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We present a simple but universal technique for the construction of
TIPS sampling designs. A tool that is used in the construction consists of
playing a game in which objects are removed from N boxes, n at a time, and
at most one from each box at a time. Necessary and sufficient conditions on
N, n and the contents of the boxes are established such that all boxes can be
emptied by this process.

It is shown that every IIPS design can be derived from such a game.
Sampling designs with additional properties are obtained through additional
restrictions on emptying the boxes. Various rigorous methods are presented,
complemented by numerous suggestions. The emphasis is on controlling
sample selection probabilities and inequalities for the first- and second-order
inclusion probabilities. The method is very adaptive to computer use.

1. Introduction. Consider a finite population consisting of N identifiable
units, say 1,2,..., N. Associated with the ith unit is an unknown quantity y,,
which, if desired, can be observed. The objective is to estimate 7' = XN |y, the
population total, based on a sample of size n. We further assume that a known
positive quantity x, is associated with the ith unit and that there is reason to
believe that the y,’s are approximately proportional to the x,’s. Various sampling
and estimation techniques have been suggested in the literature, to utilize the
information contained in the x;’s for obtaining estimates of the population total
with a higher precision. Many of these are discussed and compared in Brewer
and Hanif (1983). One of the more popular strategies is the use of so-called I1PS
sampling designs in conjunction with the Horvitz—Thompson (1952) estimator
for T. To introduce this strategy explicitly we need some notation. Instead of
using the quantities x;, it is more convenient to use

2= X (ng)’

J=1

also called the (normed) size measure of unit i. A fixed size n IIPS sampling
design based on the units 1,2,..., N with size measures z,, 2,,..., 2y is a pair

d= (Sd’ Pd)’
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with the following properties:

1. S, is a collection of subsets of {1,2,..., N}, all of which have cardinality n.
2. P, is a positive function on ;.

3. Lyes, Pa(s) = 1.

4. X cg, 50 Pu(8) =nz; fori=1,2,...,N.

The elements of S, are the possible samples, together forming the support of
d. Without loss of generality we will restrict our attention to what is known as
reduced sampling designs. This allows us to present a sample as a subset of the
units instead of an ordered n-tuple based on the units. The cardinality of S; is
the support size of d, while P,(s), s €S, is the probability that s is the
selected sample. The quantity ¥, cg, s5:P4(s) is usually denoted by #; and is
called the first-order inclusion probability for unit i under d. The second-order
inclusion probability for i and j, i # j, under d is defined as ¥ g, 55 ;Fu(S)
and denoted by =;;. With such a sampling design, the Horvitz—Thompson
estimator for T is defined as

T = Z Y, i/ Tis
i€s
where s is the sample selected through d. It can easily be shown that T is an
unbiased estimator of T. The variance of T, say V, may be expressed as

2
(1-1) V= ZZ(’G’T]’_ Wij)(.)’i/”i—yj/ﬂj) .
i<y
This expression was first derived by Sen (1953) and Yates and Grundy (1953).
Unbiased estimators for V exist if and only if 7;; > 0, i # j. Under that assump-
tion, the following expression provides us with such an estimator, also called the
Sen-Yates—Grundy variance estimator:

(1.2) V= ZZ((Win - Wij)/”ij)()’i/”i - yj/”j)z-
i,l;és

There are a few things we can learn from looking at the expressions in (1.1)
and (1.2). First of all, assuming that we use the Horvitz—Thompson estimator,
we would like to use a design d with the 7,’s proportional to the y,’s. This would
minimize the expression for V. Since the y,’s are unknown, we have to settle for
the next best thing and use a design with =,’s proportional to the known x’s.
This is exactly condition 4 in the definition of a IT PS sampling design and is the
main motivation for the use of these designs. But, if possible, we would like some
other conditions to be satisfied. Obviously we like «,; > 0 for all i # j, due to
(1.2). Since not everyone is comfortable with a negative variance estimate, we
would also like that m;; < mm;, since this guarantees that V is nonnegative.
Although other selection procedures with different estimators are available,
there is neither theoretical nor empirical evidence that any of these are superior
to the strategy described here.
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In addition to the desired properties of a IIPS sampling design, as just
pointed out, it is not inconceivable that some other properties of the design are
desired. For example, certain samples may be considerably more expensive or less
convenient to implement than others. We might want to manipulate the support
of the design to exclude such samples from it, without violating the other
properties. In a general context, the problem of manipulating the support or
sample selection probabilities was already recognized by Goodman and Kish
(1950). For most of the existing construction techniques for IIPS sampling
designs, the support consists of all ( ) possible samples, with no room to
manipulate the function P,(s). The most noteworthy exceptions to this are
formed by Hedayat and Lin (1980a, b, c), a foundation for the current work, by
Nigam, Kumar and Gupta (1984) and by Gabler (1987). However, it was already
shown by Wynn (1977) that for any sampling design there exists a sampling
design with the same first- and second-order inclusion probabilities and a
support size of at most N(N — 1)/2. Unfortunately, the proof is not construc-
tive.

The approach used in Gabler (1987) is to construct IIPS sampling designs
with their support imbedded in an a priori selected set. Although this is a nice
idea, the method does not always work. It could be that there simply is no IIPS
design with the desired support or that capturing such a design is not possible
through Gabler’s theorem. Even in cases where the technique works, it is not
immediately clear how the initial choice of a sampling design influences the
resulting ITPS design. It is in particular not clear how to guarantee that some of
the inequalities for the inclusion probabilities are satisfied.

Some of the techniques in Nigam, Kumar and Gupta (1984) resemble those in
Hedayat and Lin (1980c). Their methods heavily emphasize the use of balanced
incomplete block designs and can be readily adapted to the technique described
in this paper. The same authors, Gupta, Nigam and Kumar (1982) and Kumar,
Gupta and Nigam (1985), also present methods based on balanced incomplete
block designs to manipulate the support of IIPS designs. These methods can be
useful for some situations, but do not have the same versatility as the current
method.

The technique introduced by Hedayat and Lin (1980c) is especially well-suited
for manipulating the sample selection probabilities and reducing the support size
of TIPS designs. This paper describes the method and discusses various new
results and ideas related to it. The method is extremely flexible and gives a lot of
freedom to choose the support of the desired ITPS samplmg design. Though it is
this generality that makes the method so useful, it is also the cause of some
complications. If there exist designs with some specified properties, they can
always be obtained through this method; however, it may occas1onally be hard
to uncover them.

2. Emptying of boxes. The connection between the problem to be de-
scribed in this section and that of the previous section may not immediately be
clear. However, an explanation is postponed to Section 3.
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In this section, we assume there are N boxes, labeled from 1 to N. Each box
contains a certain number of objects, denoted by &; for the ith box. A round of
size n is defined as the action of removing n objects from these boxes, with the
restriction that at most one object can be removed from any box in one round.
We will represent such a round by the n labels of the boxes from which an object
was removed, for example {i,, i5,..., i,}. A game is a sequence of rounds, which,
if used in succession, would result in emptying all of the boxes. For example, if
N=4,n=3,k =ky=3, ky=2and k, = 1, then the rounds {1,2,3}, {1,2,4}
and {1,2,3} form a game. The class of all possible games for fixed N, n, k,,..., ky
will be denoted by 9(N, n; k,, ..., ky) or simply by %. The followmg theorem
gives necessary and sufficient condltlons for ¢ to be nonempty.

THEOREM 2.1. For given N,n,k,,..., ky, a corresponding game exists if
and only if:

i) n < N.
(i) N ,k; = 0 (mod n).
({ii) TN ,k; > n max; k;.

Proor. For the necessity, by the definition of a round it follows that (i)
holds. Also, since a game consists of (Z.,k,)/n rounds, (ii) follows. Finally, if
k;> (ZN_,k,)/n, a game does not consist of enough rounds to empty box j; thus
(111) must hold To prove the sufficiency, it suffices to construct a game under the
assumption that (i), (i) and (iii) are satisfied. For the first round take
(i1, 19+ .., i,} such that

(2.1) min{k;: i € {i,...,1,}} = max{k;: i & {i},..., 0,}}.

Thus we remove one object from the n boxes with the largest content. In case
there are ties, an arbitrary choice is made. The next round is now selected using
the same procedure, but with the k,’s replaced by k/’s where k/ denotes the
number of objects in the ith box after the first round. Subsequent rounds are
selected in the same way, each time considering the contents of the boxes after
all previous rounds have been played. To see that this procedure indeed gives us
a game, it suffices to show that if (i), (i) and (iii) are satisfied and (i, ig,..., iy}
satisfying (2.1) is used as a round, then (i), (ii) and (iii) are again satisfied after
this round is implemented. This is obvious for (i). With k/’s as above, the new
condition under (ii) becomes

N
Y k! =0 (modn).

This is clearly satisfied, since LN k! = LNk, — n =0 (mod n). For (iii), if
max, k! = max, k; — 1 this is obvious, since

N N
S ki=) k —n>nmaxk —n—nmaxk’

i=1 i=1

However, it could be that max; k! = max; k;. This can only happen if there are,
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before playing this round, at least n + 1 boxes which are tied for the largest
contents and thus a strict inequality holds in (iii). Using (ii) we obtain that

N
nmaxk{=nmaxkisn((Zki)/n—l)
13 13 i=1

N N
i=1

i=1

This concludes the proof. O

For a game g € ¥ we define S, as the set of all subsets of {1,2,..., N}
corresponding to rounds in g. We also define C, as the function on S, that gives
the frequency with which an element of S, is used as a round in g. We will
identify g with the pair (S,, C;). Two games can only correspond to the same
pair if the rounds in one can be obtained by a permutation of those in the other.
Thus with N=4, n=3, k; = k,=3, k;=2 and k, =1, the game {1,2,3]},
{1,2,4} and (1,2,3} is identified with (S,, C,), where S, = {{1,2,3}, {1,2,4}},
C,({1,2,3}) = 2, C,({1,2,4}) = L.

3. The construction of IIPS sampling designs by emptying boxes. In
this section we will show how the two problems of the previous sections are
related to each other. More precisely, we will show how, for given rational size,
measures 0 < 2; < 1/n, LN 2z, =1 and n < N, I1PS sampling designs of fixed
size n can be constructed by playing a game as described in Section 2. The
requirement that the size measures have to be rational is not a restriction, since
it is satisfied in any practical problem. The condition z; < 1/n is not restrictive
either, since for any IIPS design we have that ;= nz; < 1. If 2, = 1/n, unit :
has to be included in every sample of the support, so that the problem reduces to
one with N — 1 units and fixed sample size n — 1.

So let N, n and the 2;’s be given. Find any positive integer g such that gnz; is
an integer for all i. Now label N boxes and put k; = gnz; objects in the ith box.

THEOREM 3.1. With the above k,’s a game consisting of rounds of size n can
be played to empty the N boxes.

Proor. We verify the three conditions in Theorem 2.1. Condition (i) is
satisfied by assumption. Further,

N N
Y ki=qgn) z;,=qn=0(modn).
i=1 i=1

Finally

N
Y k;=gn > n max gnz; = n max k;.
i=1 : '

Hence the result. O
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Thus let g = (S,,C,) be a game in 9(N, n; ky,..., ky). Now define a sam-
pling design d = (S,, P,;) as
Sd = Sg,
P,(s) =C,(s)/q forseS,.

To see that d is a II PS sampling design with the desired first-order inclusion
probabilities, we note that the first two conditions in the definition of such a
design are trivially satisfied. Further,

Z P,(s) = Z Cg(s)/q= ;ki/nq= _;lzi= 1,

seS, seS,
while
Y Pus)= % C/(s)/q="k;/q = nz,.
seS, sES,
CEY s>

Thus conditions 3 and 4 are also satisfied and the link between the first two
sections has been established. Obviously the given construction can generally
lead to many different IIPS designs. Not only can there be many games in
G(N, n; ky,..., ky) with different supports and /or counting functions, but we
also have an infinite number of integers ¢ that can be selected. Generally, the
larger the selected value of ¢ is, the more elements are contained in
Y(N, n; ky,..., ky).

The generality of the technique is most accentuated by the following result.

THEOREM 3.2. For any I1PS sampling design with rational selection proba-
bilities there exists a game g that induces the design through the preceding
identification.

Proor. Let d = (S,, P;) be a I1PS sampling design of fixed size n based on
N units with size measures z,, ..., zy and with P,(s) rational for s € S,. Take a
positive integer g such that gP,(s) is integral for all s € S,. Let k, = gnz,,
which is now also integral, and define g € 9(N, n; k..., ky) to be any game
with
Sg = Sd
and ‘

C,(s) = qP;(s) forseS,.

It is easy to verify that g = (S,, C,) is indeed an element of (N, n; ky,..., ky)
and that the corresponding sampling design is the design d as above. O

Obviously the above result is not useful in selecting an appropriate value of g
for given size measures z; nor is it useful to select a particular game in
G(N, n; ky,..., ky). The only value of the theorem is that it states that we can
restrict our attention to designs derived from the games as in Section 2, without
the fear of missing any sampling designs with desirable properties.
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4. The maximum sample selection probability and the minimum sup-
port size. Given values for N, n and the size measures, two questions of
interest arise. First of all, for a specified sample s, what is the largest selection
probability it can have under a TIPS design with the desired first-order inclusion
probabilities? Second, what is the minimum support size for IIPS sampling
designs with these first-order inclusion probabilities? We will study these ques-
tions by considering the classes of games, depending on the choice of g, corre-
sponding to these values for N, n, z,, ..., zy.

For the moment we will assume that a particular value of g has been selected,
so that ngz; is integral for all i. The maximum frequency with which a round s
can be played in a game g € (N, n; k,,..., ky) is given in the following result.

THEOREM 4.1. Let 9(N, n; ky,..., ky) be a nonempty collection of games.
If s€ S, for a game g € 9(N, n; k,,..., ky), then
N

C,(s) <min| min k;, ) k;/n — max k,|.
ie i=1 i€s

Moreover, there exists a game for which this upper bound is achieved.

PROOF. Let m = min(min; ., k;, LN 1k;/n — max, . k;). It suffices to show
that if s is played in the first m, rounds, the boxes can still be emptied, while if
s is played in the first m_ + 1 rounds this is not possible. After s is played in the
first m, rounds, we have, denoting by &/ the contents of the ith box,

N N
Y ki= Yk —mn=0(modn)
i=1

i=1

and

n max k} = nmax( max k; — m,, max ki)
13 i€Es i€s

N
< nmax(max ki—mg,, Y k,/n— ms).
i€s ;
=1

N N N
=n(>:k,-/n—ms) Y k- m, = 3 kL
i=1 i=1

i=1
Hence, by Theorem 2.1, the boxes can still be emptied. On the other hand, if s is
played in m_ + 1 rounds, then m, = ¥N k,/n — max, . k;, since min,_, k; >
m, + 1. Therefore

N
nmax k! >nmax k! =nmax k;= Y k,— nm,
i i€s i€Es i=1

N
> ) k.
i=1

Thus condition (iii) in Theorem 2.1 is now violated. This proves the result. O
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With the minimum support size of a class 9(N, n; k,, ..., ky) we will mean
min{|S,|: g € (N, n; ky,..., ky)}.

It should be observed that the result of Theorem 4.1 can be used to show the
following.

THEOREM 4.2. An upper bound for the minimum support size of a nonempty
G(N,n; ky,..., ky) is given by N.

Proor. We will construct a game g € 9(N, n; ky,..., ky) with |S,| < N.
Take any round s for which m_, as defined in the proof of Theorem 4.1, is
positive. Since 9(N, n; k,,..., ky) is nonempty, it is obvious that such an s
exists. In fact, one possible choice is s = {i,...,i,} for which max;. k; <
min; ., k,;. Play m_ rounds using s. Repeat this procedure for the new situation,
using the new contents of the boxes. Continue like this. Each time there are two
situations that can occur. It could be that m, = min,;_ k,, for the k;’s after the
previous rounds or m, = XN |k, /n — max, ., k;. If the first happens we say that
s is of type 1; otherwise, we say it is of type 2. If s is of type 1, by playing it m,
times we empty at least one box. If s is of type 2, by playing it m, times we
create a box that has to be included in any round from here on. Since the last
round of the game will empty n boxes simultaneously, there are under our
procedure at most N — n + 1 rounds of type 1. Clearly there are at most n
rounds of type 2. Some rounds may actually be of both types and if we denote
the distinct rounds by s, s,, ..., s,, used in this order, then it is not hard to see
that s,_, is of both types. After s,_, has been played m,_ times, there are only
n nonempty boxes left. If s,_; is not of type 1, it must be the set of labels
corresponding to the n nonempty boxes; but then s, ; can be played in
additional rounds, a contradiction with Theorem 4.1. Hence s,_; must be of type
1. Since not all of the n boxes were used in s,_;, but all of them have to be used
from now on, we see that it is also of type 2. Therefore, our procedure gives a

sampling design with a support size of at most
(N-n+1)+n-1=N.
Hence the result. O

The counterparts of Theorems 4.1 and 4.2 in the language of sampling designs
are formulated in the following two corollaries. The first of these follows from
Theorems 4.1 and 3.2; the second is a consequence of Theorems 4.2 and 3.2.
Notice that the previously selected value of q is irrelevant for these results.

COROLLARY 4.1. The maximum selection probability for a sample s in a
IIPS sampling design of fixed size n with size measures z,, ..., 2y IS given by
min(min; ., nz;,1 — max, ;. , nz;).

COROLLARY 4.2. The minimum support size over all I1 PS sampling designs
for given N, n and z,,. .., zy does not exceed N.
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TABLE 1

Boxes and their contents

1 2 3 4 5 s m,

21 18 15 9 6 (3,4,5) 2

21 18 13 7 4 (1,2,5) 4

17 14 13 7 0 (1,3,4} 3

14 14 10 4 0 {1,2,3) 10
4 4 0 4 0 (1,2,4) 4
0o 0 0 0 0

Designs d with P,(s) as in Corollary 4.1 and designs with a support size not
exceeding N can be obtained by the methods as described in the proofs of
Theorems 4.1 and 4.2.

The upper bound in Theorem 4.2 is a sharp bound, at least for a bound that
does not take the values of n, k,, ..., k5 into account. It is easy to give examples
for which the minimum support size equals N.

ExXAMPLE 4.1. Let N=5 n=3, k=21, k, =18, ky3=15, k,=9 and
k5 = 6. It can be shown that the minimum support size for ¢(5, 3; 21, 18,15, 9, 6)
equals 5. In Table 1 we present a scheme of emptying the boxes that leads to a
game with support size 5.

Obviously, many other choices of s are possible at most of the above stages.
Observe that indeed three rounds were of type 1 and three rounds of type 2, only
the next to last being of both types:

Typel: {1,2,5},{1,2,3},{1,2,4},

Type2: {3,4,5},{1,3,4},{1,2,3)}.
Also observe that any pair (i, j) appears in at least one of the rounds simultane-
ously. For the corresponding sampling design this means that all second-order
inclusion probabilities are positive. This however may not be true for any game

obtained by such a scheme. In Table 2 we give an alternative scheme in which
neither of the pairs (3,5) and (4, 5) appear simultaneously.

TABLE 2

)

Boxes and their contents

1 2 3 4 s m,

21 18 15 9 6 {1,2,5) 6

15 12 15 9 0 {1,2,3) 8

7 4 7 9 0 {1,3,4} 5

2 4 2 4 0 {1,2,4} 2

0 2 2 2 0 {2,3,4} 2

0 0 0 0 0
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Obviously there is a need to find methods for emptying the boxes that lead
always or almost always to sampling designs with desirable properties. If a game
is constructed by a scheme as above, it definitely leads to a game with a small
(though not necessarily the minimum) support size, but may give a game without
the desired properties on the 7,;’s. In fact, these latter properties induce certain
constraints on the support size of games that possess them, as will also be seen in
later sections.

5. The multiplier technique and the construction of IIPS sampling
designs. In this section we present an idea, called the multiplier technique,
that, as will become clear in later sections, is a useful tool for emptying boxes
when certain properties for the derived IIPS sampling design are desired. As an
illustrative example for its use, suppose we are interested in a case with N = 5,
n=2 2z =03, z,=2,=02, z, = z; = 0.15. We have to select a value for ¢
and it is clear that this should be a multiple of 10. The smaller the chosen value
for g, the fewer rounds we will have to play to empty the boxes. Thus we may
want to choose ¢ = 10. We will have to empty the boxes with contents %, = 6,
k,=k; =4 and k, =k, = 3. It may, however, be that a certain additional
property, such as 7,; > 0 or 7;; < m;m; or both, is desired for the II PS design. It
is not always easy to recognize whether this is possible with a particular choice
of g. Any TIPS design that can be realized with ¢ = 10 can also be realized with
g = 20, but not vice versa. So perhaps to meet our additional demand(s) we
should have selected g = 20, or even more. The multiplier technique is a tool
that allows us to postpone this decision and, in many cases, still achieve the
desired properties for the sampling design.

To be more explicit, let N, n and the z,’s be given. Further let k2, = ngz, be
the contents of the ith box, where g is a selected positive integer that makes all
the k,’s integral. After playing a certain number of rounds, say q’, q’ < g, the
remaining content of box i is denoted by k. We realize at this stage that some
desired property for the sampling design is not or no longer feasible with the
rounds played so far and the remaining contents. Often it would be feasible if we
had more objects in the boxes remaining. To achieve this, we multiply the
residuals 2/ by a constant, say k, a positive integer independent of i. We now
continue to empty the boxes in the h(q — g’) rounds that are needed for this.
Observe that the boxes with content hk; can be emptied in rounds of size n if
those with content %2/ can be emptied in rounds of size n. The latter is under our
control. To define the corresponding sampling design, we only have to realize
that the described procedure is equivalent to the following. Start with nhqz;
objects in the ith box. Use each of the previously played ¢’ rounds now in A
rounds. That will give the residuals sk, and we empty the boxes in the same
way as in the k(g — q’) rounds above. Hence, S, consists of all those rounds
used in some round of the original procedure. If s € S; is used in f, of the first
g’ rounds and in f, of the last h(q — ¢’) rounds, then we define P,(s) =
(hf, + f,)/hq. That we obtain in this way a sampling design with =, = nz;
can easily be verified.
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TABLE 3
Boxes and their contents
Round Frequency 1 2 3 4 5
6 4 4 3 3
(1,2) 3 3 1 4 3 3
(1,3} 2 1 1 2 3 3
{4,5) 2 1 1 2 1 1
TABLE 4
Boxes and their contents
Round Frequency 1 2 3 4 5
4 4 8 4 4
(1,4} 1 3 4 8 3 4
(1,5} 1 2 4 8 3 3
(2,4) 1 2 3 8 2 3
(2,5) 1 2 2 8 2 2
(1,3} 2 0 2 6 2 2
{2,3} 2 0 0 4 2 2
(3,4} 2 0 0 2 0 2
(3,5} 2 0 0 0 0 0

ExaMmpPLE 5.1. Let N=5,n=2,2,=03, 2,=23;=02and 2, = z; = 0.15.
With ¢ = 10 we start the game by playing the rounds as shown in Table 3.

Deliberately we have not emptied any of the boxes yet. Our strategy so far
may not have been very smart, but we will assume that one of our objectives was
to obtain 7,; > 0, i # j. Indeed, it is easy to see in this simple example that with
the initial contents of the boxes this could not be achieved. However, it can be
achieved with the use of a multiplier. The smallest multiplier that does the job
for the remaining contents is & = 4. Using this we could reach our objective by
playing the rounds exhibited in Table 4. This yields the ITPS sampling design as
shown in Table 5.

TABLE 5
Sample Probability Sample Probability
(1,2} 12/40 {2,4} 1/40
{1,3} 10/40 {2,5} 1/40
(1,4} 1/40 {3,4} 2/40
{1,5} 1/40 {3,5} 2,/40

(2,3} 2/40 {4,5) 8/40
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Clearly, in this example we could have captured more pairs {i, j} in the first
seven rounds than the three pairs we did. However, in more complicated
problems this may be less clear. It is in such cases that this method may be
useful. In this example, by a result in Section 6, we could have recognized the
smallest value for g that allows us to pursue the objective successfully. This, too,
is not generally the case.

6. Positive second-order inclusion probabilities. One of the desired
properties for a TIPS sampling design is =;; > 0, i # j. In this section we will
discuss methods for emptying the boxes in such a way that this property will
hold for the resultlng TIPS design. At the same time we would like to be able to
manipulate ;;’s and sample selection probabilities.

All that is needed for 7,; > 0 is to empty the boxes in such a way that for any
pair of boxes there is at least one round in which an object is removed from both
of them. Once this has been achieved, the boxes can be emptied in any fashion.
One way to achieve this objective is through the use of balanced incomplete
block (BIB) designs. In the following result let N, n and z; be as in the previous
sections.

THEOREM 6.1. Take any BIB(N, b, n). Select q such that

(6.1) qz; > b/N foralli
and
(6.2) g(1 —nz;) >b(1 —n/N) foralli.

With k; = qnz; objects in the ith box, we can start the game by playing the first b
rounds accordmg to the b blocks in the BIB(N, b, n). Irrespective of how the
boxes are emptied from thereon, we obtain m,;> 0, for all i+ j, for the
corresponding TIPS sampling design.

ProOOF. The last statement of the theorem is obvious, since each pair of units
appears simultaneously in at least one of the first b rounds. The proof is
completed by showing that:

(i) The boxes contain enough units to play the first b rounds.
(ii) After playing the first b rounds, the boxes can still be emptied.

The first of these follows from (6 1). For the second, we have to verify (i), (ii) and
(iii) in Theorem 2.1 with the &;’s denoting the contents after the first b rounds.
The only nontrivial part is (111), which follows by using (6.2). O

Notice that there is always a value of b for which the required BIB design
exists, possibly b = (’;’ ) Also notice that a value of g satisfying (6.1) and (6.2)

does always exist. Finally, in many practical problems there may be ways to
cover all pairs in fewer rounds than the number required for a BIB design. Such
methods may then be preferred. The result, however, shows once more how
concepts from design of experiments can be utilized in sample survey methods.
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For a discussion of the parallels between these two areas of statistics, we refer to
Fienberg and Tanur (1987).

A special case is that of sample size n = 2. It is one of the more important
cases, since it is a frequently occurring situation in cluster sampling. The clusters
are conceptually thought of as the units and they are grouped into a large
number of small strata. The y,’s correspond to cluster totals for some character-
istic, while the z,’s are chosen proportional to the known or estimated cluster
sizes. For each stratum, a IIPS sampling design is used to select a small number
of clusters, for example, 2. Various other papers in the literature deal explicitly
with the case n = 2, such as Brewer and Undy (1962), Brewer (1963), Rao (1965),
Durbin (1967), Hanurav (1967), Rao and Bayless (1969), Jessen (1969) and Sunter
(1986). A difference between n =2 and n > 3 is that for n = 2 all possible
samples must be in the support to achieve =,; > 0, for all i # ;.

For both n =2 and n > 3 we could, once =, ;> 0 has been achieved, try to
manipulate 7;,’s or the sample selection probabilities P,(s). A useful tool is that
of combining boxes. An illustration is given in the following example.

EXAMPLE 6.1. Let N=8, n=3, 2,=2,=4/22, 2,=2,=3/22 and 2, =
2 = 2, = zg = 2/22. Suppose that practical considerations lead to the desire of a
low second-order inclusion probability for units 1 and 2, while the sample
{1,2,3} should, if possible, be avoided. However, we do require that =, >0,
i # j. How can this be done? Due to the inequality =, ;= 7 + 7; — 1, we obtain
that we must allow 7, > 2/22. With &, = ngz, we see that all &,’s are integral if
and only if ¢ = 0 (mod 22). We take the smallest possible value, g = 22. The
contents of the boxes may then be represented by the vector (12,12,9,9, 6, 6, 6, 6).
Units 1 and 2 have to be selected simultaneously in at least two rounds. Avoiding
the round (1, 2,3}, we fulfill this requirement by playing {1,2,4} and (1,2,5},
say. At this stage we combine the boxes 1 and 2 to form one box, labeled {1,2},
with 10 + 10 = 20 units in it. The new situation may be described by the vector
(20,9, 8,5,6,6,6). Notice that the box {1,2} has to be used in every round from
now on. To achieve 7,; > 0, i + j, we have to play {{1,2},i, j} at least once.
That, indeed, can be done in this case. If this would not have been possible, we
could have made it possible through the multiplier technique. After playing
{{1,2},1, j}, i <J, i, j € {3,...,8}, the contents of the boxes are described by
(5,4,3,0,1,1,1). Now empty these boxes in an arbitrary way or, if other objec-
tives are an issue, in some particular way. One possible result is given in Table 6.

Select a sample with the selection probabilities as listed in that table. If the
combined unit {1,2} is included, perform a Bernoulli experiment with success
probability 10/(10 + 10) = 1/2 to decide whether unit 1 or 2 should be used.
The selection could also be accomplished in one step, upon replacing {{1,2}, 3,4}
by {1,3,4} and {2,3,4}, and assigning a selection probability of 2,/22 to both of
them. Similar replacements should then be made for other samples that include
{1,2}. The resulting values for 7,; are listed in Table 7.

Clearly more than two units may be used to form a combined unit, while more
than one combined unit can be formed during a game. If the boxes contain k;
units at the time that we like to combine the units corresponding to a subset H
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TABLE 6
Sample Probability Sample Probability
(1,2,4) 1/22 ({1,2},4,7} 1/22
{1,2,5} 1/22 {{1,2},4,8) 1/22
{{1,2},3,5} 1/22 {{1,2},5,7} 1/22
{{1,2},3,7) 1/22 {{1,2},6,7} 1/22
{{1,2},3,8} 1/22 {{1,2},6,8) 1/22
{{1,2},4,6} 1/22
Combined units Contribution to combination
{1,2} (10, 10)
TABLE 7

Values for 44, ;

2 3 4 5 6 7 8
1 4 9 10 7 6 6 6
2 9 10 7 6 6 6
3 8 2 4 2 2
4 2 2 2 2
5 2 2 2
6 2 2
7 4

of units, we can only form this combination if

Y ki< Lki/n.

ieH i
Units that are combined at some time will no longer be used simultaneously from
thereon. Thus the second-order inclusion probabilities of such units are deter-
mined by the rounds as played before forming the combined unit. In the special
case of n = 2, it deserves preference to start with playing each possible pair in

the first ’;’ rounds.

Different objectives can always be formulated, but may not always be compat-
ible. It is not clear how compatibility can be recognized. In case of noncompati-
bility of requirements, we should formulate the objectives so that some are
weakened or even completely deleted. Such cases will demand some inventive-
ness from the user.

Different situations and objectives will call for different ideas to be used in
conjunction with our technique. The technique is flexible enough to allow this,
but at the same time this means that there is no standard recipe to empty the
boxes.
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7. The inequalities 7;; < m;7;. Simple rules for choosing a value of ¢ and

ij =
for emptying the boxes in such a way that =;; < m,7,, in addition to 0 < =,;, for

iy — vy
the corresponding ITPS sampling design are rjlot easjy to give. This is especially
true if additional objectives related to the support of the design or the second-
order inclusion probabilities have to be taken into account. We will first give two
methods to empty the boxes for n = 2 such that 0 < 7,; < m,7; is guaranteed for
the corresponding IIPS design and such that some choice is left to play the last
rounds. This can be used, to a limited extent, to influence the second-order
inclusion probabilities. We will then conclude this section with a brief discussion
on techniques that can help in achieving the desired properties for I1PS designs
that are constructed through the method of emptying boxes.

Thus let n = 2, and N and the z;’s be given. Define

-1

N
(71) =} = zizj((l -2z)7 '+ (1- 2zj)_1) 1+ Y 221 -22,)""
k=1

This is the second-order inclusion probability for i and j under the IIPS
sampling design as given by Brewer (1963), Rao (1965) and Durbin (1967). For a
positive integer g, to be further restricted in the following, define n} = q=;*. If
n} is integral for all i # j, we can play a game with g, objects in the ith box by
using {i, j} in n} rounds. This gives the Brewer-Rao-Durbin design. Now
suppose all we know is that g, is integral for all i. Let n,; = [|n%|], where [| - |]
denotes the largest integer function. Now play (i, j} in n,; rounds. Generally
this will not empty all boxes. The following result states that the remaining
rounds can be played in any way, without violating 0 < 7;; < m,7;, provided that
q is large enough.

THEOREM 7.1. Let q be a positive integer satisfying:

(i) qm, is integral for all i.
(i) g7m; > 1 foralli+#j.
(ii) ¢ = (N — 1)/(mm; — m*) for all i + j, where =} is as in (7.1).

Then, by playing each pair {i, j} initially n;; = [|q7%|] times and, if necessary,
emptying the boxes in any manner after this, we obtain a game for which the
corresponding TIPS sampling design has the properties 0 < m,; < mm;, i # J.

ij = "y
ProoF. The proof consists of three steps.

STEP 1. The boxes contain enough objects to play the initial rounds. This
follows from

> n;;< > qmy =qm =k,

J#i J#i
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STEP 2. After the initial rounds, the boxes can still be emptied in rounds of
size 2. For this we have to show that, for all i,

N
kio - X n; ;=< > ki/2 - ZZni,/Z
i=1

J#i it
This follows from
EZni,ﬂ - Z n;, ;= Z Z n;/2
it) J#iy itiy j#i, ig
<Y XY gnr/2=YYqni/2- ) qn;
iy J#1, 1 i+ J# i

qui/z —4qm, = Zki/2 - kio'

STEP 3. Irrespective of how the latter rounds are played, the corresponding
I1PS sampling design will always satisfy 0 < =, ; < m;m;, i # j. From (ii) it follows
that n,;, and hence 7, is positive. Since k; — X, .;n,; <k, — X, (qm} — 1) =
N — 1, it follows that there are at most N — 1 objects left in the ith box after
the initial rounds. Consequently, a pair {i, j} is used in at most n,; +
N — 1 rounds. Therefore,

;< (nij+ N - 1)/q < (q7ri’j'S + N - 1)/q
=7} + (N-1)/qg < mm;,
by condition (iii). That concludes the proof. O

Notice that neither condition (ii) nor (iii) is used in the first two steps of the
proof. Condition (ii) guarantees that =,; > 0, i # j, while (iii) guarantees that
m,; < mm;, i # j. Especially (iii) does not always have to be satisfied for the
conclusions to hold; it is used to show that even under the most adverse
circumstances the inequalities 7,; < m;7;, i # j, hold.

The following result provides an alternative to Theorem 7.1 and generally
leaves more rounds to be played freely. There is, however, a restriction on its

applicability.

THEOREM 7.2. Let N and the z,’s be given such that

N
(7.2) max 22 < ) 22/2.
13

i=1

Let q be a positive integer such that 2qz; is integral for all i. Let k; = 4q°z;, the
content of box i. Play each pair {i, j} in 4q%;z ; rounds and complete the game
in any way. The corresponding 11PS sampling design satisfies 0 < m;; < mm;,
i#J.
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PrROOF. The same three steps as in the proof of Theorem 7.1 have to be
satisfied. The first follows from

Y 4q%,z; = 4q°%2,(1 - z;) < k,.
j i

For the second step we need that

N
49%2} <2¢* ¥ 2},
i=1
which follows from (7.2). For the last step, it is clear that 7;; > 0. Without loss of
generality, assume that z; < z;. Then
4922,z + 4q%2?
m; < - ;q2 2 _ 22,2, + 222 = Zzi(zj +2;) < (2zi)(2z]~) = mm;.

Hence the result. O

ExamPLE 7.1. Let N=6, 2, =03, 2,=02, 2;=2,=0.15 and z; = 25 =
0.1. We use Theorem 7.1 with ¢ = 200 and Theorem 7.2 with g = 10. Although
g = 200 does not satisfy condition (iii), the conclusion of Theorem 7.1 still
holds. In both cases the contents of the boxes are given by %k, = 120, k, = 80,
ky =k, =60 and k; = ks = 40. We will have to play 200 rounds to empty the
boxes. The method of Theorem 7.1 prescribes 192 of these, while that of Theorem

TABLE 8
Frequencies specified Frequencies specified
Sample by Theorem 7.1 by Theorem 7.2
1,2) 36 24
(1,3} 25 18
(1,4} 25 18
(1,5} 16 12
(1,6} 16 12
(2,3) 13 12
(2,4) 13 12
{2,5} 8 8
(2,6} 8 8
(3,4} 9 9
{3,5} 5 6
(3,6) 5 6
(4,5) 5 6
{4,6} 5 6
{5, 6} 3 4
Residuals after specified rounds
Box no. 1 2 3 4 5 6
Theorem 7.1 2 2 3 3 3 3

Theorem 7.2 36 16 9 9 4 4
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7.2 prescribes only 161 rounds. These rounds are given in Table 8. Although
Theorem 7.2 leaves 39 rounds to be played, it should be realized that the
objective of emptying all boxes puts some restrictions on this. For example, in 36
of the 39 rounds box 1 has to be used.

These two theorems are useful, since they do not demand any inventiveness of
the user. The first rounds are completely determined; the latter can be played in
an arbitrary way, as long as the boxes are emptied. This is verified in a trivial
way through Theorem 2.1. This does not mean that inventiveness is not reward-
ing. A smart user can use other methods to empty the boxes and gain more
leverage on the sample selection probabilities without violating the inequalities
0 <7; <mm, i #J.Such methods may, however, heavily depend on N and the
2,’s, and cannot be formulated under general results as given in this section.

For n > 3 general results for emptying the boxes and guaranteeing that
m,; < mm; for the corresponding IIPS sampling design are hard to obtain,
especially if additional restrictions on the support are desired. We conclude this
section with the presentation of an approach to this problem that we found
useful.

For given N, n and z,’s, select a positive integer g such that k; = ngz; is
integral for all i. Before playing any rounds, use the multiplier ag, for some
positive integer a. Even a = 1 will often suffice. Thus, we start with agk; objects
in box i. We will have to play ag? rounds of size n to empty all boxes. Suppose
that in A,; of those rounds an object is removed from both box, and j. The
inequalities 0 < m;; < m,m; can be rephrased as 1 < A;; < ak;k;. The lower bound
does not have to cause any problems. An attempt should be made to play
successive rounds such that no pair {i, j} is used more than ak;k; times. This
can often be achieved. Even in cases where we did not succeed, violations were
mild, both in the sense that they occurred for only very few pairs {i, j} and,
where they did, that the difference A,; — ak;k; was very small compared to aqg?.

8. Discussion. The construction of ITPS sampling designs through the
method of emptying boxes is remarkably simple and surprisingly versatile.
Numerous designs with various properties can be obtained without much diffi-
culty. Of course, when faced with increased demands regarding the properties of
a design it may be difficult to obtain such a design, if at all possible. But
contrary to methods available in the literature, this method does give us an
opportunity to search for designs which do meet our demands or come close to it.

An attractive feature of the method is its adaptability to computer algo-
rithms. Very simple to very complicated algorithms may be used to empty the
boxes, depending on the particular situation or on the demands for the resulting
design. Ideas discussed in the previous sections should be useful in drafting such
algorithms. It is clear that neither we nor anybody else will be able to provide a
design for every imaginable set of demands. In that sense, the problem will never
have a complete solution. Assuming this, there are two routes that can be
followed. The first is to find a solution for a particular set of demands. Most
results in the literature have been obtained via this route. An example is
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Sampford (1967), who gave a solution for 0 < 7;; < w7, i # j. The second is to
present a technique, and create tools that are valuable with that technique, to
explore the existence of designs, no matter what the demands are. That has been
the route followed in this paper.

The technique, the method of emptying boxes, is simple to implement. The
tools from Sections 4-7 are useful to deal effectively with some demands for the
resulting designs as discussed in those sections. The effectiveness can be en-
hanced by use of advanced computational equipment; theoretical enhancement
may pose a challenge for a longer time to come.

A disadvantage of the presented method is that it requires a complete listing
of the support and corresponding probabilities to implement the design. It is
conceivable that future research may eliminate this problem. For example, if
some algorithm is used to empty the boxes and the algorithm is such that it
uniquely determines the boxes to be selected at each round, all we have to do to
implement the design is randomly select a number from 1 to =Y &, /n. If i is the
selected number, use the sample corresponding to the boxes that were used in
the ith round. It will depend on the algorithm how hard it is to determine the
second-order inclusion probabilities for such a procedure.
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