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BOUNDS FOR THE DISTRIBUTION OF THE
GENERALIZED VARIANCE!

By Louis GORDON

University of Southern California

Let D, ,, be the determinant of the sample covariance matrix for
m + p + 1 observations from a p-variate normal population having identity
covariance matrix. We give bounds for the distribution of D, ,, in terms of
various chi-squared distribution functions. Let F(:|r) denote the chi-squared
distribution function on v degrees of freedom. We bound P{p(D, ,,)"/? > t}
above by 1 — F(¢{|p(m + 1) + 3(p — 1)(p — 2)) and below by 1 -
F(t|p(m + 1)). We give two more bounds involving chi-squared distributions.
The proofs use a stochastic analog to the Gauss multiplication theorem.

1. Introduction and summary. The determinant of a p X p Wishart ma-
trix can be represented as a product of p independent chi-squared variates whose
degrees of freedom increase in arithmetic progression. Specifically, consider a
Wishart matrix obtained as the corrected sum of cross-products matrix corre-
sponding to a sample of N = m + p + 1 ii.d. p-variate vectors having indepen-
dent standard normal coordinates. Its determinant D, , is then distributed as
the product Il,_;_, ,X;, where the p mutually 1ndependent X; have chi-
squared distributions on N—-p+j=m+1+j degrees of freedom See, for
example, Anderson (1984). The distribution of D, ,, in the case p = 2 was found
by Wilks (1932). In our notation, 2( X, X,)'/? is distributed as x3,,1)-

Mathai and Rathie (1971) recover the density of D, , by inverting the
moment generating function of the logarithm of a generalized variance with a
positive noncentrality parameter. By specializing their results to noncentrality
parameter zero, they obtain the exact density of the generalized variance, which
has the form 1/x times the Meijer G-function GP'I‘,) See their equation (3.2) for
parameters and scaling. They also remark that the distribution function is
expressible in terms of another G-function G, , ;.

There is, however, still a need for simple apprommations to the distribution of
D, , when p>3. Hoel (1937) suggests approximating the distribution of
p(D, ,)"/? by that of the constant (1 — (p — 1)(p — 2)2N)~H)~/? times a
chi-squared variate on p(m + 1) degrees of freedom. The constant and degrees
of freedom are obtained by evaluating moments, letting N — oo and retaining
those terms which are O(1/N). Hoel’s suggestion has fallen into disfavor, as a
result of work by Gnanadesikan and Gupta (1970) and Regier (1976). They
approximate the logarithm of the generalized variance by a suitably chosen
normal variate. Their work is based on that of Bartlett and Kendall (1946), who
studied the approximate normality of log-transformed x? variates. The latter
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(Theorem 4, upper bound) minus Normal. ssseseses
(Theorem 4, lower bound) minus Normal:  =ssssee
(Theorem 8, lower bound) minus Normal: ==me=
(Corollary 9, lower bound) minus Normal: e wme
(simulated distribution) minus Normal: ++++

F1c. 1. Deviations from the normal approximation.

authors caution that the normal approximation may not fit well in the tails, a
characteristic that is seen in Figure 1 to be shared by normal approximations to
the generalized variance. A

Our results are based on stochastic analogs to classical results in the theory of
the gamma function. See Whittaker and Watson (1927), especially Sections 12.15
and 12.16. In light of the work of Mathai and Rathie, our results can be
considered to yield bounds for G{»;,, in terms of the incomplete gamma
function.

In Sections 3 and 4 we apply the results of Section 2 in order to approximate
products of independent chi-squared variates by a power of a single chi-squared
variate. (In a slight abuse of language we refer to any gamma distribution with
scale 2 and shape « as “chi-squared on 2« degrees of freedom.”)

The bounds are illustrated in Figure 1, plots (a) through (c). Plotted are
B(t) — (1 — A°(¢)) against quantiles of A4"(-), where B(+) corresponds to one of
the bounds derived below and A7(-) is the normal approximation discussed in
Regier (1976) and in Gnanadesikan and Gupta (1970).

Also graphed are simulated empirical distributions of the generalized variance,
evaluated at selected quantiles. The simulation was performed using the PC-SAS
system. See Allen and Kalt (1985), especially page 78. For each figure, 16,000
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realizations of D, ,, were generated. For comparison, the Kolmogorov—Smirnov
statistic’s median is approximately 0.007.

The choices of p and m exemplify several features of the bounds. First,
the X2 .4 1)+(p-1)p-2,2 distribution, which is the upper bound of Theo-
rem 4, appears itself to be a good approximation. In some sense, we have
turned the constant of Hoel’s approximation—which for large N is almost 1 +
(p — 1X p — 2)/(2N,)—into the reciprocal of a beta-variate and multiplied to
obtain X3+ 1)+ (p-1(p-2/2°

Second, the bounds are decidedly tighter for p even than for p odd. In moving
from Figure 1(b) to 1(c), we have quadrupled m, while the maximum deviation
between upper and lower bounds has decreased from 0.034 to 0.005—better than
a fourfold increase in accuracy. For even p, because the approximating degrees
of freedom are the same in upper and lower bounds and because the remainder
term of Corollary 9 decreases as m ™2, the discrepancy between upper and lower
bounds decreases as o(m®~%/2), for any & > 0.

Third, the normal approximation puts too little mass in the right tail and too
much mass in the left. See Gnanadesikan and Gupta’s (1970) Figures 7-10 for
comparison of the distribution of In(x?) with approximating normal distribu-
tions; similar behavior is apparent. Note that the normal baseline in our figures
is outside the envelope determined by the upper and lower bounds of Theorem 4.
The lack of good fit in the tails is of interest because of the role of tail behavior
in ranking and selection problems.

Fourth, none of the bounds are dominated by any other. Further, the bounds
appear to be tighter in the upper tail than in the lower tail of the distribution.
Steyn (1978) presents an approximation based on the moment generating func-
tion that holds for all but a small fraction of the far left tail of the distribution.
His approximation for the upper tail probability is less than a constant times
P(x2 n+1) > t}, which for large ¢ is dominated by the bounds of Theorem 8.

2. An analog to the Gauss multiplication theorem. In this section we
present two stochastic analogs of well-known results in the theory of the gamma
function. Theorem 1 is the fundamental representation which we use through-
out. The representation is essentially found in Bondesson (1978), who remarks
that the “generalized normal distributions” can be represented as linear combi-
nations of independent exponential random variables. Bondesson writes the
characteristic function as an infinite product and so obtains our Theorem 1. Hall
(1978) directly proves the special case of Theorem 1 for integer a in his study of
the extreme value distribution. We provide a simple direct proof which is close in
spirit to that of Hall.

THEOREM 1. Let (Y} bei.i.d. exponential with mean 1 and let y = 0.5772...
be the Euler—Mascheroni constant. Define G by the series

(1) In(G) = —v + z( . )

j+1 ]+a
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Then G has a gamma distribution with shape parameter o and scale para-
meter 1.

PrROOF. Let G be a gamma variate with shape a and scale 1. Choose Y,
exponentially distributed, independent of G. Note that G, = Y, + G is gamma
(a + 1) independent of G/G,. The latter has a beta distribution, represented as
U,/* where U, is uniform on [0,1]. Hence G = U}/* - G,. Iterate to obtain
G = G, - [17.(U))"/**)), Approximate In(n) with the harmonic series, yield-
ing

In(G) = -y + Z

Jj=

L, 1n(Uj)) . ln( G,
n +

+ o(1
j+1 j+a 1) o(1),

where the U; are i.id. uniform [0,1], G, is gamma (a + ) and the remainder
term o(1) is due to approximating y + In(n) by the harmonic series. Finally,
apply the weak law of large numbers to G, /n. O

Note that (1) is a stochastic analog of a classical series for the digamma
function. Theorem 2 is a stochastic analog of the Gauss multiplication theorem.

THEOREM 2. LetG,, k=0,. — 1, be independent gamma variates with
shape parameters a + k/p and common scale parameter. Then p(I17_ 1G 2P s
distributed as gamma with shape parameter pa and the same common scale
parameter.

Proor. Without loss of generality take the common scale parameter to be 1.
Write @ = H};(}G - Use Theorem 1 to write the In(Q) as the double sum

pil(—v+j§ . X )

o —o\Jt+t1 Jj+a+k/p

where Y, are ii.d. exponential with mean 1. Now divide by p and note that
pJj + k runs over all nonnegative integers as j and k run through their
values.

Hence we may represent In(Q'/?) by

0
v+, + L ((G+ D)7 =Y/ +pa)7Y,
Jj=0
where the constant «, is X~ 1}:°° o1/(pi +p)—1/(pj + k + 1)). Apply Theo-
rem 1 again and then exponentlate to show that @'/? is distributed as exp(k »)
times a gamma variate with shape pa and scale 1. We show exp(k,) = 1/p by
computing large moments of @ and using Stirling’s formula for the gamma
function. O

3. Stochastic inequalities. In this section, we apply Theorem 2 to prove
that the distribution of the generalized variance lies strictly between two
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chi-squared distributions. The proof of the inequalities relies on the following
technical lemma.

LEmMMA 3. Let ¢>8>0 and t> 0 be constants. Let Y, and Y,
be i.i.d. exponential random variables. For all fixed ¢ and t, P{(Y,/(c — §) +
Y,/(c + &) > t} is monotone increasing in §.

Proor. The probability is a power series in § having positive coefficients. O

We use >, for “stochastically greater than.” Specifically, given X, and X,,
write X, >, X, if P(X| > t} > P(X, > t} for all ¢

Theorem 4 provides upper and lower bounds for the distribution of (a power
transformation of) the generalized variance. The idea is to perturb the degrees of
freedom of the factor chi-squared distributions in order to apply Theorem 2.

THEOREM 4. Let X, be distributed as chi-squared (m + 1 + k) for k =
0,..., p — 1. It follows that

p—1 1/p

2 2
(2) Xp(m+1)+(p-1)(p-2)/2 st P( kl:IOXk st Xp(m+1)*

ProoF. The case p =1 is trivial; the case p = 2 is exactly Wilks’ (1932)
result. This proof generalizes that of Theorem 2. For p > 3, write D for the
product T1 If;(}X &- Note that the set of degrees of freedom belonging to the X is
symmetrically centered around » = (m + 1 + (p — 1)/2). Choose Y}, i.i.d. expo-
nential with mean 1. Now apply (1) to obtain the representation

Pol o (] Y,

(3) In(D)=phn(2) -py+ kgo EO j+1 j+ (m +]1 +k)/2

and apply Lemma 3 to the pairs (Y, Y, ,_;.). Hence [T X} > In(D),
where X/ has a gamma distribution with scale 2 and shape »/2 + k/p. The
upper inequality now follows from Theorem 2.

For the second inequality, let a = (m + 1)/2. Apply Theorem 1 to bound
In(123X,) below by pIn@) — py + LPIER((+ D7~ Yu/(j + a +
k/p)~"). Hence, from Theorem 2, D >, D*, where p(D*)'/? ~ x% ... O

4. Refining the lower bound. In this section we analyze the error of
approximation in using xf,(m +1)+(p—1)p—2),2> the upper bound of Theorem 4, to
approximate the distribution of p(D, )P, The degrees of freedom in the
proposed approximation are very reminiscent of the constant in Hoel (1937). One
might approximate the distribution of p(Dp’m)l/ P by the distribution of the
stochastically larger xf,(m“) +(p—1yp-2),2- Lhe latter, however, may be realized
as the quotient X/B, where X >, x%,,; and B is distributed as beta
(p(m +1)/2,(p — 1)(p — 2)/4), independent of X.
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Note that 1/E{B} =1+ (p — 1)}(p — 2)/2p(m + 1)). If p and m are both
moderately large, the distribution of B will be concentrated near its mean and so
1/B will tend to be near 1/E{B}, which is approximately Hoel’s (1937) scaling
constant (1 — X(p — 1)(p — 2)/(m + 1 + p))~'/?. For example, when p = 4
and m = 12, Hoel’s constant is 1.050 and 1/E{B} = 1.058.

The series of approximations suggests that the chi-squared approximation
should be about as good as Hoel’s when the latter applies and should be
substantially better in the extreme right tails, where the chi-squared approxima-
tion puts less mass. To improve the lower bound, we plan to pick a good value

for r, to approximate

1
P ;20 k=0 Jj+1 a+j+k/2

(4) %ln(Dp’m) —In(2) +y=

by the slightly larger sum
1 1 Y, 1
®) - ¥ %

P jikja<r J+1 a+r+k/2

1 Y, )
Pjikpsr\J Tl a+j+k/2
and then to bound (5) from below by a sum to which we apply Theorem 2.
Note that the sums (4) and (5) differ only in the dencminators of the variates
Y);. In both sums, all these denominators are of the form a + Jor « + I + 3, for
! a nonnegative integer. Of particular importance to the analysis is the number of
variates in (4) and (5) associated with a particular denominator. A straightfor-

ward counting argument yields Lemma 5, presented without proof.

LEMMA 5. Let r= | p/2| — 3. The denominator count for the two sums
given in (4) and (5) is given in Table 1, for | a nonnegative integer.

The pattern of counts almost lets us use the stochastic version of the Gauss
multiplication theorem—Theorem 2. To this end, we need to spread the denomi-
nators to an arithmetic progression with increment 1/p. This is the substance of
Lemma 6.

LEMMA 6. Letr= 3| p/2| — 1. Let X be a random variable with the same
distribution as the sum (5). If p is even, X >, In(G), where G is gamma

TABLE 1
Parity Denominator Occurrences in (4) Occurrences in (5)
P even a+1 min{l + 1,|(p + 1)/2]} |p/2)
a+l+1 min{l + 1,| p/2]} lp/2]
. Lp/2| ifl<|p-1]/2
podd a+l min{/ + 1,{(p + 1)/2]} {l(p+1)/2j itl> |(p-1)/2

a+l+1} min{l + 1,| p/2]} |p/2]
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distributed with scale 1/p and shape 3(pa + 3(p — 1)(p — 2)). If p is odd,
X > In(G), where G is gamma distributed with scale 1/p and shape L(pa +
#(p—1)(p—2) —p/2)

Proor. If p is odd, augment (5) with a few more exponentials to make the
pattern of denominator counts either {0,...,0,(p + 1)/2,(p — 1)/2,
(p+1)/2,...} or {0,...,0,(p — 1)/2,(p + 1)/2,(p — 1)/2,...}. Regardless of
the parity of p, use Lemma 3 to spread the denominators to an arithmetic
progression, to show

where 6 = (3p — 1)/(2p) if p iseven and § = (;(p + 1) — 1)/(2p) if p is odd.
Both the augmentation and spreading make the sum stochastically smaller
because all the exponentials have negative coefficients. Now apply Theorem 2. O

There are two ways to transform (4) to the form required by Lemma 6. We use
a Radon-Nikodym derivative and take expectations to prove Theorem 7. Alter-
natively, we subtract (5) from (4) and bound the remainder to prove Theorem 8.

THEOREM 7. Letp > 4. Writer = 3| p/2| — % and let

m+1+2j+k
c = .
pym j+k/2<r m+1+2r+k

Then, for all t > 0,

P{p(Dp,m)l/p > t} >

. s
{"p,mP{Xp(m+1)+;(p—1)(p—2) > t} if p is even,

2 . .
cp,mP{Xp(m+1)+%(p—1)(p—2)—%p > t} if p is odd.

Proor. Write a = (m + 1)/2. erte D, ,, as a product of chi-squared vari-
ates and write A for the event

{lln(np,m)w}:{ Y+1n(2)+—§p21 : 4 )>t}’

p P jZor=o\Jt+1 a+]+k/2

where the Y, arei.i.d. exponential with mean 1. Let L be the Radon-Nikodym
derivative of the exponential distribution with mean 6, = (a +j + k/2)/
(a + r + k/2) relative to the original exponential dlstrlbutlon of Y. Specifi-
cally, L;, = 0k exp((1 — kl) k)
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From Lemmas 5 and 6,

p{lln(pp,m)>t}=E{IA T (Lali))

p Jtk/2<r

>E{ I1 0jijkIA}

Jt+k/2<r
> cp,mP{ln(p‘le) > t},

where » is as specified in the statement of the theorem and in Lemma 6. O

To obtain our final lower bound, we analyze directly the difference between
the sums (4) and (5). The bound suggests that the simple upper bound obtained
in the previous section should be quite sharp for even p. Note that the
remainder term R in the next theorem is positively correlated with the approxi-
mating chi-squared variate X.

THEOREM 8. Let p > 4. Write r=1|p/2] — %, p =2|p%/16] and a =
(m+1)/2. Let v=p(m+1)+ {(p—1(p—2) if p is even and v =
p(m+ 1)+ 3(p—1(p—2)— 3p if p is odd. There exist random variables
X ~ x2 and R ~ x2 such that

r
D \* - — Rl x
p( p"") Zst exp( 2pa(a + r)R)

Proor. We can approximate the generalized variance from below by writing
its logarithm as a sum like (4) and then decomposing the sum into an approxi-
mating term of form (5) and a remainder of the form

1 1 1 ) r

>

Y. —
Piiha<y \a+j+k/2  a+r+k/2

Y Y

> p—

pa(a+r) Jj+k/2<r
There are fewer than | p?/16| terms in the latter sum of iid. exponential
variates. The distribution of the sum is }x2. Now use Lemma 6 to further reduce
the approximating term. O

The following is an immediate consequence of the above approximation.

COROLLARY 9. Letp > 4 and let v and p be as in Theorem 8. For any 6 > 0,

or
1/p _ 2 _ 2
©6) P{p(D, )" > 1) > P{exp( Tpala T t} P{x2 > 6}.
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