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SPEED OF ESTIMATION IN POSITRON EMISSION
TOMOGRAPHY AND RELATED INVERSE PROBLEMS

By IAIN M. JOHNSTONE AND BERNARD W. SILVERMAN
Stanford University and University of Bath

Several algorithms for image reconstruction in positron emission tomog-
raphy (PET) have been described in thé medical and statistical literature. We
study a continuous idealization of the PET reconstruction problem, consid-
ered as an example of bivariate density estimation based on indirect observa-
tions. Given a large sample of indirect observations, we consider the size of
the equivalent sample of observations, whose original exact positions would
allow equally accurate estimation of the image of interest. Both for indirect
and for direct observations, we establish exact minimax rates of convergence
of estimation, for all possible estimators, over suitable smoothness classes of
functions. A key technical device is a modulus of continuity appropriate to
global function estimation. For indirect data and (in practice unobservable)
direct data, the rates for mean integrated square error are n=?/(P*+2 gpnd
(n/log n)~P/tP* 1) respectively, for densities in a class corresponding to
bounded square-integrable pth derivatives. We obtain numerical values for
equivalent sample sizes for minimax linear estimators using a slightly modi-
fied error criterion. Modifications of the model to incorporate attenuation
and the third dimension effect do not affect the minimax rates. The approach
of the paper is applicable to a wide class of linear inverse problems.

1. Introduction. Tomography is a noninvasive technique for reconstructing
the internal structure of an object of interest, often in a medical context.
Positron emission tomography (PET) deals with the estimation of the amount
and location of a radioactively labelled metabolite on the basis of particle decays
indirectly observed outside the body. Emission tomography in general, and PET
in particular, has been the subject of considerable recent research in nuclear
medicine, and has attracted the interest of statisticians as an example of a
reconstruction problem involving incomplete and noisy data.

The formulation of the PET problem we shall consider is basically that given
by Shepp and Vardi (1982) and Vardi, Shepp and Kaufman (1985). Following
their convention we shall consider a particular PET experiment, where the brain
is scanned by counting radioactive emissions from tagged glucose. The distribu-
tion of glucose within the brain corresponds to the glucose uptake mechanism,
and so a map of the glucose distribution within the brain gives an indication of
the pattern of the brain’s metabolic activity. In the idealization we shall
consider, following Vardi, Shepp and Kaufman (1985), the radioactive tagging of
the glucose gives rise to emissions of positrons distributed as a Poisson process in
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space and time; the spatial intensity of emissions is the same as the distribution
of glucose. Each positron that is emitted annihilates with a nearby electron and
yields two photons that fly off in opposite directions along a line with uniformly
distributed orientation. One or more rings of sensors placed around the patient’s
head make it possible to detect the photon pairs and hence, for each emission
that is detected, to give a line on which the point of emission must have
occurred. However, for equipment of the kind discussed here, it is not possible to
detect the position of the emission on the line.

The PET problem is just one of a large number of statistical problems
involving indirect observations of the phenomenon of interest; in our case the
observations are indirect in that the emissions themselves are not observed
directly. Such problems arise, for example, in geophysics, in stereology and
wherever linear deconvolution with known filter is required. Qur aim in the
present paper is not just to study the PET problem but also to develop theory
that can be applied in many other contexts.

In a typical PET scan, a large number, perhaps one to ten million, of
radioactive emissions are recorded, and the image of interest, a slice through the
patient’s brain or body, is reconstructed in some way from this apparently vast
data set. But is ten million observations really a large sample in this kind of
context? One way of gaining some insight into the problem is to think in terms of
equivalent sample sizes. We make some smoothness assumptions about the
image of interest and then ask how accurately it could possibly be reconstructed
given a particular indirect sample. The equivalent sample size would be the
number of emissions whose original positions could yield an equally accurate
estimate. The equivalent sample size gives, in terms more attuned to usual
statistical intuition, a quantification of the information actually available from
our sample of ten million indirectly observed emissions, and hence gives an idea
of how much is lost by the indirect nature of the observation process.

In Section 2 we formulate the reconstruction problem as an example of
nonparametric bivariate density estimation based on indirect data; in fact, an
example of a linear inverse problem in a function space. The function we
estimate is the intensity function of emissions in the slice through the brain. A
key feature of our treatment is the explicit singular value decomposition of the
transform linking the unknown density with that of the observed data. The main
conclusions of the paper are summarized in Section 3. In particular, we give in
Section 3 a table of explicit equivalent sample sizes, admittedly for our mathe-
matical idealization of the PET problem. In Section 4 we confine attention to
linear estimators and to intensities falling in a suitable smoothness class of
functions. We find the exact minimax rates of consistency, that is, the rate for
the least favourable density and the best linear estimator. We then show, in
Section 5, that these rates cannot be improved by extending consideration to all
possible estimators, linear or nonlinear. Thus, we do not consider particular
iterative nonlinear algorithms proposed elsewhere for practical use, but instead
we establish the best possible performance achievable by any estimator.

Section 6 of the paper considers modifications of our mathematical idealiza-
tion in order to take account of attenuation of the emitted photons and of the
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three dimensional nature of the problem. Our broad conclusions carry over when
these effects are incorporated. In Section 7, we extend our results to some error
measures based on the derivatives as well as the values of the images and their
reconstructions. Finally, in Section 8, we make some concluding remarks, and
mention some possible issues for future research.

A subsidiary objective of the paper is to illustrate, in a relatively simple and
concrete setting, the general approach to deriving lower bounds to estimation
risk developed by Le Cam [(1985), for example], Ibragimov and Hasminskii
(1981) and Birgé (1983). This method relates the best possible speed of estima-
tion (in a given “global” metric) to the metric entropy structure of the parameter
space. We need a minor modification-to handle the present indirect estimation
setting, introducing a form of “modulus of continuity” of the inverse transform.
This material is presented mainly in Section 5.

There is a substantial literature on practical algorithms for reconstruction in
the PET setting. An extensive survey covering the period up to 1979 is given by
Budinger, Gullberg and Huesman (1979); this includes adaptation of methods
from X-ray transmission tomography and the orthogonal series method of Marr
(1974). Maximum likelihood methods were proposed by Rockmore and Macovski
(1977); they were implemented via the EM algorithm by Shepp and Vardi (1982)
[see also Vardi, Shepp and Kaufman, (1985)] and modified in various ways, to
incorporate smoothing, by Geman and McClure (1985), Snyder and Miller (1985),
Silverman, Jones, Wilson and Nychka (1990) and Green (1990). Some practical
illustration of the orthogonal series method introduced in the present paper is
given by Jones and Silverman (1989). A recent survey of algorithms is given by
Tanaka (1987). Papers considering noise limitations in X-ray and transmission
tomography include Chesler, Rieder and Pelc (1977) and Tretiak (1978, 1979).
The focus of these papers differs from ours in that they consider estimation of a
fixed finite number of real-valued functions of a particular unknown intensity,
using discrepancies based on variance rather than mean square error.

2. Mathematical model and technical preliminaries.

2.1. An idealized problem and the Radon transform. In our idealized ver-
sion of the PET problem, the ring of detectors defines a slice of the patient’s
head, and the reconstruction aims to display a picture of the glucose density
within that slice. Emissions that give rise to photon pairs, one or both of which
miss the detector ring, will go unrecorded. Bearing this in mind, we shall regard
the slice as a plane and consider an essentially two-dimensional problem where
(see Figure 1) emissions take place in the plane according to some density within
a detector circle taken to be the unit circle in the plane. An emission at P gives
rise to a photon pair whose directions of flight lie in the plane along a line /
through P with random, uniformly distributed, orientation. The finite size of the
detectors is ignored and it is assumed that the points @ and R of the intersec-
tion of / with the detector circle are observed exactly.

Give the name detector space to the space D of all possible unordered pairs
QR of points on the detector circle, and call brain space the original disc B in
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cctor circle

Fi16.1. The patient and the detector circle.

O

F1G. 2. Parametrizing the line l.

the plane enclosed by the detector ring. Assume that coordinates are chosen so
that B is the unit disc. Brain space is parametrized by either Cartesian or
standard polar coordinates. To parametrize detector space, let s be the length of
the perpendicular from the origin to the detected line @R as in Figure 2, and ¢
the orientation of this perpendicular. Thus D is {(s, ¢):0 < s < 1,0 < ¢ < 27}.

We now define dominating measures on brain space and on detector space.
Define a measure p on brain space to be 7! X Lebesgue measure, so that
du(r,0)=7"'rdrdf for 0 <r<1 and 0 <6 < 27 if polar coordinates are
used, and du(x,, x,) = 7 'dx,dx, for ||x|| <1 in Cartesian coordinates. On
detector space, define a measure A by dA(s, @) = 27~ %(1 — s2)/2dsd¢. Both p
and A integrate to 1.

Suppose an emission takes place at a point distributed with probability
density f(x,, x,) with respect to u in brain space. Let g = Pf be the probability
density in detector space, with respect to A, of the corresponding detection of a
pair of photons, so that the mapping P maps the actual density of emissions to
the corresponding observable density in detector space. We shall show below
that Pf is given by

(2.1)
Pf(s,p) =1(1 l/zfv(l s* f(scos<p—tsm<p,ssmq>+tcos<p)dt
(1 s2

The integral in (2.1) is the so-called Radon transform [see Marr (1974) and
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F16. 3. Transforming the coordinates.

Deans (1983)] of the density f, namely the line integral of f along the line [ with
coordinates (s, @) in detector space. Since the length of the segment QR is
2(1 — s2)1/2, it can be seen at once that Pf(s, ¢) is the average of f over the part
of [ that intersects the detector disc ||x|| < 1. If f is the uniform density in brain
space, so that f(x,,x,) =1 for all ||x|| < 1, then we shall have Pf(s, ¢) = 1 for
all s and @. Thus the probability measure A in detector space is the detector
space distribution corresponding to the uniform measure p in brain space.

It remains to verify (2.1). Suppose an emission takes place at (X, X,) and
that the corresponding photon pair has trajectory at angle ¥ as shown in Figure
3; taking 0 < ¥ < 7 for definiteness, the joint probability density with respect
to dx, dx,dy on ||x|] < 1and 0 < ¢ < 7 is given by

fx, x, 9(%1, X0, ¥) = 77 2f (2, x,)

using the definition of u and the fact that ¥ is independent of X; and X,. Now
change variables by setting
S = |X,cos¥ + X,sin¥|,

{‘I’ if X,cos¥ + X,sin¥ > 0,
V¥ + 7 otherwise,

T=-X sin¥ + X,cos ¥;
the variables (S, ®) are the coordinates of the detected photon pair. After

making the transformation, which has unit Jacobian, and integrating out the
unobserved variable T, we obtain the joint density with respect to dsdeo,

fs o(s, @) = w’2fV(1_sz) f(scosq — tsing, ssing + tcos @) dt.
’ —ya-s?
The density (2.1) with respect to A follows at once from the definition of A.

2.2. Estimators and loss functions. In this section, we define various classes
of estimator of f that we shall be considering, as well as two measures of the
accuracy of estimation of f. The proofs of the three propositions stated in this
section are given in the Appendix.

Two particular classes of estimator are of obvious interest. Let Z,(n) be the
class of all possible estimators based on a sample of n independent direct
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observations in brain space from the density f. Let 7,(n) be the class of all
estimators of f based on a sample of n indirect observations, i.e., observations in
detector space drawn from the density Pf. It will also be important in some of
our work to concentrate attention on those estimators that are linear estimators.
An estimator f based on observations Z,...,Z, is called linear if there exists a
weight function w(x, z) such that [w(x, z) du(x) =1 for all z in the space of
the observations, and

(2.2) f(x)=n"'Y w(x,Z) forall xin B.
. i=1

Let 7, p(n) be the set of all linear estimators based on a direct sample of size n
subject to the additional condition [/ w(x, x")? du(x) dp(x’) < oo, and let I, ,(n)
be the set of all linear estimators of f based on an indirect sample of size n for
which [[w(x, y)?du(x) dA(y) < . The additional square integrability condi-
tions are mild; they ensure that f has finite mean integrated square error if f is
bounded. A

One natural measure of the accuracy of an estimator f is the mean integrated
square error M( f s 1) =E;[5( f — f)?du. By standard calculations,

23)  M(f5f) = [[var 1 (2) + (B f(x) - #(x))] au(x),

where the suffix f indicates that the mean and variance are calculated for data
drawn from f in the direct case and Pf in the indirect case. We define the
surrogate mean integrated square error M*( f ; [) by replacing the variance term
in (2.3) by the corresponding term calculated for the uniform density on brain
space

24)  M(Fif) = [[van, F(x) + {EF (x) - ()] du(x),

where var, denotes a variance calculated with respect to data drawn from the
probability measure p in the direct case and A in the indirect case. An important
relation between the surrogate and the true mean integrated square error for
linear estimators is given by the following lemma.

PROPOSITION 2.1.  Suppose that f is bounded above and below away from
zero. Then, for all f in I, ,(n) orin I, ,(n)

infy f(x) < M(f; f)/M*( f; f) < supg f(x).

2.3. The singular value decomposition of the Radon transform. The singular
value decomposition (SVD) of the normalized Radon transform P defined in (2.1)
is the key to our study of the loss of information about f due to indirect
observation. To establish notation, let H and K be Hilbert spaces and P: H —» K
a bounded linear operator. Under suitable conditions, there exist orthonormal
sets of functions ({¢,} in H and {y,} in K) and positive real numbers {b,}, the
singular values of P, such that the {¢,} span the orthogonal complement of the
kernel of P, the {,} span the range of P, and Pg, = b,y, for all ».
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Thus P is diagonal in the bases {¢,} and {y,}. If a singular value b, is small,
then noise encountered in estimation of the component of f along ¢, will be
amplified by a factor of b, !. Some form of regularization method [Tikhonov and
Arsenin (1977)] is needed to deal with this instability, and one such method,
based on tapered orthogonal series, will be exploited in Section 4.

In our PET model, H is the space L%(B, 1) of functions on brain space that
are square-integrable with respect to the dominating measure u. Correspond-
ingly, K is the space L* D, \) of detector-space functions square-integrable
relative to A. Suppose that X = (X|, X,) is drawn at random (according to u)
from brain space B. If a direction ¢ is specified by u, = (cos ¢, sin ¢), then

Pf(s,9) = E{f(X)lu, - X = s}

From this representation it follows at once that P is a bounded operator from
L*B, ) to LD, \) with norm 1 and, by arguments involving characteristic
functions, it is one-to-one.

The SVD of the Radon transform in this specific setting appears to have been
first derived by workers in optics and tomography; we now review its properties,
drawing material from Born and Wolf [(1975), Chapter 9.2.1 and Appendix VII],
Marr (1974) and Deans [(1983), Section 7.6]. Since the underlying spaces are two
dimensional, we need double indices, specifically » € N = {(I, m): m =
0,1,2,...;l=m,m—2,...,— m}. In brain space, an orthonormal basis for
L*(B, p) is given by
(25) ¢,(r,0) = (m+1)"*Zl(r)e®, v=(l,m)eN,(r,0) €B,
where Z* denotes the Zernike polynomial of degree m and order k. Zernike
polynomials satisfy the orthogonality relation [} ZF,,(r)ZE,,,(r)rdr = L(k +
2s + 1)7'5,, and can be expressed in terms of the more general family of Jacobi
polynomials. They arise naturally from a study of the action of rotation on
L% B, p).

The corresponding orthonormal functions in L% D, \) are

(2.6) Yu(s,9) = Upls)e™, v=(I,m)eN,(s,9) €D

where U, (cos 0) = sin(m + 1)8/sin§ are the Chebyshev polynomials of the
second kind. We have Py, = b,y,, with the singular values b, = b,,, specified by
(2.7) b=(m+1)""7 v=(Il,m) €N.

The relatively slow decay of the singular values with degree m (independently of
1) suggests that the costs of indirect observation in the PET problem are not
inordinately large.

Since we work with real densities f, we may identify the complex bases (2.5)
and (2.6) with equivalent real orthonormal bases in a standard fashion. For
example f = L f¢, = L f.§,, where

V2 Re(y, ,,) if1>0,
B = Po.m if 1 =0,
V2 Im(g, ,,) if1<0
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and similarly for the real coefficients fl - From now on, we suppress the tildes in
the notation and use whichever basis is convenient.

2.4. Smoothness classes. In our subsequent analysis, we place constraints on
the unknown density f over brain space by assuming it lies in a particular class
Z . For reasons of mathematical tractability, this class is taken to be a particular
ellipsoid % in the Hilbert space H = L%(B, u), specified by an array of con-
stants {a,} and a threshold c:

(28) - Z={f=Xhe: Laf?<c}.

Ellipsoid conditions can amount to the imposition of smoothness and integrabil-
ity requirements. For example in the simple case where {¢,} is the sequence of
trigonometric polynomials in a bounded interval [0,27] in one dimension and
a, ~ v P, Ya?f? < « if and only if the periodic function f has p square-inte-
grable derivatives on the interval.

To describe specific ellipsoids in the PET problem, it is useful to transform
the index set N by the change of variables j = (m + [)/2, k = (m — 1)/2 into
the lattice orthant N’ = {(J, k); j = 0, &k > 0}. Using the real version of the
basis {g,)}, let

29  Fo={f€H fo=1,L0+1)"(k+1)"fI<1+C?.

This set is characterized by the following proposition.

PROPOSITION 2.2. The function f in H lies in some %, . if and only if f has p
weak derivatives that are square integrable on B wtth respect to the modified
dominating measure dp.,, (x) = (p + 1)1 — ||x]|*)? dp(x).

The condition derived in Proposition 2.2 is of course somewhat weaker than
requiring square-integrability with respect to p and the reason for the modifica-
tion of the dominating measure is discussed in the proof; a similar technical
phenomenon occurs in Cox (1988). Nevertheless, %, . can be regarded as
imposing a set of smoothness and integrability conditions: The higher p is, the
smoother are the functions allowed in %,

How smooth are the functions that we are trying to reconstruct? In X-ray
transmission tomography, there may be discontinuities, or at least sharp jumps,
in tissue density across the boundaries of various regions. As noted by Natterer
(1980, 1986), functions that are piecewise smooth with jumps only along smooth
curves lie in Sobolev spaces corresponding to p < } square integrable (fractional)
derivatives. In emission tomography, with its inherently lower resolution, it may
perhaps be reasonable to postulate somewhat smoother emission densities of the
labelled metabolite. In any case, our theory is presented for arbitrary values of
the smoothness p > 0 wherever possible.

To ensure that elements of %, . are bona fide probability densities, some
further restrictions are needed. To have total mass 1, we require f,, = 1. By
restricting the constant C that governs the ellipsoid size, we can ensure that
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f(x) = 0. This is a consequence of the following proposition.

PROPOSITION 2.3. Supposep > 1andf € Z,c- Then
(2.10) sup|f(x) — 1] < C20-»/2,

xeB

Equality is attained in (2.10) if f is a linear function of x.

It follows from the proposition that % Z,.c Will be a class of nonnegative
functions on B if and only if C < 2(P~Y/2, Note also that if g = Pf, then

(2.11) suplg(y) — 1| < sup|f(x) — 1
Yy x

since P is an averaging operator.
3. Main conclusions of the paper.

3.1. Arbitrary estimators. We use minimax mean integrated square error as
our basic approach to the quantification of the information available in a given
sample. The maximum is taken over a smoothness class J’p ¢ of unknown
functions f, and the minimum is then taken over a class of estimators 7, whose
specification takes account of whether the sample is direct or indirect. We define
the various classes of estimators as in Section 2.2 above, and the smoothness
classes #, . as in Section 2.4.

Suppose we have a sample from a density f and an estimator f of f based on
that sample. As assessment of the accuracy of f that does not depend on a
particular unknown f can be obtained by merely restricting f to lie in a fixed
class, for example %,  for some fixed p and C, and finding the maximum mean
integrated square error

(3.1) R(f)= sup M(f;f).

fe% ¢
The maximum risk gives an indication of how well any given estimator will
perform, but a large value of R(f ) might indicate either that there is not much
information in the sample or that an inefficient estimator is being used. Because
we are interested in the experiment itself rather than any particular estimator,

we consider the minimum value of R(f) over suitable classes of estimators f.
Define

(3.2) rp(n) = inf R(f)
fegp(n)

and

(3.3) r(n) = inf R(f).
fegi(n)

These minimax risks quantify the information about the unknown density
inherent in direct and indirect data sets of size n, in a manner that is indepen-
dent of the method of estimation. Comparing their relative values gives an
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indication of how much information is lost because data can only be observed
indirectly in practice.

We can now state our first main result, which gives exact orders of magnitude
for ry(n) and ry(n) for fixed p and C. The condition placed on C is precisely
that needed to ensure that all elements of %, . are positive probability densi-
ties. Here and subsequently we use the notatlon a, = b, to mean that the
sequences {a,} and {b,} satisfy inf(a,/b,) > 0 and supn(an/ b,) < oo.

THEOREM 3.1. For fixed p > 1 and 0 < C < 2(P~V/2_ wjith the definitions
(3.1)-(3.3),

(3.4) rp(n) = (log n/n)?/(**V
and
(3.5) ri(n) = (1/n)P/#*2,

The proof of Theorem 3.1 is given in Sections 4 and 5 below. It can be seen
from (3.4) and (3.5) that the effect of the indirect nature of the observations
taken in practice is to reduce somewhat the rate at which the minimax risk
converges to zero. Suppose, for example, p = 1, corresponding to f/ having
square-integrable first weak derivatives. Then (neglecting the logarithmic term)
the rate is reduced from n~'/2 to n~'/3 by taking indirect rather than direct
observations. Note that both these rates are slower than the n~! rate usually
obtained for mean square error in parametric statistics; this is because, even with
the restriction that f lies in %, ., the space of possible parameters is infinite
dimensional.

Theorem 3.1 also leads to some qualitative conclusions about equivalent
sample sizes. Define the equivalent sample size m(n) to a given indirect sample
size n to be the number of emissions knowledge of whose original positions in the
brain would allow us to estimate f with the same minimax accuracy, so that

(3.6) rp(m(n)) = ri(n).

Some simple algebra from (3.4) and (3.5) yields the order of magnitude of the
equivalent sample size as

(3.7) m(n) = nP+V/(P+2 10g .

Perhaps not surprisingly, the order of magnitude of the equivalent sample size
depends on the smoothness assumptions made on the density f. The smoother f
is assumed to be, the larger will be the index p. Hence for very smooth densities
the power in (3.7) will be close to 1 and little will be lost as a result of the
indirect nature of the observation process. However, in reality, we ought not to
assume that the true emission density necessarily varies very smoothly, since
tissue boundaries and /or localized areas of high metabolic activity may lead to
discontinuities, certainly in high derivatives of f and possibly in f itself.

3.2. Linear estimators. More precise numerical quantitative conclusions
cannot be drawn directly from (3.7), because Theorem 3.1 only gives orders of
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TABLE 1
Constants needed for Theorem 3.2. Euler’s constant yz = 0.57722... .

¢, = exp(—cg/c;) =(p+ 1)1/ (PFDep/(P+1)

¢, =c¢7(p + Dexp{(p + 1)cg/c;) s = Y{m%p/3(p + 4)}P/PFI(p + 2)¥/(P+2)
ca=p(p+2)7" g=p(p+1) " (p+2)7"}

=2y —(P+4/(p+2 G =2vpc; — (P +2P—(p+ 177

magnitude for the relevant risks. We are able, however, to give explicit approxi-
mate numerical equivalent sample sizes for minimax risks calculated restricting
attention to linear estimators and using as a measure of error the surrogate mean
integrated square error M* defined in (2.4). By analogy to (3.2) and (3.3) define
surrogate linear minimax risks ri*,(n) and r(n) by

(3.8) rip(n) = inf  sup M*( f; f)
f€TLp(n) €%, ¢

and
(3.9) r(n) = inf  sup M*(f; f).
fe€TL1(n) fe‘z,,c

The second main result gives leading terms of asymptotic expansions for rj,
and rp%. The leading orders of magnitude are exactly the same as those given for
the corresponding quantities in Theorem 3.1, and so the restriction to linear
estimators does not affect the rates of convergence available. All the constants c,
depend only on the smoothness p and are collected in Table 1. One of our
reasons for introducing surrogate mean integrated square error is that we have
been able to derive these more precise expressions and, hence, obtain numerical
results. The other reason is that the result of Theorem 3.2 is a key step in the
proof of Theorem 3.1.

THEOREM 3.2. Forx > 1, let a(x) denote the solution to alog a = x, and set

(3.10) nE*t = of Vla(enC?).

Then, provided 0 < C < 2(P~1/2,

(811)  rpp(n) = eyn ', (logm, + ¢,) + O(n M2

(3.12) = c5c2/(p+1)(10g n/n)p/(p+1){1 + 0(1)}

and

(3.13) r(n) = c6c4/(p+2)n—p/(p+2) + O(n_(p+1)/(P+2) logn),

The form (3.12) for r}*, is more transparent, but the error term can be shown
to have the same polynomial order as the leading term; the error term in (3.11) is
of lower order and so we use (3.11) in numerical computations. Of course, a(x)
can be found numerically when required and is asymptotic to x/log x for large x.

For any particular indirect sample size n, the approximate equivalent sample
size m*(n) can be found: Equate the expressions (3.11) for r*,(m*) and (3.13) for
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TABLE 2
Equivalent direct sample sizes m*(n) to achieve the same surrogate linear minimax risk over
smoothness class p as for an indirect sample of size n.

n=10" n =108 ratio m(10%) / m(107)
p=1 1.93 x 10° 1.03 X 108 5.34
p=2 4.85 X 10° 3.12 x 108 6.44
p=>5 1.29 x 108 1.05 X 107 8.09

ri%(n), neglect the lower order terms and solve numerically for m*. For definite-
ness we take C2 = 271, the largest value for which all { in Z,,c are nonnega-
tive probability densities, so long as p > 1 (Proposition 2.3). Some representative
cases are given in Table 2. As expected, the equivalent sample size increases as
the assumed amount of smoothness rises. If technology allows an order of
magnitude increase in the amount of data collected, then the equivalent direct
sample sizes increase by a factor of between 5 and 8, this factor itself increasing
with assumed smoothness.

For the quantity m*(n) the asymptotic constant of proportionality in the
expression corresponding to (3.7) can be found. A simple calculation uses rela-
tions (3.12) and (3.13), with the error terms ignored, to conclude that

m*(n) = (p +1)(p + 2) Yeg/cs) P VPC-2/(P+D
Xn(P+1)/(p+2) logn{l + 0(1)}.

In summary, our results confirm intuition that for the PET problem, the
amount of information available is still substantial, but it is by no means as
great as if a sample of the same number of direct observations were available.

4. Convergence rates for linear estimators. The main aim of this section
is to prove Theorem 3.2, which gives the asymptotic behaviour of the surrogate
risks (2.4) for linear estimators. It is a consequence of Propositions 2.1 and 2.3
that, provided C < 2(P~1/2) the ratio of exact to surrogate mean integrated
square error for linear estimates will be bounded above and below away from 0
uniformly over %, .. Since 7 ;(n) and 7, ,(n) are subclasses of J;(n) and
J1(n), respectively, it then follows that the orders of magnitude of r,(n) and
r;(n) are bounded above by those obtained in Theorem 3.2 for surrogate linear
minimax risks. Once Theorem 3.2 has been proved, the proof of Theorem 3.1 will
be completed in Section 5 by showing that these are also lower bounds.

4.1. Structure of the linear minimax estimator. We consider the indirect
case first; the argument we shall use will apply to the direct case also. We
start by defining some notation. Suppose that f is in I (n). For v and 7 in
N define w,, = [w(x, ¥)o,(x)¥,(y) du(x) dA(y); because of the condition
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[Jw?dp d\ < oo, standard functional analysis gives that, in the L? sense,

(4.1) w(x, y) = X X w,9,(x)¥,().

As in Sections 2.3 and 2.4, we expand [ as Xf,¢,. We write W for the infinite
matrix (w,,) and f for the vector (f,). The index set of all vectors and matrices
will be the set N; the subscript (0,0) will be written as 0 for simplicity. Since
[fdp =1, the coefficient f, = 1. Write B = diag(b,), the singular values of the
operator P. Let e, be the vector (§,,: 7 € N). The first lemma gives a matrix
form for the surrogate mean integrated square error of the linear estimator f

LEMMA 4.1. With the above definitions,

(42) M*(f;f)=n""trW(I- eel)W+t7(I - WB)"(I - WB)f.

Proor. Write f = Zf From (4.1) it follows that f = Wm, where M, =

n 'y ,(Y,). Each Y. has dens1ty & = 1L8,¥,, where g = Bf, and for each »,

En, = [y,8d\ =g, so that E;n = Bf. Hence E, f = WBH, and the integrated
square bias

@3)  [(E,f—1) du=IEf= 1) = |WBf - £]* = (I ~ WB)t|>

If f is the uniform density, then f = e, and so, writing E, for an expectation
relative to the uniform density f, E;q = Be, = e,, since b, = 1.

By the orthonormality of the y,, the matrix Eqn” = n"I and so n has
covariance matrix n~ (I — egl) under the uniform distribution. Thus, the
surrogate variance term

(4.4) [var, fdu = Eyif - EfI? = EJ\W(n - E)|?

=n ttr W(I — el ) W7

by a standard multivariate calculation. To complete the proof, substitute (4.3)
and (4.4) into the definition (2.4) of surrogate mean integrated square error. O

Our second lemma provides an expression for the surrogate linear minimax
risk and gives the general form of the minimax estimator. The smoothness class
& is defined as in (2.8) and (2.9) to be #= (f: f, =1, fTAf < 1 + C?}, where we
write A = diag(a?) and assume that a, = 1, sup a? = « and that every f in &
is nonnegative.

LEMMA 4.2.

(4.5) inf supM*(f; f)=n"'L 5721 - ay?),,

fegiin) fes
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where vy is chosen to ensure that
(4.6) n 'y b,fzaf('y‘l/za;l - 1)+= C2.

v#0
The minimax estimator is given by setting, in (4.1),

(47) w, =39, forv=0 and w,,=3,b (1-y"%,), otherwise.

The form of the minimax estimator is worth noting, since it corresponds to a
diagonal matrix of weights and, hence, is an estimator of the form f(x) =
n~'Eb, 'u,y,(Y,)e,(x). Although the derivation of the estimator has been per-
formed for theoretical reasons, some examples of the use of estimators of this
kind are given by Jones and Silverman (1989). Similar results to Lemma 4.2 exist
for standard regression [for example, Pinsker (1980) and Speckman (1985)] and
for other nonparametric problems [for example, Buckley, Eagleson and
Silverman (1988)]. Our proof is an extension of that of Speckman [(1985), pages
981-982].

ProoF oF LEMMA 4.2. The condition [w(x, y)du(x) =1 for all y implies
that wy, = 1 and wj,, = 0 for » # 0. Let #" be the set of matrices W satisfying
this condition and for which ¥Xw? < co; the matrices W in # correspond
prec1sely to the estimators f in .Z,(n) We use Lemma 4.1 and find the
minimax value of the expression (4.2) over W in #” and f in &%. Let

(4.8) J(W) = sup {|I(I — WB)f||2 + n " tr W(I — el )WT}.
feF

Let W° be the matrix diag(w,,); we show that J(W) > J(W?) and, hence, that
we may restrict attention to diagonal matrices in #".
For fixed x in N, k # 0, let % be the set {f =1+ fq,, aZf? < C?}. Then

sup||(I — WB)f||2 = sup Y (w,o + w,.b, f. — f,)°

Z %

[3

Sup{wa + ( mc x 1)fx}2

(1 - w,b,)C?/al,

by picking out the « term from the summation and performing some elementary
algebra. Again by restricting the sum, we have

(4.10) ttW(I—eel)\Wi'=Y Y w2> Y w.

v#0 7#0 v#0

(4.9)

\

\%

Restricting the supremum to f in U%, and substituting (4.9) and (4.10), we
obtain '

(4.11) J(W) = sup(1 — w,b,)’C%/a2+n ' ¥ w2 = J(WO)

k#0 v+0
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by checking that every inequality in our argument is an exact equality when W
is diagonal.

Let y = sup, . o(1 — w,.b,)%a, % Now reason from (4.11) as in Speckman (1985)
to obtain (4.7); then substltute into the expression for J(W?°) in (4.11) and
minimize over y to complete the proof. O

To obtain corresponding results for the direct case, set the operator P to the
identity in the whole of the preceding argument. The minimax surrogate risk
ri(n) is given by (4.5) and (4.6) with all b, set to 1. The minimax estimator
n—lz,., W,e(X)p,(x) is a probability density estimate of tapered orthogonal
series form as introduced and studied by Watson (1969).

4.2. Integral approximation of the minimax risks. In this subsection we
explicitly approximate the expression (4.5), and the corresponding expression for
the direct case, to complete the proof of Theorem 3.2. We set # =%, o as in
(2.4) so that a? % = (J + 1)P(k + 1)P. The key to our treatment is the followmg
approximation lemma, obtained by approximating sums by integrals.

LEMMA 4.3. For any v, let L, denote a sum over
((k): 1< (j+1)(k+1) <n).

For fixedr > 0, as n = oo,

LG+ (k+1)"=(r+1) ' logn +2vg — (r+1)7"}
(4.12)

+ 0(1’r+1/2)’

where vy is Euler’s constant, and

Y(G+E+D)(G+1D)(B+1) =1a2(r+2) 'y+?
(4.13) (m

+ O(n"*'logn).

Proor. For the proof, we transform the sums by replacing j + 1 by j and
k + 1 by k; denote by ¥, the sum over the transformed range {(J, k): j > 1,
k > 1 and 1 <jk < n}. By symmetry in (j, k), the sum in (4.12) satisfies

(21 [mk™ 1 (/21 (/2]

1+S=Y7k=2Y k" Y - Y X JFk.

[n] k=1 Jj=1 j=1 k=1



266 I. M. JOHNSTONE AND B. W. SILVERMAN

From the relation X%_,j" = (r + 1)7'¢"*! + O(t"), we obtain

(/2]
S=20r+1)7" L k([0 + O(wk")}
k=1

{072+ o) -

(4.14) -1 _r+1 b -1 b r —1)7+1 —1]7+1
' =2r+ 1)t Y kT - X R {(nk) = [k
k=1 k=1

—(r+ 1)_2,”r+1 + O(nr+1/2)
=2(r+ 1) 'Y Llogn + v+ O(nV2)} — (r+1) !
+ 0(nr+l/2),

which yields the result of (4.12).
To deal with (4.13), we need an integral approximation, valid for s > 0 and
x=>1,

[x]
(4.15) Yji=(s+1) % +cx%,  0<|c,| <c,,
j=1

which follows from the bounds (s + 1)7'[x]**! < [f*lt* ds < Tl j° <
[+ ds < (s + 1)"[x + 1]°*. Assuming that 7 is an integer, it then follows
that

n  [nk7]
1+ er+1kr= Z k" Z jr+1
[n] k=1 j=1
i . -1 -1 r+2 i r 1 r+1
= Z k (r + 2) (nk ) + E k cr+l,n,k(nk )

(4.16) k=1 k=1

n
,nr+1 Ekﬁl)
1

n
(r+2)7 'w*2Yr2%2+0
1

=172(r+2) "2 + O(n"*'log ).

To complete the proof of (4.13), transform the sum to X,,(j"* k" + j7k™** —
J'k7). Then substitute (4.16) for each of the first two terms and use (4.15) to
absorb the third term into the error. O

COMPLETION OF PROOF OF THEOREM 3.2. We will have ya? < 1 if and only
if (j+ 1)(k+ 1) <y 7 and so the ( ), in (4.6) and (4.7) may be replaced with
() if the sums over all » are replaced by ¥, with n = y~1/P. The constants c,
will be defined as in Table 1.
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In the direct case, we replace J;, in (4.5) by Z,, and set all b, to 1.
Applying (4.12), (4.6) becomes

C*=n" ¥ (v, - a?)
()

(4.17) =n ' L {y 2+ DAk + )PP - (j+ 1)P(k + 1)7)
()

=n"'9P (¢, logn + cg) + n70(nP+1/2),

The substitution 1 = ¢, y/?*D reduces equation (4.17) with the error term
omitted to the form ylog y = ¢,nC? it follows that 7, as defined in (3.10) is the
solution for 7 of this equation. Apply similar manipulations to (4.5) to obtain

o) = n 7V X (1= v%,) = ey flog, + ¢} + n-'0(n2),
()
completing the proof of (3.11). To prove (3.12), substitute the definition of 7,
into (3.11) and use the fact that that a(x) = (x/log x){1 + o(1)} for large x.
For the indirect case, we use the values (2.7) for the b,. Equation (4.6) then
becomes

Cl=n' Y (j+E+D){y 2+ D (k+ 1) - (j+ 1)"(k +1)7}

(4.18) m
= con 'P*2 + n7'0(nP*log ).

where ¢, = (72/3)p(p + 2) " }(p + 4) 7. Set i, = (nC?/cy)/P*?, the solution
to (4.18) with the error omitted. Then the solution to (4.18) with the error
included satisfies = %, + O(log 7,). Substitute back into (4.5), apply Lemma
4.3 and perform some elementary algebra to obtain (3.13) and, hence, to complete
the proof of Theorem 3.2. O

To summarize this section, we have shown that, for linear estimators, the
indirect nature of the PET observations reduces the minimax rate of consistency
in mean integrated square error from O{(n/log n)~P/(P*D} to O(n=P/(P+2) It
will be shown in the next section that these rates of consistency are both best
possible even if we allow the class of estimators to be extended to cover all linear
and nonlinear estimators.

5. Lower bounds. In this section we establish lower bounds on the rates of
consistency of arbitrary estimators based on direct and indirect observations.
These lower bounds show that the minimax rates obtained for linear estimators
in Section 4 cannot be improved by extending the class of estimators considered.
As noted at the beginning of Section 4, this will complete the proof of Theorem
3.1.

5.1. Moduli of continuity and a general lower bound for global norms. Our
approach is based on Fano’s lemma of information theory, as developed by
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Ibragimov and Hasminskii [e.g., (1981)] and Birgé (1983), although a slight
extension of Birgé’s formulation is needed for the indirect observation case.
Although we continue to focus on the PET example, it will be seen that the
methodology applies quite generally to estimation with global norms in linear
inverse problems of both density and regression estimation type.

The convergence rate in the indirect problem clearly depends on the operator
P~! mapping the observable density g to the target density f. One convenient
approach to computing convergence rates has two parts: (i) compute a “modulus
of continuity” 7(e) for P~!, and (ii) argue that a lower bound to the minimax
convergence rate is given by (essentially) 7(n~1/?). This approach separates
stochastics and analysis: Step (ii) uses the information theory lemma to bound
the estimation error by 7(n~!/2), while step (i) is a concrete optimization
problem for the particular operator in question. This viewpoint was taken
recently by Donoho and Liu (1989) in their study of estimation of linear
functionals. We begin with step (ii), which computes a modulus o(8) that is more
convenient for the problems at hand. We return to step (i) in Section 5.2.

Suppose, in general, there are available n i.i.d. observations Y = (Y,,...,Y,)
from a density g(y) dA(y), y € D and that we wish to estimate f = P~'g. We
assume that f € #C H, and that % is a translate f° + H, of a set H, that is
balanced about the origin (h € Hy, = —h € H,). Let M be a finite-dimensional
subspace of H. We write |M| for the dimension of M and B,,(8) for the open ball
of radius & about 0 in M. The norm of the restriction of P to M is defined by
| Pl 5y = sup{||Ph||/||hll: h € M}. Finally, let #5={M: B,(8)c Hy). The
modulus ¢(8) may now be defined as

(5.1) o(8) = S inf{||P|ly/|M|"/%: M € My} .

Loosely speaking, o(8) measures the decay of the singular values of P relative to
the parameter space H,, at resolution 8. Since o is strictly increasing, a left-
continuous inverse 7(¢) = ¢~ (&) can be defined.

Let f e J;(n) be an arbitrary estimator based on Y. The significance of the
modulus functional is that an (often sharp) lower bound for the rate of conver-
gence of ||f— f|| over # is given by 7(n~'/2). For the proof we need an
additional assumption bounding the Kullback-Leibler information divergence
K(8. 85) = [ l0g(8./85)8, A\ over = PF:

(5.2) Forsome A < oo, K(g,,8) <Alg, — &l% foralg, g€ 9.
This condition will be satisfied provided the densities g in ¢ are uniformly

bounded above and below away from zero. In the context of Theorem 3.1, this is
a consequence of (2.11) and (2.10).

PRrOPOSITION 5.1.  If condition (5.2) holds, there exist constants d,, d, such
that
(5.3) inf supE,||f — f11% = dir?(dynV2).
1€71(n) feF

PROOF. Choose a subset #°= (f,,..., f.} CF that is 28-distinguishable:
namely, |f, — fall > 28 if o« +# B. Set g,= Pf, and write K"(g, 8p) =
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nf log(g,/8z)8.,dN, the Kullback-Leibler discrepancy based on a sample of
size n.

Consider the discrimination problem of choosing among the r hypotheses #°.
Given an estimator f € J;(n), define a discrimination rule p(Y™) taking values
in #° that picks the closest element in #° to f. Then, by elementary
probability and analysis,

supE/||f - f11> > sup E,||f — f|I*= 8% sup P,(||f - f|| > 8)
feF feF® feF®
(5.4)

287t L P (IIf -1l >8) 2821 ¥ P, {o(Y™) #1,),
a=1 a=1

since @(Y™) # f, implies that ||f — f,|| > &, because of the 25-distinguishabil-
ity.

By Birgé’s version [(1983), page 196] of Fano’s lemma, the average error rate
in the discrimination problem can be bounded below as follows:

rt ¥ B (e(Y®) #f,)

(5.5)
>1- { sup K™(g,,8&) + log2}/log(r -1).

l1<a,B=<r

Combining (5.4) and (5.5), and substituting (5.2), we obtain the lower bound

(5:6) 87*supE|f ~f|* 21~ {nA sup [P, — Pfi% + log2}/log(r - 1).
fesF 1<a,B<r

To make use of this lower bound, we use the metric dimension properties of #
and the operator P to construct a suitable set %#° for which r is large and
sup|| Pf, — PfB||§( is small. From the definition (5.1) of the modulus o, choose a
subspace M of H for which B,,(48) c H, and 48||P||,,/|M|"/? < 20(48). A
useful lemma of approximation theory [e.g., Lorentz (1966), page 905] asserts
that a k-dimensional ball of radius R contains an (R /2)-distinguishable subset

of cardinality at least 2*. Setting r = 2/™|, use this lemma to choose A, ..., k, €
B,,(46) such that ||k, — hﬂ|| > 28 and define the 25- distinguishable set .97 % by
fo=f%+ h, for a =1,..., r. By construction, for any a and B,
| Pf, — Pfsll%

5.7
(6.7) < NP3 fo — foll® < 2872 M|0(48)” - 6482 = 16|M|o(45)°.

Substituting back into (5.6), and performing some elementary algebra, we have
supg Ef||f f1I> > 8%[1 — d3no%48)] where d, is an appropriate constant.
Now choose § so that d;ns%48) =1 and the proof of Proposition 5.1 is
complete. O ‘

The estimation problem we study can be thought of as estimation of Qg,
where g € ¢ and @ (= P?) is an unbounded operator. The term “modulus of
continuity” might be more appropriately applied to a measure of the rate of
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growth of the singular values of @ relative to ¢. Indeed it is in this form that the
similarity to the modulus of Donoho and Liu (1989) is clearer. Now suppose that
@ is a translate g° + K, of a set balanced about the origin in K. We denote
finite-dimensional balls about 0 in K by U. Define the normalized radius p(U)
to be the radius of U divided by the square root of the dimension of U.

Define a generalized modulus of continuity of @ over the parameter space K,
by

(5.8) 7(e) = sup inf ||Qul|g,
vedU

where the supremum is taken over the class of finite dimensional balls U C K,
for which p(U) = e. Notice that if @ is a linear functional [so that (H, || - ||5) =
(R, | - ], the above definition reduces to

7(€) = sup{|Qv|: ||v||x = e and tv € K, for |¢| < 1},
which is the modulus of continuity studied by Donoho and Liu (1989).

It can be shown that 7 is approximately inversely related to the modulus o
defined at (5.1) in the sense that 7(0(8)) < §. Thus ¢ !(¢) > 7(¢), and so the
lower rate bounds derived from use of o are at least as good as those that would
follow from 7. It turns out that these rate bounds are in fact equivalent for all

the applications discussed in this paper. These results and extensions will be
discussed more fully elsewhere.

5.2. Completion of Proof of Theorem 3.2. We now return to the PET setting
to prove two propositions that complete the proof of Theorem 3.1. Both these
are proved by finding reasonable lower bounds to 7(¢).

PROPOSITION 5.2. - Subject to the conditions of Theorem 3.1, there exists a
constant d( p, C) > 0 such that

rp(n) = dy(log n/n)?/®*P,

ProoF. Set H=K = L*B,p) and P= 1. Let f° be the uniform density
and Hy=%, c— f 0, A good upper bound for ¢(8) as defined in (5.1) can be
obtained by considering high dimensional subspaces M subject to the constraint
that B, (8) C H,. For large 7, let M, = span{g,: a? < n”). Then BM(b‘) C H,
when 9? < C? /82 From the definition of o(9), it follows that

02(8) < 82/sup{|Mn|: 7P < C2/82}.

Using x to denote the characteristic function of a set, |M,| =
Yx{l <(j+ 1)k +1) <n}=nlogn{l + o(1)} by Lemma 4.3. Hence 02(8) <
d 8%P+V/P /log § 2, from which it follows that 72(e) > dj(e? log e "2)?/(P*D, so
that 7%(cn=1/2%) > d6(10g n/n)P/(P+1_Qubstitute back into Theorem 5.1 to com-
plete the proof. O

PROPOSITION 5.3. Subject to the conditions of Theorem 3.1, there exists a
constant d;(p, C) > 0 such that

r(n) > dl(l/n)p/(p+2)-
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Proor. Now take H and H, as above, and let K be the Hilbert subspace of
L*(D, \) generated by the orthonormal set of singular functions {,}. This time
a good bound for ¢(8) must use high-dimensional subspaces [with BM(S) C H,]
for which in addition || P||,, is small. For given n, set M, = span{g;y: 371 <j + 1
< 1}. Then ||P||M = max{b}: ¢, € M,} <27 'and |M, | > [1n]. As in the proof
of Proposition 5.2, By (8) c H, if 9 < Cc?/82. Substltutmg into (5.1), we have,
for sufficiently small 8,

0%(8) < 8%inf{2n~1/[4n]: 0P < C?/8?} = d,8%P+D/P,

Consequently 72(e) > dge??/P*? and 1%(cn~1/?) > dyn~P/P*? which, as above,
can be substituted into Proposition 5.1 to complete the proof. 01

We close this section by remarking that Ibragimov and Hasminskii (1981) and
Stone (1982) have shown that the minimax rate of convergence of global mean
integrated square error for direct nonparametric density and regression problems
is n=2P/@rP*+d where p is the assumed amount of smoothness and d is the
dimension, d = 2 in our case. They consider classes of functions constrained by a
Holder continuity condition of order a € (0,1] on the sth derivative, so that
p = s + a. The extra log n term in the rate of convergence (log n/n)2?/@r+d
obtained in the present paper reflects the slightly reduced smoothness imposed
by requiring only square-integrability of the pth weak derivative.

6. Biased sampling and attenuation. In any practical PET scan, not all
pairs of emitted photons are detected. We shall show in this section that two of
the main reasons for this incompleteness of sampling can be placed within the
same mathematical framework, and that our results can, in part, be extended to
account for them. Under mild assumptions, the incompleteness of sampling has
no effect on the minimax rate of consistency found in Theorem 3.1.

6.1. The effect of the third dimension. Up to now, we have considered the
detectors as forming a circle in the plane, and we have assumed that all the
paths of emitted photons fall in this plane. Of course, in reality the detectors
form a ring of finite thickness d > 0, and the orientation of the line of flight of
the photons is uniformly distributed in R®. We shall assume that the emission
density is constant over the thickness of the cylindrical slab enclosed by the
detector ring. Only emissions taking place in this slab will be considered, since
only they have any chance of being detected at all.

Given any emission, the photon line-of-flight is now parametrized by three
coordinates (s, ¢, ¢’), where (s, ¢) are the coordinates in detector space of the
projection of the line onto the detector plane, and the vertical angle ¢’ (—7/2 <
¢’ < w/2) is the angle between the line and its projection. The assumption that
the line has uniformly distributed direction implies that, independently of (s, ¢),
the vertical angle has probability density 1 cos ¢’ d¢’. An emission line will only
be detected if its vertical angle is such that both photons hit the detector ring. If
the emission is detected, only the coordinates s and ¢ are observed.
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Fic. 4. The two cases for @,.

Condition on a particular s and ¢, and let I = 2(1 — s2)!/2, the length of the
corresponding detector tube. Assume that an emission takes place at distance ¢
from the centre of the tube and at vertical position Z as shown in Figure 4.
Assume that the projection of the line of flight of the emitted photons has
coordinates (s, ¢). Let (—¢,, ,) be the range of vertical angles over which both
photons will hit the detectors. For given ¢, and ¢, the probability of detection
will be

P2 . .
/ 3cos @’ do’ = L(sing, + sing,).
%

We have (see Figure 4)

Z/(t+ 1) if Z < (t+ )d/I,

tan ¢, =
¥2 {(d - 2Z)/(3—t) otherwise.

By assumption, Z is uniformly distributed over (0, d). By elementary calculus,
the expected value of sin ¢, over this distribution of Z is equal to

d- f(lﬂﬂ)dﬂ [tan_l{z/(’l+ t }]dz

;1 1
*d fl/2+t)d/18m[tan {(d - Z)/(El - t)}] dz

(6.1)

=d Y4+ t)fd/lsin(tan‘1 u)du+d (i - t)/’d/lsin(tan‘1 u)du
0 0

= d-u{(1 +a%/12)"" - 1}.

By symmetry, the expected value of sin ¢, and, hence, the expected probabil-
ity of detection conditional on s, ¢ and ¢, will also be equal to the expression in
(6.1). Note that this probability is independent of ¢ and only depends on the tube
length I. Letting a;.(s, ¢) be the probability that an emission in tube (s, ) is
actually detected, if follows from (6.1) that

asp(s, ¢) = {4(1 — s2)d 2+ 1}"" - 2(1 - 52)"/%d"1,

This quantity increases as s increases, reflecting the fact that emissions in
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shorter tubes (large s) are more likely to be detected. We have, finally,
0<(1+4d2)"*-2d 1<a(s,p) <1 foralse[0,1].

6.2. Attenuation. The other effect we shall consider is attenuation, defined
as being the loss of a detection caused by the absorption or scattering of one of
the photons in flight. Let us model the probability of such loss of a photon as it
travels between x and x + dx as p(x)|dx| and assume that p(x) is bounded.
Suppose an emission occurs at a point x, and that y is the line of flight of the
emitted photons. Let y,(x,) and y_(x,) be the half-lines of y emanating from
X,, and assume Yy intersects the detector ring. By standard Poisson process
theory, the probability that neither photon will be lost is given by

exp{ -f dx} exp{ - dx} _ exp{ - [px) dx}

¥+(Xo ~(xo)
= aA(s7 (P) say.

Just as in Section 6.1, the probability that the emission will be detected depends
only on the detector tube (s, ¢) and is independent of the emission’s position
within that tube. In general, if both effects are considered, the probability that
any particular detection will not be lost will be a,.(s, @)a (s, ). Both effects
are important in PET; intensities reconstructed ignoring them can, in practice,
be too low by a factor of three in the centre of the image (F. Natterer, personal
communication). A common technique for correcting for attenuation is to esti-
mate it separately, for example by a transmission scan.

6.3. A general framework and the extension of our results. The two effects
we have discussed can be combined by assuming the existence of a function
a(s, ), 0 < a(s, ¢) < 1 such that a positron emission at (x,, x,) gives rise to a
detection at (S, @) as defined in Section 2.1 with probability a(S, ®) conditional
on (S, ®); with probability 1 — a(S, ®) the detection is lost. It follows from this
formulation that the observed detections will form a biased sample with density
in detector space with respect to dA(s, ¢)

8.(5,9) = P.f(5,9) = a5, 9)Pi(s, ) | [ Pi(s,9)als,9) dA(s,#).

Let p(n) be the class of all estimators of f based on a sample of size n from
P, f, and let rg(n) be the minimax mean integrated square error over f in J4(n)
and f in &, .

THEOREM 6.1. Suppose that inf;, a(s, ¢) = a, > 0, and make the assump-
tions of Theorem 3.1. Then
(6.2) rB(n) = n_P/(P+2).

Proor. The order of magnitude in (6.2) is of course the same as that
obtained for unbiased indirect estimation in (3.5).
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Suppose, first, that f is the least favourable density in &%,  for estimation
by estimators in Z;(n). Let n’ = [1a,n]. Suppose Y}, Y,, ... is an ii.d. sequence
drawn from Pf. Construct an i.i.d. sequence Z,,... from P,f by including each
Y, in the sequence with probablhty a(Y) = a,. Let f be the estimator of f
based on Z,,...,Z, using the minimax estimator in Jz(n’), so that M( fif)<
rg(n’). Now let N be the number of Y,,...,Y, that are included in the Z,
sequence, and let fl be equal to f if N > n’ and 1 otherwise. Since fl is based
onY,..., Y, and since f isleast favourable for 7;(n), we have M( fl, f) = ri(n).
By an elementary argument, M(f; ) < M(f; f) + P(N < n))[(f — 1)®dp, so
that rg(n’) > r(n) — P(N < n’), making use of Proposition 2.3 and the assump-
tion C < 2(»~Y/2 to bound [(f— 1)2 by 1. A crude bound now suffices for
P(N < n'); since N is stochastically larger than a Bi(n, a,) random variable,
P(N < n') < P(Bi(n, a,) < tna,} = O(n™") by Chebyshev’s inequality. We
conclude that rg([ina,]) = r/(n) — O(n™").

Now reverse the role of biased and unbiased samples throughout the argu-
ment. If Z,... is an i.i.d. sample from P, f, then a sample Y}, ... from Pf can be
constructed by including each Z, with probability a,/a(Z;); this quantity
necessarily lies between a, and 1. The analogous argument to that used above
yields that r;([1na,]) > rg(n) — O(n™"). Applying Theorem 3.1 it now follows
that rg(n) has the same order of magnitude n~?/(?*? as ry(n). O

There is, of course, a distinction between a biased sample of n observations
drawn from P,f and a censored sample consisting of all the observations that
are detected arising from n emissions in brain space. The censored sample will
consist, in the notation of the proof of Theorem 6.1, of N observations from P, f.
Implicit in the proof of Theorem 6.1 is a demonstration that the minimax mean
integrated square error for estimation based on this censored sample will have
the same order of magnitude as r;(n) under the assumption a, > 0.

For the third dimension effect, as the detector ring thickness d — 0, we have
asp(s, @) ~ 1d(1 — s?)7/% and a, — 0. In the limiting case, the biased sample
density will be proportional to (1 — s2)~/2Pf(s, ¢), whose ratio to Pf(s, ¢) is
unbounded as s — 1. Theorem 6.1 no longer applies, but it can be shown that the
biased sampling has at most a logarithmic order effect, in that the order of
magnitude of ry(n) lies between (nlogn) ?/P*? and n~P/(P*2, This is a
consequence of the following more general result on singular biased sampling,
whose proof is omitted.

THEOREM 6.2. Supposep > 1and 0 < C < 2P~/

@) If [pa(s, ) 'Q — s?) 1 dA(s,p) < o, then there exists c, such that
rg(n) < ¢;n~P/(P+3,

(b1) If [pa(s, ¢)1 — s2)"1dA(s, ¢) < oo, then there exists c, -such that
rg(n) > cyn -p/(P+2)

(02) If [pa(s, @) dA(s, ) < oo, and sup(l — s2)"/%[7"a(s, ¢) de < oo, then
there exists c, such that rg(n) > ci(nlogn)~P/(P*2),
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For a(s, ) = (1 — s?)7'/2, the conditions of (a) and (b2) hold but the integral
in (bl) is infinite.

7. Alternative error measures. Our results can be extended to some more
general measures of the discrepancy between the estimator and the unknown
function than mean integrated square error. We can treat a class of losses that
takes into account the closeness of derivatives, as well as values, of the estimate
to those of the true unknown function; these losses take more account of the
“shape” of the function than does ordinary mean integrated square error.

Define measures 1, as in Proposition 2.2. It is noted in the Appendix that, for
integers ¢ > 0, the squared norm

(7.1) Jiftdu + X flontri/oxg oxpp® i,

ntr=q

is equivalent to

(7.2) If1z="X (j+1D%(k+1)%2

J, k=0

For noninteger values of g, the norm || - ||, will be a more general Sobolev norm
[Adams (1975)], although some care will be necessary because of the nonstandard
dominating measures p; this is a topic for future investigation.

We can now state and prove a theorem that gives the exact minimax rates in
the || - ||, norm for both direct and indirect estimation. Theorem 3.1 is the special
case ¢ = 0 and it can be seen that the rates available are both reduced, in a
natural way, when higher order norms are used.

THEOREM 7.1. Forfixedp > 1,0 < C < 2»"Y2 gqnd 0 < q < p,

inf sup E||f - f1I2 = (log n/n )P~ 2/(P*D
fegp(n) feZ ¢

and

2
inf sup E||f—f|2= (1/n)P /"2
fegi(n) feZ ¢

Proor. The proof is analogous to that of Theorem 3.1 and we shall confine
ourselves to a brief outline of the' necessary changes. Define c? = k=
(J+ D%k +1%and T = diag(c,). To ~obtain upper bounds, define the surrogate
risk MX(f; f) = L,c¥{var, f, + (E;f, = £,)?). The result corresponding to
Prop0s1t10n 2.1 is immediate. As in Lemma 41,

MX(f; f) =n " tr TW(I — el )WTT + ||T(I — WB)f|%.

As in Lemma 4.2, the minimax surrogate risk for linear estimates over the
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ellipsoid %#, . is given by n 1Z(,,)(czb 2 — ¢,b7%,y'/?), where v is chosen to
satisfy n™'E, (a,c,b,%y"/? — a2b, %) = C? So long as g < p, we obtain surro-
gate linear minimax rat&s of convergence equal to (n/logn) (P~9/(P+D) gnd
n~(P=9)/(P+2) in the direct and indirect cases respectively. Clearly it would be
possible to obtain more precise results corresponding to Theorem 3.2, but we
shall refrain from doing so.

The methods of Section 5 show that these are in fact the exact minimax rates
of convergence for the || - ||, norm for general estimators. From Proposition 5.1, it
is only necessary to compute the modulus o(8) of (5.1), now with respect to the
| - llq norm on H. This calculation goes as in Propositions 5.2 and 5.3, even using
the same deﬁmtlons of the subspaces M,. Since the || - ||, norm is now used on

||P||M = sup{b’c, > ¢, € M,} and BM(8) C H, if n?79 < C?/8% With these
changes the proof is completed O

8. Some concluding remarks. This paper has focused on lower and upper
bounds for one particular bivariate density estimation problem for indirect data.
The same formalism applies to many other density and regression estimation
problems. The celebrated “unfolding” problem for sphere size distributions is an
example involving univariate density estimation from indirect data and the
singular value decomposition of the Abel transform. For recent results and
further references on this problem, see, for example, Hall and Smith (1988),
Nychka and Cox (1989), Silverman, Jones, Wilson and Nychka (1990) and Wilson
(1989).

Noisy integral equations of the form y, = (Pf)(¢,) + ¢; can be treated using
our methods, at least under appropriate assumptions on the distributions of
(t;, €;). For example, if the observation points ¢, follow a known distribution
A(dt) and the errors ¢; are independently Gauss1an (0, 02), then the information
divergence between the hypotheses f, and f, is K(P{™, P{™) = n[{Pf(t) -
Pf,(¢)}2A\(dt), so that the lower bound methods of Sectlon 5 1mmed1ately apply.
Upper bound results are given, for example, by Nychka and Cox (1989).

For a generic one-dimensional problem with singular value decomposition
Py, = bg,, b, ~ v ™8 and with ellipsoid determined by a2 = »2% corresponding
to “a derivatives,” the exact minimax rate of convergence of the mean square
error in n~2¢/@2*+28+D  This should be compared with the exact rate of
n~2e/@=*+1 for the corresponding direct case. Related calculations for a large
class of one-dimensional convolution equation models appear in Wahba and
Wang (1987).

One important topic for future attention is the effect of the discretization of
detector space due to the finite size of the detectors. It is clear intuitively that if
the number of detectors is sufficiently large relative to the size of the sample
collected, then the minimax rates will not be affected, and of course it would be
interesting to quantify this notion more precisely. Some PET machines [see, for
example, Snyder and Politte, (1983)] are able to use time-of-flight information to
provide an approximate indication of the place in the detector tube where an
emission occurs. This is usually accompanied by a loss in detector efficiency and,
hence, a smaller sample size n. It would be desirable to extend our framework to
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make a quantitative evaluation of this trade-off. Kaufman, Morgenthaler and
Vardi (1983) report some earlier work on this issue.

Another issue that could be explored is the further extension of our results to
deal with more general metrics on images. Finally there is very little known
about the theoretical performance of algorithms commonly used in practice; our
results at least provide a framework and a benchmark against which particular
algorithms can be judged.

APPENDIX

PROOF OF PROPOSITION 2.1. The proof is elementary. Consider the direct
case first. Suppose = is a random variable drawn from the uniform density and
that X is a random variable with density f. Then var,; f(x) /var, f(x) =
n~!var w(x, X)/n" ! var w(x, Z). Now

var w(x, X) < E{w(x, X) — Ew(x, £))*
= [{w(=,¢) - Bw(x, 2)}*f(£) dp(¢)

< supg f/{w(x, ¢) — Ew(x, £))* d¢ = supy, fvar w(x, E),

and similarly var w(x, £) < supg(1/f )var w(x, X) = var w(x, X)/inf, f. Thus
var, fA/var1 f, and hence M /M?*, is bounded between inf f and sup f. In the
indirect case an exactly analogous argument bounds M /M* between inf,;, Pf and
supy, Pf. It follows from (2.1) that inf,, Pf > inf, f and that sup, Pf < supj f,
completing the proof. O

PROOF OF PROPOSITION 2.2. We employ Gegenbauer (ultraspherical) polyno-
mials as normalized in Gradshteyn and Ryzhik [(1980), page 827]. An orthogonal
basis for L% B, p,) is given by the polynomials

¢%(x) = (27) 7" fo%ei(j_k)”(l'jﬂk(ugx) df  j,k>0,u,=(cosf,sinf)".

Defining the operator (P, f )(s, 8) = E{ f(X)|uj X = s}, where X ~ p_, the poly-
nomials ¢, are the pullback by the adjoint P* of the singular functions
e'V=RiCe (s) of P,P¥. This construction of the SVD of P, is explained in
Johnstone (1989), following Davison (1981, 1983) but with different notation and
normalizations. It can be shown that @, = (j+ &+ 1)""%p,, so that f =
(] + k+ D28,

Let D, = 3(d/9x, —i3/dx,) and D, = }(8/9x, + i 3/3x,). Since. (d/dt)C*

= 2aC;~ 1, we have, setting ¢;, = 0if j or k <0, D¢ = a¢? !, and D5, =
a@; 3L ,. The raising of the index from « to a + 1 leads us from the original

measure u of Section 2 to the family Bp+1> SO that, for example, the family of
derivates D,p, and D,g, is orthogonal with respect to p,, not p,. O
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It is shown in Johnstone (1989) that if r + s = p, then, for certain constants
C,urs all falling in [(p + 1)72P*1, (p + 1)p?P],

. o 2
J(DID2F ) dppuy =PV T (G + b+ D[ (675%) dipn
koo
= T (i + Dk + 17 (p + DL

jzr
k>s

Standard arguments of analysis complete the proof. O

ProoF oF PROPOSITION 2.3. In the complex form of the basis, we have
f(r,6)= ¥ fu(i+k+1)2VRZU5H(r).
(j, k)eN’
Zernike polynomials satisfy sup, ., ;|Z5(r)| = Z!(1) = 1, as a consequence of
the representation in terms of Jacobi polynomials: Z},,(r) = r'P®52r? — 1),
together with the results of Szego [(1938), page 163], applied to the polynomials
QL(t) = P%!(2t — 1) as s varies. Hence
. 2
suplf =11 < X (J+k+ 1)l
N'\(0,0)
The ellipsoid %,  has exactly the same description in terms of either the real or

the complex form of the basis. Setting x; = (j + 1)?/%(k + 1)?/*|f,|/C, we
obtain

supsup|f — 1] < Csup{ Y (j+E+ D)+ 1)k 1)_p/2xjk:

F,c N'\(0, 0)
Y xf-k < 1}
N'\(0,0)
<C sup (j+E+1D)72j+1)P2k+1)P?%=C207P02
N'\(0,0)

provided p > 1. To complete the proof, note that the linear function 1 +
20-P)/2Crcos § falls in %,  and satisfies sup|f — 1| = C207P72 O
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