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CONSISTENT AND ROBUST BAYES PROCEDURES FOR
LOCATION BASED ON PARTIAL INFORMATION

By KJELL A. DoksuM! AND ALBERT Y. Lo?
Unuversity of California, Berkeley and SUNY, Buffalo

We consider Bayes procedures for a location parameter # that are robust
with respect to the shape of the distribution F of the data. The case where F
is fixed (nonrandom) and the case where F' has a Dirichlet distribution are
both treated. The procedures are based on the posterior distributions of the
location parameter given the partial information contained in a robust
estimate of location. We show consistency and asymptotic normality of the
procedures and give instances where the Bayes procedure based on the full
sample diverges while the Bayes procedures based on partial information
converges and is asymptotically normal. Finally, we show that robust confi-
dence procedures can be given a Bayesian interpretation.

1. Introduction. In a frequentist setting, it has long been recognized that in
semiparametric models it can be advantageous to use only part of the informa-
tion contained in the sample. Thus partial likelihood methods, which in many
instances corresponds to using only the information supplied by the ranks of the
data, have been shown to be very useful for estimating the parameters in
semiparametric models. See for instance Cox (1972, 1975), and Kalbfleisch and
Prentice (1973, 1980).

In a Bayesian context, the use of partial information can be found in the work
of Bernstein (1946), von Mises (1931), Pratt (1965), Savage and Saxena [see
Savage (1969)] and Pettitt (1983) among others.

We consider Bayes procedures for location based on the partial information
contained in robust estimates of location. We find that these procedures are
consistent in some of the cases considered by Diaconis and Freedman (1986a, b)
where the Bayes procedures based on the full sample diverges. Moreover, the
posterior distribution of the location parameter given a robust estimate con-
verges to a normal distribution and the Bayes procedure inherits the robustness
properties of the robust estimate used in the conditioning. This result can be
regarded as giving a Bayesian interpretation to robust estimation theory.

Section 2 treats the case where the shape F of the distribution is nonrandom,
known or unknown. Here we obtain robust confidence intervals for location with
a Bayesian interpretation in the spirit of Rubin (1984). In Section 3 the
consistency and asymptotic normality results are established for the case where
F is assumed to have a Dirichlet distribution. Section 4 contains a convergence
lemma and proofs of two of the results in Sections 2.

Received November 1986; revised May 1989

'Research partially supported by NSF grant DMS-86-02083.

2Research partially supported by NSF grant MCS-81-02523-01.

AMS 1980 subject classifications. 62A15, 62E20.

Key words and phrases. Consistency, asymptotic normality, robustness, location problem, Bayes
procedures, Dirichlet prior.

443

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&
The Annals of Statistics. RIK@J:Y

I3

o 2

®

WWw.jstor.org



444 K. A. DOKSUM AND A. Y. LO

2. Consistent and robust Bayes procedures when the error distribution
is nonrandom, known or unknown. We consider the location model where
X, ..., X, is assumed to satisfy

Xl= 0 + €i, i= 1,..., n.
The errors ¢,,..., ¢, are iid. F.
0 has density #(0) and is independent of ¢, ..., ¢,.

Here 6 is the location parameter of interest and the error distribution F is a
nuisance parameter which, in this section, is assumed to be nonrandom.

The robustness literature is full of practical examples where this model is
appropriate. Here is one from a newspaper headline.

ExaMpPLE (Washington Post, February, 1986). Consider a rocket whose per-
formance depends critically on the launch time temperature 6 on its surface.
Hand-held infrared measuring devices are used to read temperatures on the
surface immediately before the launching of the rocket. The readings are subject
to errors with unknown error distribution. Gross errors are suspected leading to a
desire for a robust estimate of #. The density #(f#) is known from readings by
accurate instruments during days of nonlaunch conditions.

In terms of distributions, our model is

0 has density 7(8).

(2.1) ) .
Given d, X,,..., X, arei.i.d. F,, where Fy(x) = F(x — 0).

This is the usual Bayesian setup except F is not assumed to be N(0, 62). We will
call (2.1) the Bayesian location model with distributions = and F.

We first investigate the consistency, asymptotic normality and robustness of
Bayes procedures when the distribution Hy(x) = H(x — ) that actually gener-
ates the data is different from Fy(x) = F(x — ). Thus we are considering a
Bayesian version of Huber’s (1964) robustness setup where he asked: “If we use
the estimate appropriate for the model Fy(x) = F(x — ), how does it perform if
the true error distribution H is different from F?” Related Bayesian versions of
this question have been considered by Freedman (1963, 1965), Fabius (1964) and
Pratt (1965), as well as Rubin (1984), Doss (1984), Blackwell (1985) and Diaconis
and Freedman (1986a, b).

2.1. Consistency. Using the arguments of Diaconis and Freedman (19864, b),
we immediately find that Bayes prodedures can perform very badly when
H + F. We compute the Bayes procedure using model (2.1) with F Cauchy, since
a heavy-tailed F is a good candidate for coming up with a robust procedure.
Here is what happens:

PRrROPOSITION 2.1. Let II, be the posterior probability distribution of 0 given
X,,..., X, computed according to model (2.1) with the prior = standard normal
and F standard Cauchy. Suppose that X, ..., X, is actually generated by a
distribution H +# F. It is possible to specify an H with an infinitely differentiable
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density h which is symmetric about zero (i.e., the true 0 is zero), with a unique
maximum at zero, such that I1, is inconsistent. More precisely, as n — oo,
almost surely (a.s. [H]), the posterior I1, concentrates near +vy for some
positive number v in the sense that, foreachm > 0, asn — oo, I1,{8: |6 — y| <19
or |60 +y| <m} =1 a.s. [H]. Moreover, for n large, the probability that 11,
concentrates close to y is near ; and the probability that 11, concentrates close
to —vy is near ;.

Proor. Diaconis and Freedman (1986b) consider F random with a Dirichlet
distribution D(a), with a/a(R) standard Cauchy. However, they point out that
Korwar and Hollander (1973) have shown that IT, for the model with F ~ D(a),
equals a.s. [ H] the II, for the model with F nonrandom and equal to a/a(R).
The result now follows from the arguments of Section 2 of Diaconis and
Freedman (1986b). O

One of the surprising aspects of the above result is that a study of the
likelihood function for the Cauchy model suggests the use of the sample median
to estimate 6, and the sample median does quite well for the Diaconis—Freedman
counterexample density A described in Proposition 2.1. In fact, in both these
models, the sample median § is strongly consistent and Vn (6 — 0) is nearly
normal for moderate sample sizes n. This suggests a strategy for coming up with
a consistent “Bayes” procedure: Since the posterior given the sample concen-
trates near the wrong values +y, why not use the posterior given the sample
median since then the posterior (by Bayes theorem) will be close to a normal
distribution centered at the correct § value? More generally, we would use the
posterior distribution of § given some consistent, well behaved estimate 7). This
idea can be found in the work of Bernstein (1946), von Mises (1931) and Pratt
(1965), among others. We can think of it as a Bayes procedure based on the
partial information contained in 7,. Or in other words, it uses a partial likeli-
hood, i.e., the density (likelihood function) of T}, rather than the full likelihood,
in Bayes theorem. For instance, if 7T, is the sample median, F has density f and
n is odd, then the posterior density of 8 given T, is

7(8|T,) « =(8)f(T, — 8){F(T, — 8)[1 — F(T, — 6)]} "7,

where & denotes proportional to.

Besides the sample median, other good candidates for consistent robust
estimates T,, would be the Hodges and, Lehmann (1963) estimate, the trimmed
mean or one of the Huber (1964) estimates.

Returning to the general case, we adopt Bernstein’s (1946) condition on the
estimate T, of 6:

(2.2) The conditional distribution of T}, — # given 8 does not depend on 8.

Note that (2.2) is satisfied if T}, is a translation equivariant estimate of 6. If T,
satisfies (2.2), we will say that it is translation equivariant in distribution.

In what follows a sequence of random distribution functions G, will be said to
converge weakly in probability to the distribution function G if G,(t) converge
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in probability to G(t¢) at each continuity point ¢ of G. This notion of conver-
gence has also been used by Walker (1969) and Dawid (1970). Let 8, denote
point mass at 6, and let = denote weak convergence. Then our consistency
result for the partial posterior is:

THEOREM 2.1. Let I1,(0|T,) be the posterior probability distribution of 0
giwen T, computed according to the Bayesian location model with error distribu-
tion F and with prior density = which is continuous and nonzero in a neighbor-
hood of the true parameter value 6, and which is bounded on R. Assume that
for X,,..., X,, a sample from F,, T, is translation equivariant in distribution
and that T, converges in probability to 8. Finally, suppose that

(2.3) T,— 6, a.s.[H,].
We conclude that
(a) I1,(-|T,) is consistent in the sense that
(T, = &, a.s. [H(,o] asn - .

(b) If 67(0) is also bounded on R, then the quadratic loss Bayes estimate
E(0|T,) is consistent in the sense that E(0|T,) — 6, a.s. [H, ] as n — ooc.

(c) If the convergence in (2.3) is in H, probability, then so is the convergence
in (a) and (b).

The proof, which is similar to the proof in Lo (1984), is given in Section 4.

The assumptions in the above result assume that 7, is consistent for samples
from Fy, and for samples from H, . Without a condition of this type, identifia-
bility is lost and no consistency result is possible. If F and H are symmetric
about zero, then it is satisfied for (practically) all the 7, that have appeared in
the literature. In particular, if 7), is the sample median and if #, F and H are as
in Proposition 2.1, then II,(-|T},) is consistent and we have an example where
the posterior based on the entire sample is inconsistent, while the posterior based
on partial information is consistent.

Note that if T, is the sample median, II(-|7,,) is consistent if F and H have
medians zero and densities positive at zero.

2.2. Asymptotic normality. Next, we turn to the limit of the posterior
distribution of Vn (6 — T,) given T, computed according to the Bayesian location
model with prior 7= and error distributien F. It turns out that if X,,..., X, is
generated by H, # Fj, then this posterior does not converge to the asymptotic
distribution that — yn (T, — 8) has when Xj,..., X, is a sample from H,, but it
converges to the asymptotic distribution that — yn (T, — ) has when X,,..., X,
is a sample from F,. Thus, in the limit, the distribution assumed in the model
“dominates” the true distribution. Here is the result:

THEOREM 2.2. Suppose that =(0) and T, satisfy the assumptions of Theo-
rem 2.1. Assume that there exist a distribution function G and a sequence of
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constants {a,} such that for X,,..., X, a sample from F,
(2.4) -a,(T,—-0) = G.

Let I:[n(' |T,) denote the posterior probability distribution of a,(0 — T,) given T,
computed according to the Bayesian location model with error distribution F.
Then

() M(-|T,) = G a.s. [Hy] as n - co.
(i) If the convergence in (2.3) is in probability, so is the convergence in (i).

The proof is given in Section 4.

Typically, a,=vVn and G is the N(0, 72) distribution, where 72 is the
asymptotic variance of yn (T, — ) when X,,..., X, is a sample from F.

In a much more general setting, Le Cam (1953, Theorem 7) considered the
case corresponding to F;, = H, and established the convergence of the posterior
density of Vn (6 — M) given the sample X = (X],..., X,,) to a normal density,
where M, is the MLE (maximum likelihood estimate) of 6. Results of this type
had been formally derived by Laplace (1820). Recently, Blackwell (1985), also in
a more general setting, considered the case F; # H, and established the conver-
gence of the posterior density of Vn (8 — M) given X to a normal density
determined by Fj.

2.3. Unknown error distribution. Suppose that in model (2.1), F is taken to
be H (which is unknown). Then, according to Theorem 2.2, the posterior
distribution of # given T, can be approximated by the N(T,, 7%/n) distribution.
Since 773 is unknown, we replace it by a consistent estimate 72 and propose the
N(T,, #?/n) distribution as the approximate distribution of 8 given T,. Under
certain conditions, this can be justified:

THEOREM 2.3. Suppose that the prior density « is continuous and nonzero in
a neighborhood of the true parameter value 6, and suppose that = is bounded on
R. Assume that for X,, ..., X, a sample from Hy, T, is translation equivariant
in distribution and that — Vn (T, — ) converge to an N(0, 72) distribution. If #
is an estimate of 7y which for each ¢ > 0 satisfies

(2.5) P[|# — 14| 2 6|T,] >0 asn— w0 a.s.[H, ]|,
then for each x € R,
n(6-T, '
P (—A~)~ <x|T,| > ®(x) asn - xa.s. [HoO]:

T

where ® is the standard normal distribution function.

PrROOF. Let P”» denote the probability distribution of (8, #) given T,. On a
set with probability 1, # converges in P” probability to r and Vn (8 — T,)
converges in PT» law to N(O, 72). The result now follows from the Cramér—
Slutsky theorem. O
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REMARK 2.1. Theorem 2.3 implies that the confidence interval T, + z.7,
where z, = ® (1 — }a), has a Bayesian interpretation.

REMARK 2.2. When F is symmetric about zero, Theorem 2.2, in conjunction
with the ideas of Stein (1956), can be used to construct an adaptive Bayes
procedure: Let T, be the adaptive estimate of location given by Stone (1975).
Then, under the conditions of Theorem 2.2 and those of Stone, L(Vn (6 — T,)|T,)
converges weakly in probability to the N(0,1/I(F')) distribution, where I(F') is
the Fisher information of F. This N(0,1/I(F)) limiting posterior distribution is
the best possible for samples from F(x — ). In fact, as shown by Le Cam (1953),
the limiting posterior density of Vn (8 — M,) given X is N(0,1/I(F)). See also
De Groot (1970).

REMARK 2.3. Lindley (personal communication) asks whether our partial
posterior is the full sample posterior for some model. The answer is yes,
approximately, in many interesting cases: Many robust estimates are maximum
likelihood estimates (MLE’s) for some model. Thus Huber’s (1964) robust esti-
mate is the MLE for Huber’s least favorable distribution. Let @,4(x) = Q(x — 8)
denote the distribution for which 7,, is the MLE. Then, when H = F = Q, the
approximate posterior given in Theorem 2.2 is the approximate full sample
posterior for samples from Q. This follows from Le Cam (1953). This remark
corresponds to the idea that we obtain robust Bayes procedures by using a model
distribution for (X|8) with heavy tails.

REMARK 2.4. The results of this section apply not only in the location case.
For instance, suppose we model X, ..., X, to be a sample from a distribution F
with support (0, o). Then if T, = X|;, = smallest order statistic and if X, ..., X,

is a sample from a distribution H, with support (8, o), then Theorems 2.1 and
2.2 apply.

3. Robust and consistent Bayes procedures when F has a Dirichlet
distribution. Next we consider the case where F is treated as a nonparametric
nuisance parameter with a Dirichlet [e.g. Ferguson (1973)] prior distribution. In
particular we consider the model of Dalal (1979) and Diaconis and Freedman
(19864, b) where

0 has density «(0).

F has the Dirichlet distribution D(a) with absolutely contin-
uous parameter measure a.

(3.1)

0 and F are independent.

Given (0, F), X,,..., X, are independent with distribution
function Fy(x) = F(x — @), all x € R. '

Again we consider the convergence of the Bayes procedure given as estimate
T, when the sample X|,..., X, is generated by a continuous distribution Hy not
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necessarily connected to the model (3.1). Let a(t) = a((— 0, t]) and ay(t) =
a(t — 0)/a(R). We find:

THEOREM 3.1. Suppose that w(0) is bounded on R and is continuous and
nonzero in a neighborhood of the true parameter value 6,, and suppose that the
posterior 11,(6|T,) of 6 given T, is computed assuming that X,,..., X, is
generated according to (3.1). In addition, assume that T, is translation equi-
variant and that

(3.2) T,— 0, a.s. [H%] , Hy continuous.
Then,

(a) 1I(-|T,,) is consistent, i.e., IT (- |T)—>80 a.s. [Ho]asn—> 0.

(b) If 07(6) is bounded on R, then E(6|T,) is conszstent ie., E(O|T,) - 6,
a.s.[Hy] asn - co.

(c) If the convergence in (3.2) is in probability, so is the convergence in (a)
and (b).

(d) If there is a distribution function G and a sequence of constants {a,} such
that for X,, ..., X,, a sample from ay,

(3.3) -a,(T,-0) =G,

then the posterior probability distribution fIn(- |T,,) of a, (8 — T,) given T,
computed according to model (3.1) converges in law a.s.[H, ] to G, i.e.,

(3.4) .(:T,) =G a.s. [H00] asn - .

(e) If the convergence in (3.3) is in probability rather than a.s., so is the
convergence in (3.4).

ProoOF. Let A, be the part of the underlying probability space where
X;# X; for 1 <i<j<n. Then A, has H, probability 1. We will consider

n( |T Jon A,.On A,, we may ﬁnd the conditional distribution of (6, F') given
T, by first condltlomng on A,, then on T,. By Theorem 2.5 of Korwar and
Hollander (1973), given A, X|,..., X, are i.i.d. with distribution «, and by the
proof of Lemma 2.1 in Diaconis and Freedman (1986b), the joint distribution of §
and X,,..., X, is the same as in model (2.1) with F; replaced by a,. Since T, is a
function of Xl, ., X, it follows that in A, IT(-|T,) equals the posterior for
model (2.1) with F, replaced by a,. The present result then follows from
Theorems 2.1 and 2.2. O

If we apply this result to the Diaconis-Freedman (1986b) example where « is
Cauchy and H is the Diaconis-Freedman distribution (see Proposition 2.1), we
find that the posterior for model (3.1) based on the whole sample diverges, while
the posterior of § given the sample median converges as. to §,.
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4. Proofs of the main results.
LEmMMA 4.1. Let {p,} be a sequence of probability measures on R, let {t,} be

a sequence of real numbers and let t, € R. If

(i) g is a bounded (by C) function on R and is continuous in a neighborhood
Of t07
(ll) Ky = 80’
(iii) ¢, — ¢,

then [|g(t, — s) — &(t,)|p (ds) > 0.

Proor. Let D (s, t,) = |g(t, —s) — &(t,)|. For any § > 0,
IDu(s, tdun(ds) = [ D(s, t)ma(ds) + [ Di(s, t)m,(ds),
As A§
where A; = [|s| < 8]. Note that
[ Do, t)malds) < 2Cu, (51 > 8),
8

which tends to zero by (ii).

It remains to consider the integral of D, on A;. Let K be a closed and
bounded interval containing ¢, in its interior. For n large enough, say n > n,,
t,€ K. Let I={t+s: teK, s€[|s| <8]} and note that I is a compact
interval. Choose § and K such that g is continuous on I. Hence g is uniformly
continuous on I. That is, for all & > 0, there is a § > 0 such that |s| < § implies
sup, <  |8(t — s) — g(t)| < e. Therefore,

sup |g(t, —s) — &(t,)| <e for]s| <8.

nx=ng

It follows that
[ Dals, ta)p(ds) < em[ls) < 8] <e
As
and the proof is complete. O

PROOF OF THEOREM 2.1. Let @, denote the probability distribution of T,
for X,,..., X, a sample from F. Since T, is equivariant in distribution, then

P(T, € B|f) = Q,(B - 0)
for each Borel set B. It follows that

Js7(8)Qn(T, — db)
J7(8)Q.(T, — db) ’
where Q,(t) = Q~n((— oo, t]) is the distribution function of 7, when 6 = 0. By

I1,(0 € B|IT,) =
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the change of variable s = T, — 6, we have
Jz,-57(T,, — 5)Q,(ds)
Jm(T, = s)Q,(ds)

Similarly, the characteristic function corresponding to the posterior distribution
IL(-|T,) is

I1,(6 € B|IT,) =

Je T 9m (T, — 5)@Q,(ds)
[7(T, — s)Q,(ds)

Let N, (u) denote the numerator of this expression. Then

N,(w) = e“Tn(T,) [ Q,(ds)| < [le (T, ~ 5) — e~ n(T,)|Q,(db)

= [I7(T, - 5) — 7(T,)|Q.(ds).

The last expression tends to zero as. [H, ] by Lemma 4.1. Moreover, since
Q,, = 0,, then [e™***Q (ds) — 1. Thus

lim N(u) = lim e*"n(T,) = e"%n(6,) as.[H,]|.
n— oo n— oo
By a similar argument, the limit of the denominator in (4.1) is 7(6,) > 0. Thus
(4.2) lim ¢,(u|T,) = e™“% as. [H‘,o]
and II,(0|T,) = §, as.[H, ]. This completes the proof of (a).
To establish (b), note that
/(T, = s)n(T, — 5)Q,(ds)
[7(T,, — s)Q,(ds)
As before, [7(T, — s)Q,(ds) = m(6,) as. [Hy ]. Next note that

J(T, = $)7(T, - 5)Q,(ds) - T,n(T,) [@(ds)

E(0IT,) =

< fl(Tn = 8)n(T, — s) — T,n(T,)|Q.(ds) > 0 as.[H,]

by Lemma 4.1. Thus since T,7(T,) — 0ym(6,) as. [Hy ], then E(6|T,) — 6, as.
[Hy, 1.

To establish (c), we use a Skorokhod representation and replace T, with a
sequence Y, (f,) with the same conditional distribution given 6, as T,, but with
Y,(0,) = 6, as. [Hy ].

By construction, given 6, Y,(6,) has the same probability distribution as 7,,.
Thus the proof of (a) and (b) leads to the conclusion that the characteristic
function ¢,(u|Y,(6,)) on the right-hand side of (4.1) with 7, replaced by Y,(6,)
converges a.s. [ Hy ] to the appropriate limits. Since, ¢,(u|Y,(6,)) has the same
distributions as ¢,(u|T,), then (c) follows for the posterior distribution. The
proof for E(0|T,) is similar. O
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ProoF oF THEOREM 2.2. Note that the posterior characteristic function of
a,(0 - T, given T, is
fetedTa=s Tora(T, - 5)Q,(ds)
[ (T, — 5)Q,(ds)
Je~“*n(T, — 5)Q,(ds)
[7(T, - 5)Q,(ds)
Let 1\7”( u) denote the numerator of (4.3). Then

&(ulT,)

(4.3)

N,(u) = 7(T,) [~ uQ,(ds)

< [17(T, = 5) = 7(T,)|Q.(ds) = 0

a.s. [H%] by Lemma 4.1.
Next note that by (2.4),

[ v, (ds) - $(u),

where ¢(u) denotes the characteristic function of the conditional limiting distri-
bution G. Thus Nn(u) - a( 00)q§(u) a.s. [Hy ]. Similarly, the denominator of (4.3)
converges a.s. [H, ] to 7(6,) > 0. Thus <En(u|Tn) - ¢(u) as. [H,,] and the proof
of (i) is completed. The (ii) part follows from a Skorokhod construction as in the
proof of Theorem 2.1. O

Acknowledgment. The authors of this paper benefited greatly from discus-
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