our conventional
statistical models often involve probability densities on the real line, all
observable and recordable variables must necessarily be rational valued. No
irrational number can be recorded in a finite time, nor can it be demonstrated
by measurement that any empirical quantity is irrational.
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I believ> that the above qualification of my original argument is important.
It is well known that in the finite case, if a procedure is admissible then it is a
Bayes procedure, and if it is Bayes for a prior distribution with all probabilities
positive, then it is admissible. See Blackwell and Girshick (1954, page 127) and
DeGroot (1970, page 133). In fact, when the parameter partition is a finite one,
the admissible rules are necessarily contained in the closure of the class of
Bayes rules for prior distributions with all probabilities positive, and so the
only mathematical distinction between the class of admissible rules and the
class of such Bayes rules is that between a set and its closure. For a computer
with finite memory, so that computable quantities are necessarily finite both
in number and in number of digits, such a distinction would not appear to be
of great importance. So I would argue that the conflict between FA and AP
that Professor Brown introduces cannot occur in the case of parameters and
data for which there are only a finite number of possibilities, and this is the
only situation that can be implemented on a computer with finite memory, in
finite time and according to prespecified rules.

I do not think it is generally perceived just how subtle are the considera-
tions that arise when attempting to use infinite models operationally. The
conventional use of Euclidean spaces and probability densities with respect to
Lebesgue measure in mathematical statistics is based primarily on the mathe-
matician’s desire for generality. It is easy to imagine that because the rational
numbers are all contained in the real line, that therefore there is no possible
harm in making an extension to the more general case. But I think this is
false, and I will now state and prove a simple theorem to emphasize the point.
Let X be an inadmissible estimator in the usual context, i.e., with the
parameter space some Euclidean space, and let Y be an estimator that
dominates X in the sense of inadmissibility. Suppose that X is Bayes with
respect to some improper prior distribution on its parameter, which for
convenience we shall take to be a uniform improper density, i.e., Lebesgue
measure. (For example, X might be the least squares estimator proved inad-
missible by Stein in dimension at least 3, and Y might be the corresponding
James—Stein estimator.) Let & be any fixed known finite grid of points in the
parameter space, for example, points with coordinates that are multiples of
some fixed tiny rational number. Let X, and Y, be the corresponding
estimators as implemented on some fixed computer, with all numbers being
rounded to some prespecified number of decimal points. Since X itself is Bayes
with respect to a uniform prior distribution, let X be defined as the Bayes
estimator for a uniform prior distribution on the points of &. Y, can be
obtained by any prespecified algorithm for computing Y. Note that because of
the implementation on a computer with finite memory, X must differ from X,
and Y must differ from Y. By admissible” we shall mean admissibility with
respect to the parameter space restricted to the finite grid of points repre-
sented by &.

THEOREM 1. For each &, X, is admissible”. For each &P, Y, is either
itself a Bayes estimator with respect to , or else is not admissible”.
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Proor. For every &, X, is Bayes against a uniform prior on this finite
grid and is therefore admissible”. For finite partitions of parameter and data,
the admissible class is contained in the Bayes class, so if Y, is not Bayes for
&, then it cannot be admissible”. O

This theorem implies that if one takes FA with the usual infinite partition for
the parameter space seriously, and therefore chooses Y in preference to X,
then one is implicitly rejecting FA for every finite grid of points. In fact, one is
choosing the (typically) inadmissible implementation Y, in preference to the
admissible implementation X! But it would instead appear to be in the spirit
of the FA paradigm to choose the implementation that has desirable risk
properties, rather than to be concerned with the way in which the rules are
derived.! This is why I do not think it is so innocuous to adopt such infinite
parameter spaces. It should be remarked that an estimator that is known to be
inadmissible, such as the James—Stein estimator, may turn out to be such that
its implementation Y, is admissible” for some . This is not ordinarily to be
expected, but it can occur. In this case, the choice between X and Y, would
be between two Bayes estimators, each of which is admissible?. It would then
be helpful to know for which prior distribution Y, is Bayes. There is a lot
to be said, on the grounds of objectivity and custom, in favor of X, unless the
a priori distribution for which Y, is Bayes can be given some compelling
motivation. The James-Stein estimator can sometimes be given some motiva-
tion via the Bayesian analysis of random effects models, as in Lindley and
Smith (1972) and Hill (1974, 1977, 1980b).

The upshot of the theorem is that it may be more important than is
generally realized to think through the subtle issues involved in the use of
conventional infinite parameter spaces. Thus from the theorem it follows that
any supposed inadequacy or paradox concerning the least squares estimator
must ultimately depend upon an inadequacy in representing the real-world
situation by any finite partition. In choosing to take FA seriously for infinite
partitions of the parameter, one is implicitly ignoring it entirely for all finite
representations. It should be remarked that even apart from the fact that
computers have finite memory and that recordable data is necessarily rounded,
there are still other reasons to consider the finite case as the most meaningful.
Ordinary measurements cannot be indefinitely refined, for one thing because
the quantity being measured usually does not have meaning beyond a certain
point and may vary with time. Human height is known to vary during the
course of a day. Even time itself is considered to be discrete by some modern
physicists [Whitrow (1980), page 203]. Although it would appear impossible
ever to entirely rule out the infinite case, at least in certain exotic scenarios
arising in the physical sciences, these would hardly be typical of applications in
the biological and social sciences or in real-world decision-making. Finally, if in
some example one does take seriously the possibility that the parameter does

'In fact this would even be true for the implementation of X,.
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not lie in any finite grid, then one can consider the gambles to be conditional
gambles, conditional on the parameter being in some finite set. In this case the
gambles or losses are called off if the parameter is not in the set. See my
discussion of Berger and Wolpert (1988, page 167) where I argue that the
extended inadmissibility that arises in the Monette-Fraser example has no
operationally bad consequences in the case of a computer with finite memory
and such conditional gambles.

There are in fact infinitely many paradoxes of the infinite. What constitutes
a paradox is itself a matter of taste. What some would describe as paradoxical,
seems quite trivial to others. Often it is the better mathematician—philosopher
who sees through supposed paradoxes, but occasionally it is otherwise. For
example, after a few years of calculus, some think that the ancient paradoxes
of Zeno are trivially resolvable, while a mathematician—philosopher of the rank
of Russell (1937, page 347) has instead argued that some of the paradoxes of
Zeno have never been fully resolved. He describes the paradoxes of motion as
“all immeasurably subtle and profound.” Similarly, one can lose oneself
forever in various paradoxes of the infinite, such as the antinomies of Kant,
about which there is still no agreement despite two centuries of analysis. Note
also that even supposing that we had a computer with an infinite memory,
what would it mean to draw a random sample from an infinite set? Some
mathematicians and logicians question the relevance of the axiom of choice in
proving mathematical theorems. [The intuitionist school of mathematics does
not accept the validity of the law of the excluded middle in dealing with infinite
sets. This school is constructivist and it is in sharp contrast to the formalistic
school of mathematics, in which “...much or all of pure mathematics is a
meaningless game.” Hersh (1979), page 12.] Thus, given that such paradoxes
are so abundant, and so unresolvable, I do not think that a result that depends
upon hypothetical operations with infinite sets, can be found entirely convinc-
ing by the statistician who must analyse data on a computer with a finite
memory or by the decision-maker who must utilize the results of such a
statistical analysis.

On the other hand, if we take the finitistic view that I advocate here,
everything is operationally meaningful, and it seems to me that we have a
clear cut argument for use of FA in this context. My conclusion from this
discussion is that the paradox of Professor Brown is only meaningful if one
accepts the appropriateness of FA in the context of an infinite partition of the
parameter, and to me this means it has little relevance to real-world problems.
On the other hand, AP is compelling even for finite partitions, as for example,
in the example of Cox, which can be modified so as to apply in a finite scenario.
So logically speaking, Professor Brown is asking us to reject a principle (AP)
for the case of practical interest, the case of some finite representation of the
parameter space and data, because of a mathematical result that cannot arise
in precisely this case.

I do not mean to be too hard-nosed on the finite—infinite question, because
it seems to me that infinite models do play a very valuable role in providing
approximations and insight, and indeed were developed by great mathemati-
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cians such as Laplace, Gauss, Poincaré and others, for precisely this purpose.
But here one must be very cautious with regard to the precise sense and
relevance of each particular approximation that is being made. I do not think
anyone regards it as paradoxical that an approximation that works well in one
situation works poorly in another. It is this that I believe has been lost in the
conventional approach to decision theory, where a passage to the limiting
partition for the parameter is made without even an attempt at justification
and without due regard to the sense in which such a passage provides an
approximation to the case of real interest, the finite case. Thus my question for
Professor Brown is whether he can provide an operationally meaningful
argument for admissibility as a criterion in the case of an infinite partition, in
such a way that it is clear that someone who used an inadmissible procedure
would suffer an objectively verifiable loss? If Professor Brown can show how
this can be done, it would be a valuable contribution. But even then, one would
be perfectly safe in all applications that do involve only a finite scenario.

Next I would like to discuss countable additivity in much the same terms.
The distinguished probabilists who founded and developed the modern mea-
sure—theoretic approach to probability were under no illusions as to the truth
or validity of the assumption of countable additivity or its equivalent, the
axiom of continuity. For example, Kolmogorov (1950, page 15) says:

For infinite fields, on the other hand, the Axiom of Continu-
ity, VI, proved to be independent of Axioms I-V. Since the
new axiom is essential for infinite fields of probability only,
it is almost impossible to elucidate its empirical meaning, as
has been done, for example, in the case of Axioms I-V in 2
of the first chapter. For, in describing any observable
random process we can obtain only finite fields of probabil-
ity. Infinite fields of probability occur only as idealized
models of real random processes. We limit ourselves, arbi-
trarily, to only those models which satisfy Axiom VI.2 This
limitation has been found expedient in researches of the
most diverse sort.

Now while expediency may be temporarily of importance, it can hardly be
considered in the nature of fundamental truth. At a certain time in history it
was convenient to use the abacus and at another time the slide rule, but now
for most of us it is not. If we look into the axiomatic approaches to probability
and statistics of de Finetti (1974) and of Savage (1972), we see that the former
has been highly critical of the axiom of countable additivity, and his criticisms
have never been answered, while Savage’s fully rigorous theory was not able to
establish countable additivity. Now I believe that Kolmogorov and other great
probabilists, such as W. Feller, while knowing that countable additivity cannot
be justified, were under the impression that it was not likely to do much harm.

ZAuthor’s italics.
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But as de Finetti (1974, page 33) has argued, this is not true, since it forces
one into a “Procrustean bed” in which in effect certain types of approximation
are eliminated. Ramakrishnan and Sudderth (1988) have shown that even in
the simplest of all probability scenarios, that of flipping a fair coin, Borel’s
strong law does not hold in the finitely additive context. These authors show
that with exactly the same joint distributions for all finite sequences, i.e.,
probability 1/2* for any k-tuple of 0’s and 1’s, one can have the average
converge everywhere to 0, converge everywhere to 1 or fail to converge
everywhere. This means that no finite experience with a coin can possibly
determine what happens in the limit as the number of trials goes to infinity.
The usual convergence in the conventional theory occurs simply because it is
contained in the assumption of countable additivity, and the argument is
circular.

This is one reason why my argument for admissibility focuses on only a
finite number of repetitions M. No one can really say anything about what
happens as M — « other than in terms of the weak law of large numbers or
various approximations, such as the central limit theorem. This can be viewed
again as saying that one cannot simply pretend that M is very large, as though
that was all there is to say. The approximation that one obtains in this way is
simply not good enough, and it becomes even worse in the context of two-
dimensional data, such as in the Borel, Dubins and Stone paradoxes discussed
in Hill (1980a). Here we have the paradox of nonconglomerability, i.e., where a
probability need not lie between the inf and sup of its values given the
elements of a partition, of which de Finetti (1974) has given many examples. I
do not now believe even nonconglomerability to be truly paradoxical, although
it is much more surprising than inadmissibility. In nonconglomerable situa-
tions, one can be faced with sure loss of at least some fixed £ > 0, given each
value of a parameter, say 6. Such sure loss implies both inadmissibility and
extended inadmissibility. See my discussion of Berger and Wolpert (1988, page
164) for the connection with the Stein paradox. I once thought that noncon-
glomerability might possibly be paradoxical, but now think that the paradoxi-
cal aspect resides instead in thinking that the use of infinite partitions has
operational meaning. Schervish, Seidenfeld and Kadane (1984) and Hill and
Lane (1985) show that for countable spaces, countable additivity is equivalent
to conglomerability. See also Scozzafava (1984).

Still another reason to reject the notion of indefinite repetition in the
argument for admissibility given above is because of the fact that conditions in
this world appear constantly in flux. A wise ancient Greek once said that one
can never cross the same river twice, to which another responded, ‘“Not even
once.” Thus all things change, which has some serious implications for the
notion of an infinite ii.d. sequence of random variables, and taking too
seriously the representation of parameter values as infinite decimals.

The most basic reason that I reject the notion of countable additivity and
other related ideas is because in my opinion all probabilistic and statistical
models should at the very best be regarded only as reasonable approximations.
Such models can be very useful, but must always be taken with a substantial
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grain of salt. To take literally a model such as the Gaussian, which in theory
produces irrational numbers (none of which could ever be recorded even if
there were such a process), causes great confusion, and even the most careful
experiments, such as the celebrated Michelson-Morley experiment of physics,
will introduce bias that will overwhelm other considerations, such as to how
many decimal points the numerical value of a parameter has meaning. I do
not, however, object to the careful use of standard parametric models in
scientific research. Such models are often approximately valid and are useful
both for communication and insight. The model of Professor Brown is a
generalization of the important random effects model, and as an approxima-
tion has numerous real-world applications. But it is one thing to offer valid
alternatives to least squares estimators, for example, based upon the random
effects model, and another thing to suggest that least squares estimators are in
some sense objectively inadequate because of a criterion such as admissibility
that has been translated to the idealized world of infinite precision of both data
and parameter values.

In conclusion, statistical decision theory, insofar as it pertains to public
policy and other human affairs, will inevitably be implemented on computers
with finite memories, using finite representations for the data and parameters.
The Bayesian approach for finite partitions works very well, as I am sure
Professor Brown would agree. If he can extend the FA argument to the infinite
case in a way with clear operational meaning this would be very valuable. Until
this is done I do not think it is warranted to impugn the validity of either AP
or least squares estimators.

REFERENCES

BERGER, J. (1984). The robust Bayesian viewpoint (with discussion). In Robustness of Bayesian
Analysis (J. Kadane, ed.) 321-372. North-Holland: Amsterdam.

BERGER, J. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd ed. Springer, New
York.

BERGER, J. and WOLPERT, R. (1988). The Likelihood Principle, 2nd ed. IMS, Hayward, Calif.

BLACKWELL, D. and GIrsHICK, M. A. (1954). Theory of Games and Statistical Decisions. Wiley,
New York.

DE FINETTI, B. (1974). Theory of Probability 1. Wiley, London.

DeGroor, M. (1970). Optimal Statistical Decisions. McGraw-Hill, New York.

HearH, D. and SubberTH, W. (1978). On finitely additive priors, coherence, and extended admissi-
bility. Ann. Statist. 6 333-345.

HersH, R. (1979). Some proposals for reviving the philosophy of mathematics. In New Directions
in the Philosophy of Mathematics (T. Tymoczko, ed.) 9-28. Birkhauser, Boston.

Hire, B. M. (1974). On coherence, inadmissibility and inference about many parameters in the
theory of least squares. In Studies in Bayesian Econometrics and Statistics in Honor of
L. J. Savage (S. Fienberg and A. Zellner, eds.) 555-584. North-Holland, Amsterdam.

HiLr, B. M. (1977). Exact and approximate Bayesian solutions for inference about variance
components and multivariate inadmissibility. In New Developments in the Application
of Bayesian Methods (A. Aykac and C. Brumat, eds.) 129-152. North Holland, Amster-
dam.

HiL, B. M. (1980a). On finite additivity, non-conglomerability, and statistical paradoxes (with
discussion). In Bayesian Statistics (J. M. Bernardo, M. H. Degroot, D. V. Lindley and
A. F. M. Smith, eds.) 39-66. University Press, Valencia, Spain.



ANCILLARITY PARADOX IN MULTIPLE LINEAR REGRESSION 523

HiLL, B. M. (1980b). Robust analysis of the random model and weighted least squares regression.
In Evaluation of Econometric Models (J. Kmenta and J. Ramsey, eds.) 197-217.
Academic, New York.

HiLL, B. M. (1988). On the validity of the likelihood principle. In Statistical Decision Theory and
Related Topics IV (S. S. Gupta and J. O. Berger, eds.) 1 119-132. Springer, Berlin.

HiLw, B. M. (1990). A theory of Bayesian data analysis. In Bayesian Analysis in Econometrics and
Statistics: Essays in Honor of George Barnard (S. Geisser, J. Hodges, S. J. Press and
A. Zellner, eds.) 383-395. North-Holland, Amsterdam.

HiL, B. M. and LaNE, D. (1985). Conglomerability and countable additivity. Sankhya Ser. A 47
366-379.

KoLmoGorov, A. N. (1950). Foundations of Probability. Chelsea, New York.

LiNDLEY, D. and SmiTH, A. F. M. (1972). Bayes estimates for the linear model. J. Roy. Statist.
Soc., Ser. B 34 1-41.

RAMAKRISHNAN, S. and SupDERTH, W. (1988). A sequence of coin-toss variables for which the
strong law fails. Amer. Math. Monthly 95 939-941.

RusseLL, B. (1937). The Principles of Mathematics. Allen and Unwin, London.

SAVAGE, L. J. (1972). The Foundations of Statistics, 2nd rev. ed. Dover, New York.

ScHERVISH, M., SEIDENFELD, T. and KADANE, J. (1984). The extent of nonconglomerability.
Z. Wahrsch. Verw. Gebiete 66 205-226.

ScozzaFava, R. (1984). A survey of some common misunderstandings concerning the role and
meaning of finitely additive probabilities in statistical inference. Statistica 44 21-45.

WaITROW, G. J. (1980). The Natural Philosophy of Time, 2nd ed. Oxford Univ. Press.

THE UNIVERSITY OF MICHIGAN
DEPARTMENT OF STATISTICS
ANN ARBOR, MICHIGAN 48109

IAIN M. JOHNSTONE!
Stanford University

In Section 5 of his thought-provoking paper, Professor Brown discusses
Cox’s ancillarity example and draws a distinction between point estimation
and confidence procedures. He argues for the conditional validity of his
proposed point estimation procedures, since in point estimation no condition-
ally interpretable stochastic claim is made.

It is, however, possible to make a data-dependent stochastic statement
concerning a point estimate without going so far as to provide a confidence set.
This may be done by estimating the (squared) error (& — a)?. The issue has
been considered in various point estimation settings recently by Rukhin
(1988), Lu and Berger (1989) and Johnstone (1988) (the last hereafter denoted
by J). Here I shall indicate briefly how some of these ideas extend to Brown’s
context.

In the setting and notation of Section 3, let L = L({V;},{Y;}) be an esti-
mate of the squared error (8§ — a)? of a point estimator § = §({V.},{Y;}). The
quality of L may be evaluated in turn by using (for simplicity) a quadratic loss
E[L — (6 — a)?]?, where the expectation is taken over the joint distribution of
V, Y).

'Research supported in part by NSF Grants DMS 84-51750 and 86-00235.



