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THE AVERAGE POSTERIOR VARIANCE OF A SMOOTHING
SPLINE AND A CONSISTENT ESTIMATE OF THE
AVERAGE SQUARED ERROR

By DoucLAs NYCHKA

North Carolina State University

A smoothing spline estimator can be interpreted in two ways: either as
the solution to a variational problem or as the posterior mean when a
particular Gaussian prior is placed on the unknown regression function. In
order to explain the remarkable performance of her Bayesian “confidence
intervals” in a simulation study, Wahba conjectured that the average poste-
rior variance of a spline estimate evaluated at the observation points will be
close to the expected average squared error. The estimate of the average
posterior variance proposed by Wahba is shown to converge in probability to
a quantity proportional to the expected average squared error. This result is
established by relating this statistic to a consistent risk estimate based on
generalized cross-validation.

1. Introduction. Consider the model
(11) Ykn = f(tkn) + ekn’ 1

where f is a smooth, unknown function evaluated at the points 0 < ¢,, < ¢,, <
<t,,<1and {e,,},.;., are independent and identically distributed er-
rors with E(e) = 0, E(e?) = o2 One statistical problem posed by this observa-
tional model is to estimate f without assuming a particular parametric form for
this unknown function. A promising nonparametric estimate of f that has been
successful in a diverse range of applications is a smoothing spline. [See Silverman
(1985) for a review.] One feature that distinguishes spline estimators from other
methods of nonparametric regression is that under a suitable prior (partially
improper) they are Bayes estimates [Wahba (1978)]. This paper will study the
connection between Bayesian and frequentist interpretations of a spline estimate
by showing that under suitable regularity conditions the average posterior
variance is proportional to a consistent estimate of the expected average squared
error. These results help in interpreting recent work on confidence procedures for
spline estimates.
For A > 0, f,, the mth order, natural smoothing spline estimate for f, is the
minimizer of :

k

IA
IA

n,

(12) — Z(Y,m h(t,,))’ +>\f R™(t))’ dt, forall h € Wyr[0,1],
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where
Wyr[0,1] = {f: f e L*[0,1] and f®,
1 < k < m — 1, are absolutely continuous}.

When the smoothing parameter A is fixed, f, is a linear function of Y. Thus,
there is a matrix A(A), such that f, = A(A)Y with £ = (f\(¢,,), ..., fa(t,))-
This nonparametric estimate for f has an intriguing stochastic interpretation.
Suppose e, ~ N(0, 6I) and f is a realization from the Gaussian process

2 m—1
m R g t(t_S)
J-1 R
§10jt +—

nAJy (m—1)! aW(s),

J

where 6 ~ N(0, £I) and W(-) is the standard Wiener process with W(0) = 0. If f,
is a natural spline estimate, then

() = Jim E(f(0)Y)
and the limiting posterior covariance is
o?A(N) = Elim Var(f]Y).
Wahba (1983) used this correspondence between a smoothing spline estimator

and the posterior distribution of f to motivate 95% pointwise “confidence”
intervals for f(¢,,) of the form

fi(ten) £ 1.968)A,(R) .
Here A is the minimizer of the generalized cross-validation function
_ (/R - AQ)Y?
((1/n)tx(I - A(X)))*

V(A)

and
(I = AR))Y)?
(- AR))

A2

is an estimator for 2. Although these intervals were derived within a Bayesian
framework, the simulation results reported in Wahba (1983) indicate that they
work well when evaluated by a frequentist criterion for fixed functions. (It is for
this reason that we refer to these as confidence intervals rather than regions of
high posterior probability.) Wahba’s confidence procedure is one of the few
approaches that has been developed for spline estimates and, given the growing
interest in the use of smoothing splines for data analysis, it is important to
understand the statistical properties of this method. To explain the success of
this confidence procedure, Wahba hypothesized that the average posterior vari-
ance (APV) is close to the expectation of the average squared error (ASE). The
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APV is given by

o n oZtrA(N)
2% A, = 222
n kgl kk( ) n ’

while the ASE is
1 n
Tn(A) = ; E (f)\(tkn f(tkn))2'
Now let ET,(A) denote the expected ASE (where now f is taken to be a fixed

function) and let A° be the minimizer of ET(A) for A € [0, c0). With this
notation Wahba’s conjecture is

o2 trA(N°)/n
If f e W;*[0,1],then —————— =k(1+0(1)) asn—>
T.(2°)
(1.3)
2m im
for some k € |1, .
2m—-1/\4dm + 1

Unfortunately, Wahba’s argument has several places that are heuristic. Also,
her analysis does not acknowledge the fact that the value for A was not fixed in
the simulations, but rather was determined by generalized cross-validation.
Recently Hall and Titterington (1987) have given a proof for Wahba’s conjecture
in the context of periodic splines, but these authors also restrict themselves to a
deterministic choice of the smoothing parameter.

In this paper we give a proof for a version of Wahba’s conjecture that
accounts for the adaptive choice of the smoothing parameter. To establish this
result we consider an estimator of the expected ASE obtained by subtracting an
estimate of (1/n)L}_,e2, from the generalized cross-validation function. This
estimator is consistent in the sense that the ratio of this estimator to the
expected ASE converges to 1 in probability as n — co. (In the rest of this paper,
this property of the estimator will be referred to as simply being consistent.)
Asymptotically, this estimator also turns out to be proportional to the estimated
APV proposed by Wahba. Given this relationship, one version of Wahba’s
conjecture is simple to establish.

Wahba'’s conjecture is important because it links a frequency quantity with a
functional of the posterior distribution. In fact, this correspondence provides a
simple explanation for the accuracy of the confidence intervals in Wahba’s
Monte Carlo study. From now on it will be assumed that f is a fixed function.
Consider the random variable U = ( f,«(7) — f(7)) where 7 is a random variable
independent of e, taking on the values {¢,,}; . ; < , With equal probability. U has
a mean of zero [because A(A) is symmetric and A(A)L = 1], has variance
ET,(A°) and, for the test cases considered by Wahba, is approximately normally
distributed [see Nychka (1988)]. Thus, if one knew ET,(A°), then one might
consider the (1 — «) 100% confidence interval for f(7):

(1.4) I(7) £ Zo s (ET,(X°) .
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The confidence procedure studied by Wahba yields intervals that are similar to
(1.4). Because the periodic splines used in Wahba’s study were applied to equally
spaced data, A(A)is a circulant matrix and thus A,,(A) = tr A(\)/n. Moreover,
Wahba evaluated her confidence procedure using the average coverage probabil-
ity of the pointwise confidence intervals at {¢,,};. <, This is equivalent to
computing the confidence level for the interval at the random point 7. Thus we
are left with interpreting the coverage probability of intervals of the special form

(1.5) fi(7) £ Z, /8% tr A(A) /.

One possibility is to consider the difference in coverage probabilities between
(1.4) and (1.5) as n — oo. In this situation Nychka (1988) shows that fs5(r) —
f(t) = U = 0p(ET,(A°)) and thus the distribution of U provides an approxima-
tion to the distribution f5(7) — f(7) as n = . The other ingredient to this
analysis, which is the focus of this article, is the relationship between the
standard errors for these intervals. Under suitable assumptions the ratio of these
two quantities converges to a constant that is close to 1. This similarity between
the standard errors implies that the coverage probability for (1.5) will not be
very different from that of (1.4) [see Nychka (1988) for more details].

With this motivation, the main result of this article will be stated.

THEOREM 1.1. Suppose that the observation points {t,,}, .1, are a ran-
dom sample from a distribution with density function g such that g is strictly
positive on [0,1] and g € C*[0,1]. If Ele,,|® < «, X is the minimizer of V(A)
restricted to [A,, ) with N\, ~ n™*™/5 f, is a natural spline with m > 2,
f € W2™ and f satisfies the natural boundary conditions

(1.6) F®P0)=f®(1) =0, m<k<2m-—1,
then

82trA(A)/n p
(1.7) —Em)— d asn—> oo
where

B (25'—11)(4:’21)

The hypotheses of this theorem differ in several significant ways from Wahba’s
original formulation. First, note that the frequency interpretation of the average
coverage probability outlined above does not really depend on the errors being
normally distributed. All that is required is that U be approximately normal.
For this reason, the consistency of the estimated APV is considered when the
normal assumption has been replaced by the boundedness of high order moments
of the error distribution. By placing more restrictions on f, convergence is
obtained to a particular constant that is actually the lower endpoint for the
range of k given in (1.3). More will be said about the boundary conditions
required of f in the next section. Theorem 1.1 will also hold if f, is a periodic
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spline, provided that the natural boundary conditions in (1.6) are replaced by the
periodic ones: f®(0) = f*)1), for 0 < k£ < 2m — 1. Finally, these results are
not restricted to random sequences of observation points and in Section 2
conditions are also given for deterministic sequences.

Theorem 1.1 will be established by comparing 42 tr A(X)/n to an estimator of
ET (A°) based on the generalized cross-validation function. Besides giving a clear
proof, this risk estimate may be of interest in its own right. From Speckman
(1983) and Cox (1984), under the conditions of Theorem 1.1,if S2 = (1/n)X}_, e2,
then

V(A) - S?

(1.8) —_——ET,,(}\")

->pl asn — oo.

Now suppose S? is an estimator of S? such that S2 — §? = o, (ET,(X°)). Then a
natural estimate of ET,(A°) is

T, = Vv(R) - &2
With this motivation, a key point of this paper is to establish the following:

THEOREM 1.2. Under the same hypotheses as Theorem 1.1, if

NI =AY 1
(1.9) n = tr(I—%A(X)) w1th‘€=2—E,

then
S2 - 82 = 0p( ET,(\°)) asn — co.

The proof is given in Sections 3 and 4.
Theorem 1.1 now follows easily from the conclusion of this theorem and the
asymptotic behavior of tr A(A)/n. With some algebra one can show

P (o [62trA(5\)] 1+B%/(2—- %)
R l(l—m)(l—ﬂnf

where B, = tr A(A)/n. Thus, Tn is proportional to the estimated APV. Also,
from Theorem 1.2 and (1.8), Tn/ETn(A°) —p 1. From Lemma 3.1 and the choice
of A,, the second bracketed term in.(1.10) converges to 1 in probability as
n — oo. Noting that K = 1/(2 — %), Theorem 1.1 now follows.

The next section states general versions of Theorems 1.1 and 1.2, discusses the
hypothesis concerning boundary conditions on f and suggests a method for
eliminating this hypothesis using a semiparametric spline model. Section 3
develops some preliminary lemmas, while the proofs of the theorems are given in
Section 4. We end this introduction by discussing some other estimators of the
error variance and the expected ASE.

Arguing by analogy with ordinary linear regression, Wahba suggested 62 as an
estimator for o2 Although 6% — S2 = 0p(1), under the hypotheses of Theorem

(1.10)

b
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1.1, (8% = S?)/ET,(A°) > p & where &+ 0. For this reason, V(\) — 2 will not
be a consistent estimator of ET,(A°). Note that the estimator of S? given in
Theorem 1.2 is only a slight modification of 2. In the denominator of 42,
tr(I — A(X)) has been replaced by tr(I — ¥A(N)), where % is a constant depend-
ing only on m. There are other ways of modifying 2 to yield consistent (in the
sense of Theorem 1.2) estimators for S2. One interesting approach, that can be
inferred from Hall and Titterington (1987), is to replace A in the definition of 62
by a slightly smaller value, A, where

L im 2m/(dm+1)
A A( 2m -1 )

The proof of Theorem 1.2 can be easily adapted to handle this alternative

estimator for S?2. One estimate of 2 that has some interesting minimum mean

squared error properties is given by Buckley, Eagleson and Silverman (1988).

Besides an estimate of 62 based on the residual sum of squares, estimates for
o? can be constructed using first (or second) differences of Y [Rice (1984)]. This
latter estimate has the advantage that no assumptions need to be made about
the functional form for the bias of f,. Unfortunately, estimators based on
differencing Y will not yield suitable estimates of S2.

Risk estimators for a smoothing spline have been developed through the
connection between Stein’s unbiased risk estimate and generalized cross-valida-
tion in Li (1986). One interesting feature of Li’s work is that his risk estimate
only requires an estimate of o2 rather than S2. His results, however, are limited
to the case of normal errors and involve the asymptotic approximation of f \» by
a Stein estimate. Also, the reader is referred to Rice (1984) because, in the special
case when ¢, = k/n, a periodic smoothing spline is also a kernel estimate.

2. General theorem. In this section a general theorem that includes the
results of Theorems 1.1 and 1.2 will be stated. This theorem depends on the three
conditions F1-F3. The last of these assumptions is fairly restrictive and a
semiparametric method is suggested for avoiding some of its restrictions in
practice.

Let G, denote the empirical distribution for the design points, {tih<h<n
Following Cox (1984) (subsequently abbreviated GA) two cases of knot sequences
will be considered.

CASE A (Designed knots). There is a distribution function G such that

aup 1G,(v) — G(o)] = o+

vel0,1]

Cask B (Random knots). {#,,} is a random from a distribution with c.d.f. G.
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In either case we will assume that g = (d/dv)G is strictly positive on [0,1]
and g € C*[0,1].

(F1) Ele,,|*"" < oo with
Case A (Designed knots): v>4m — 1.

Case B (Random knots): v > 2(8m — 3)/5.
Unfortunately, due to the difficulty in obtaining uniform asymptotic approxi-
mations for f, over all A, we must restrict attention to values of the smoothing

parameter in an interval [A,, co) with A, = 0 at a particular rate. Thus, the
smoothing parameter estimate is redefined as

XA = argmin V(M).
A€ [A,, )

(F2)
Case A (Designed knots): A, = n=*™/5log(n).
Case B (Random knots): A, = n~2™/%log(n)"™.
(F3) There is a y > 0 such that

1 n
~ Y (Efy(tyn) — f(tp,))? = YA2(1 + 0(1)) uniformly for A € [N o)
k=1

THEOREM 2.1.  Under (F1)~(F3) if $2 is given by (1.9) and T, = V() — $2,
then

(2.1a) S? - 8% = op( ET,(X°)),
T
2.1b S N
(2.1b) ET,()\°) el
(2.10) 82trA(X)/n .
) ET,()\°) P

where

X 2m 4m

_(2m—1) am+1) BT

The proof of this theorem is given in Section 4.

We end this section by discussing $Some of the more restrictive hypotheses
required for this theorem. Perhaps the most stringent assumption is (F3),
assuming a specific asymptotic functional form for the average squared bias. Let
& denote the class of functions that satisfy (F3). Members of % are the “ very
smooth” functions defined in Wahba (1977) or the case p = 2 in the Appendix of
Wahba (1983). If f, is an mth order, natural smoothing spline, then

#={f: f e Wm[0,1], f®(0) = f®(1) =0,
m<k<2m—1,1f™)L 01> 0}'



422 D. NYCHKA

This class is considered because for f € &, ET,(A°) achieves its fastest rate of
convergence and is not dominated by end effects. (The last condition of f(™
excludes polynomials up to degree m — 1 from being members of .%.) Also, this
assumption leads to explicit asymptotic expressions for ET,(A) and A°. The
crucial use of these expressions is in Lemma 3.5 where it is necessary to know the
limiting ratio of the average squared bias to the expected ASE when A = \°.
[Under (F3) this ratio is simply 1/(4m + 1).]

Although members of ¥ must have more derivatives than required by the
penalty function in (1.2), the main objection to this class is that f must satisfy
boundary-conditions in its higher derivatives. Unfortunately these conditions are
necessary for (F3) to hold. If f € W;2™[0,1] but violates one or more of the
boundary conditions, then the average squared bias must converge to zero at a
lower rate than A%. In addition, the average squared bias will be dominated by
the bias of the estimator in neighborhoods of 0 and 1. Thus the average squared
error (and the cross-validation function) may be influenced by the behavior of
the estimate at the boundaries. The reader is referred to Rice and Rosenblatt
(1983) and Messer (1989) for a detailed discussion of this phenomenon.

Although these theoretical results suggest that boundary conditions may be
important, in practice there is usually no boundary information available. One
possible solution to this problem is to use a semiparametric model to account for
the behavior of f at the boundaries and a smoothing spline to estimate the
remaining portion. For example, suppose m = 2. One can easily construct func-
tions ¥, 1 < k < 4,such forall f € W2™[0,1], f = Xi_,¥,a, + h where h € &.
Using the boundary adjusted smoothing spline approach developed by P. Speck-
man and J. H. Shiau, the parameter vector a can be estimated such that
E |la — &||> = O(N?). With these estimates one would set y, = Y, — Xi_, d,¥(%,)
and then apply the usual spline smoothing techniques to this residual vector to
obtain an estimate for A.

By construction, A will satisfy (F3) and it is conjectured that Theorem 2.1 will
still hold when y replaces Y and A replaces f in the definitions of SA,f, T,(A) and
V(). Due to the nonparametric nature of the spline estimate, ET,(A°) will have
the same convergence rate as E |ja — a||2. Using this fact and the mathematical
tools developed in Speckman (1983) and GA, it is believed that the convergence
of the above quantities can be proved. It is hoped that this brief discussion may
motivate other researchers to study the properties of this type of boundary
adjustment.

3. Preliminary results. The proof of Theorem 2.1 will depend on the six
lemmas given below. The first lemma is a collection of some well known
asymptotic properties of a smoothing spline, while the second establishes the
consistency of A. The remaining lemmas can be motivated by examining the
terms arising from the expansion S2 — S? at lines (4.1) and (4.2) in the proof of
Theorem 2.1. For all of the following lemmas it should be assumed that
(F1)—(F3) are in force and A(A) may be interpreted to be the “hat” matrix for
either a natural or periodic spline.
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To simplify notation the following definitions will be used:
1
k
my(A) = ;tr[A(A) ],

-1/2m

l“k(}\) = alk n ’

where

0 dv T
lk=/ W’ a = " and k=1,2.
(1 +0°™) /(;(g(v))l/zmdv

LEmMA 3.1. Under (F1)-(F3), as n > oo,

(3.1) mi(A) = p(A)(1 +0(1)), k=12,
uniformly for A € [\, o0],
(3:2) ET,(A) = (vA + o%,(1))(1 + (1)),

uniformly for A € [\, o],

Tn(?\) — ET,()\)

@20 B e v G
V(N) = S = T,())

(3.3b) }\e?}\l:),oo) BTN = op(1),
ol 2m/(1+4m)

(3.4) A° = (ny4m) (1 + o(1)),
T,(}) 3

(35) ET—(>\°) =1+ OP(I)

and

& AO ‘
(3.6) % - 0(1) fork=1,2.

Proor. Examining the proof of Lemma 4.4 from GA, Cox actually shows
that my(A) = X7 (1 + A8))"*(1 + o(1)) for X € [A,,, o). The eigenvalues §; are
obtained from the differential operator Ly = (—1)"p®™ /g where the domain
for L consists of all members of W™ that satisfy the natural (or periodic)
boundary conditions. From Naimark [(1967), pages 78-79], 8, = a>™j*™(1 + o(1))
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and it follows that

0

S (1+a8) "= i (1 +A(aj)™) 51 + o(1)) asA - 0.

Jj=1

Applying arguments similar to those used in the proof of Lemma 2.1 in Cox
(1988),

Y (1 +A(af)™) " = al,A 1271 + 0(1)) as A > o.
j=1

The equivalence in (3.2) follows trivially from (3.1) and (F3). Both (3.3a) and
(3.3b) are proved by Speckman (1983) for normally distributed errors and are
generalized in the proof of Theorem 5.1 of GA for error distributions that satisfy
the moment conditions in (F2).

The expression (3.4) is established in Wahba (1977) and can be verified by
computing the minimum of the rhs of (3.2). Because A\° € [A,, 0) as n > oo,
(3.5) can be easily derived from the preceding results. Finally, (3.6) may be
verified by substituting the asymptotic form for A° into the rhs of (3.2). O

LEmMa 3.2, If X is the minimizer of V(A) for A € [A,,, 0), then
A=x(1+0p(1) asn- .
PrROOF. Let g(A\) = yA2 + a%u,(A) and from (3.2) and (3.3a) we have
T.(\) — g(N)
g(X)

and thus (T,(A) — g(A))/g(X) = 0p(1) or g(R)/T(R) =1 + 0p(1). Combining
this asymptotic equivalence with (3.2) and (3.5) it now follows that
sV V) T} ETO) O
g(A°)  T(X) ET,(x°) g()\°) P

sup
Ae [>‘nv o)

= op(1)

Set

(au)? + (au) 79
1[/(u) = a?+ q -9

Let & = 62/y and choose 8§ such that

&2.2m/(1+4m)

§ = (al28)
ndm

Then g(A)/g(A°) = (8/8) where ¢ = 4m/(1 + 4m), a = 1/4m. Thus, ¥(8/8)
=1+ op(1). Note that y(u) = 1 if and only if u = 1. Because y/(u) is continu-
ous at 1, §/8 -, 1; otherwise, a contradiction could be obtained. From the
definition of 8, the consistency of X now follows. O
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LEMMA 3.3.

w1/ (I - A))Y? .
(3.7) S22 — T e () = 0p( ET,(A°)).

PROOF. The lhs of (3.7) can be rewritten as
(3.8) V(R)g(R) - V(A)g(r°)
with (A) = (1 — m(A))2/(1 — €my(N)). Expanding (3.8) using the identity
(ab—cd)=2a-c)(b+d)+ ia+c)b-4d)
yields
(3.9) A
(V(R) = V(A*))(e(R) + 9(A°))/2 + (V(R) + V(X)) (9(R) - 9(A°)) /2.
Now from Lemma 3.1,

(V(R) = V(x°)) = (T,(R) = T,(A°))(1 + 0p(1))

OP(ETn(AO))’

It is clear that @(A) is bounded and therefore the first term in (3.9) converges to
zero at the necessary rate.

Now the second term will be dealt with. Note that m,(A,) = 0 as n — oo and
so by expanding the denominator of @(A) in a power series one obtains g(A) =
1+ (@2 - €)my(A\)+o(my(A)asn— oo and A € [A,, 00). Thus,

e(R) = o(1°) = (2 = €)(my(R) = m,(X°))
+o(m,(R)) + o(m(X°)) asn = .

Combining the results of (3.1) and Lemma 3.2, it follows that ml(fx) — my(A°)is
0p(p4(A°)). Thus from the relationship in (3.6), (A) — @(A°) = 0p(ET,(A°)).
Clearly V(A) + V(A°) will be bounded in probability and so the second term in
(3.9) is 0p(ET,(A°)) and the lemma now follows. O

LEMMA 3.4.

1
;e,;A()W)ken =02, (A°)(1 + 0p(1)), k=1,2asn - oo.

PrOOF. Let X, = e/A(A°)*e,/(o2nm,(A°)). From the convergence in (3.1) it
is sufficient to show that X, -, 1 as n — co. By definition E(X,) =1 and it
will be argued that Var(X,) — 0 as n — oo. Since e,,, ..., e,, are assumed to be
iid., if » = E(et)), then

Var(e,A(A°)%e,) = 20* tr A(A°)* + (v — 30*) |diag( A(A°)**))2.
Now

[diag( A(X°)** )12 < tr( A(A°)*) < tr( A(X°)*),
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where the last inequality follows from the fact that the eigenvalues of A( A°) are
contained in (0,1]. From these expressions it follows that Var( X, =
o(1/(nm(A°))), and thus from (3.1) and (3.4), Var(X,,) = O(n~/+4m))

For the next lemma, it is convenient to introduce the notation f =

(), ..., f(2,))

LEMMA 3.5.

%f’(l — A(X°))%, = op( ET,(1°)).

PRrOOF. Let X, = (1/n)f'(I — A(A°))%, /0. Note that EX, = 0 and
1 1 1
Var X, = —5I(1 = AQ)I® < —5I(1 = AQX)E|* < ~ET,(A),

where the first inequality follows because the eigenvalues of A(\°) lie in (0.1].
Now in using the rates given in (3.2) and (3.4),
Var(X,/ET,(A)) < (nET,(A*)) " = 0(n/m+0)

and thus X, converges in probability to zero at the appropriate rate. O
LEMMA 3.6.

(3.10) I'= %“(I —AN)DEN? = 0%(2 — €)py(A°) + o2u,(X°)

= 0(ET,(X\°)) asn - oo.

PrOOF. Adding and subtracting 6%m,(A°) from I' we have
I - Ou0) om0 - my()

ET,(»°) ~ ET,(\°) ET,(\°)

| o2 Ow()
7(A°)* + o%uy(N°)

by the asymptotic equivalences given in Lemma 3.1.
Substituting the asymptotic form for A° into (3.11) yields

(3.11)

—o(1) asn - oo,

T @ - %),
(3.12) ﬁ;()\—o) =1- m - 0(1).
Referring to Selby [(1979), page 461] 1,/1, = 2m/(2m — 1). Also recall that
1 2m—-1\/4dm + 1
(2_%)=E=( 2m ) 4m )

and by this choice for €, it is straightforward to verify that the middle term on
the rhs of (3.12) above equals 1. O
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4. Proof of Theorem 2.1. To further streamline notation, let p, = p,(\°)
and m, = my(A°) for k =1,2 and A = A(A°) and ' = (f(t,,),..., f(t,,)):

Ao (1/n) (I - A)Y|?
" 1-%m,

(4.1) S?-82= [

. [(vn) I(I-A)Y)2-(1- %ml)S,?]
1-%m, '

The first term in (4.1) converges in probability at the necessary rate by Lemma
3.3. Recall that Y = f + e and the second term can be expanded by adding and
subtracting — €p,02 + 21,02 — p,6? in the numerator to give

R, +R,+R;+T
1-%m,

(4.2)

where

R, = q”p(mlsr? - #102)’

1 1
R, —2(;e’Ae - y.laz) + (;e’Az - p.zoz),

1/ 9
R3=;f(I—A)e

and T is defined in the statement of Lemma 3.6.

Because 1 — ¥m,; — 1, to complete the proof it is sufficient to show that each
term in the numerator of (4.2) is 0p( ET,(A°)). Moreover, in view of the asymp-
totic relations between ET,(A°) and p,(A°) in Lemma 3.1, it is enough to
establish a convergence rate to zero of the form op(p, V u,) for each term.

The convergence of R, follows from the equivalence in (3.1) and the fact that
S? =p 6% Ry, is op(p, V py) by Lemma 3.4 while the convergence of R, follows
from Lemma 3.5. Finally, note that I' = 0,(ET,(A°)) by Lemma 3.6 and thus,
having considered all the terms in (4.2), (2.1a) follows.

The second part of the theorem is a consequence of (2.1a) and (1.8). For (2.1¢c)
we refer to the discussion in the introduction and note that from (3.1) and
Lemma 3.2, tr A(X)/n = p(A°)(1 + 0p(1)). Thus tr A(R)/n -p0as n—-> oo
and the bracketed term in (1.10) converges to 1. O
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