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BAYES METHODS FOR A SYMMETRIC UNIMODAL DENSITY
AND ITS MODE!

By LAWRENCE J. BRUNNER AND ALBERT Y. Lo
State University of New York at Buffalo

Bayes solutions for i.i.d. sampling from a decreasing density on the half
line and for ii.d. sampling from a symmetric unimodal density with an
unknown mode are given. Posterior quantities are obtained as finite sums;

" Monte Carlo methods based on sampling finite Markov chains are developed
for their evaluation.

1. Introduction. The problem of estimating an unknown symmetric uni-
modal density and its mode can be described as follows: We are given observa-
tions

(1.1) X,=0+¢, i=1,...,n,

where ¢,,..., ¢, are independent random variables having an unknown symmet-
ric unimodal density f with mode at the origin; @ is an unknown location
parameter. The object is to estimate 6 and f based on X,..., X,,.

This problem and the related one of estimating a decreasing density on the
half line have been studied and discussed extensively from a frequentist view-
point [Grenander (1956), Robertson (1967), Prakasa Rao (1969) and Wegman
(1970)]; the results have been conveniently summarized in a text [Barlow,
Bartholomew, Bremner and Brunk (1972)]. A Bayes solution to this problem is
also desirable on at least three counts. First of all, Bayes methods allow the
incorporation of prior information in statistical inference. Second, under natural
identifiability and measurability conditions, Bayes estimates are consistent for
almost all parameter values [Doob (1949)]. Third, Bayes procedures very often
enjoy small-sample optimalities. Despite these advantages, Bayes solutions to
the problem of estimating a symmetric unimodal density and its mode are
unavailable. This paper is an attempt to provide such solutions.

A Bayesian approach to our problem consists of assuming a joint prior
distribution on the pair (8, f ) and computing the posterior quantities of # and f
given X,,..., X,. Our technique is based on the fact that any symmetric
unimodal density is a scale mixture of symmetric uniform densities [Feller (1971),
page 158]. A Dirichlet process prior [Ferguson (1973)] is assumed for the mixing
distribution, a prior distribution is assumed for the mode and the posterior
distribution of the pair (8, f) is derived in closed form. Technically, this prior is
concentrated on a space of symmetric unimodal densities (and a location parame-
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ter) and avoids the potholes encountered by workers using a raw Dirichlet
process prior [for example, see Diaconis and Freedman (1986)].

A Bayes treatment of mixture models in general has been provided by one of
the authors [Lo (1984, 1986)], and posterior means were found to be sums over all
partitions of the first n (the sample size) integers. The difficulty of evaluating
such sums over partitions is well known, and Kuo (1986) has suggested a Monte
Carlo evaluation based on the Chinese restaurant process [Aldous (1985), page
92]. The present paper exploits the fine stucture of symmetric unimodal densities
and obtains a simpler solution for this problem. The posterior mean is found to
be a sum over all vectors m = (m,,..., m,) where the m’s are nonnegative
integers, X, ., ;m;<jfor j=1,...,n—1and X, _,_,m; = n. The structure of
this sum resembles its relative, the posterior mean of a monotone rate function in
a reliability model reported by Dykstra and Laud (1981) and in Aalen’s (1978)
martingale-based counting process model discussed by Lo and Weng (1989).

Even though summing over all possible m-vectors is simpler than summing
over all partitions of the set {1,..., n}, the evaluation of the former sum for
sample sizes larger than 13 is still a formidable problem [the same comment
obviously applies to the evaluation of the posterior means of monotone rate
functions studied by Dykstra and Laud (1981) and Lo and Weng (1989)]. Hence,
the development of numerical methods to evaluate sums over m-vectors for
sample sizes larger than 13 is important both for the model considered here and
in the reliability or point process model; this development is also of practical
interest. Section 5 develops Monte Carlo approximations for sums over all
m-vectors based on sampling (n — 1)-term Markov chains; a uniform distribu-
tion on the space of all m-vectors is introduced to facilitate the approximations.

Section 2 is the backbone of our method. In this section, i.i.d. sampling from
an unknown decreasing density on the half line (or equivalently, from a symmet-
ric unimodal density with a known mode) is considered. The posterior distribu-
tion is found to be a mixture of Dirichlet processes, and the posterior mean of
the decreasing density is given in a closed form as a sum over the m-vectors. This
sum can then be separated into two parts. The first part is a decreasing step
function which jumps at the data sites, a property also shared by the maximum
likelihood estimate reported by Grenander (1956) and Wegman (1970). The
second part is a mixture of inverse moment functions which contributes to the
smooth property of the posterior mean and which may not have a frequentist
derivation. '

Section 3 discusses the choice of the shape probability of the Dirichlet process
based on the idea of conjugate priors [DeGroot (1970)]. A straightforward
application of this concept suggests the choice of a Pareto distribution to be the
shape probability. However, a moderate or large location index for the Pareto
distribution results in a loss of observed data, while a small index gives rise to a
bad spike for the posterior mean of the density at abscissas close to the origin;
we call this the Pareto syndrome [the maximum likelihood estimate is also
known to have a peak close to the origin; see Wegman (1970)]. We find that a
posterior mean based on an inverted gamma shape probability is spike-free and
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is more palatable. The section is concluded with plots of the Monte Carlo
evaluations of the posterior means of decreasing densities corresponding to
Pareto and inverted gamma shape probabilities.

Bayes procedures for an unknown symmetric unimodal density and its mode
based on i.i.d. sampling are studied in Section 4. Section 4.1 discusses the
posterior density of the mode, which is a sum’ over all m-vectors (the symmetric
unimodal density is treated as a nuisance parameter); we present Monte Carlo
evaluations of several posterior densities of the mode based on nested samples.
Section .4.2 discusses the posterior distribution of the symmetric unimodal
density (here the mode is a nuisance parameter); we display Monte Carlo
evaluations of several posterior means of the density based on nested samples.

2. Bayes methods for a decreasing density on the half line. This
section is concerned with the Bayes estimation of a decreasing density on the
half line. It is well known [Feller (1971), page 158] that any such density f
corresponds to a distribution G on [0, o) such that

(2.1) f(x|G) = fv‘lI{Osx<c)G(do).

The collection of G’s is denoted by ©, which serves as the parameter space for
this model. Note that the map G — f is one to one, and so the model { f(-|G):
G € 0} is identifiable. A result of Doob (1949) states that the Bayes procedures
for the model (2.1) are consistent for almost all parameter values. Assume a
Dirichlet process prior with shape measure a on G, denoted by P(dG|a), and
given G, let X,,..., X, be ii.d. random variables from the decreasing density
f(x|G). A result of Lo (1984), Theorem 1, specializes and states that the posterior
distribution of G is a mixture of Dirichlet processes defined by, for all nonnega-
tive (and measurable) functions A,

[rJoh(G)P(dGla + 8, )n,(dv|X)
La(R"X) ’

(2.2) fe h(G)P(dGIX) =

where X = (X,..., X,), v =(v,,...,0,), L; denotes X, _, _ , and the measure p,,
on A" is defined by

@3)  w(0%) = [[TTopaxig| T+ X 3, )(de)
ClL i i 1<j<i-1
for any C € #”, where II; denotes I, _; _ ,..

The above posterior distribution summarizes a statistician’s posterior opinion
of the parameter G and, from a Bayes viewpoint, is the estimate of the unknown
parameter. However, due to the complexity of the posterior distribution, a
discussion of some posterior quantities (especially the posterior mean) could be
revealing and in fact is necessary. In the rest of this section, we derive the
posterior mean of the mixing distribution G(u) and the decreasing density
f(t|G), which could be used to estimate the mixing distribution and the decreas-
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ing density, respectively. The derivations of the corresponding posterior vari-
ances and higher moments proceed similarly and will not be repeated. The
posterior means turn out to be mixtures of ““posterior” quantities when sampling
from the family of uniform densities {v™ I}y, <,: 0 <v < c0}, where v serves
as a parameter which has the “prior” distribution a(dv)/a(R). The following
combinatoric result forms the basis of our derivation. First we need some
notation.

Let p be a partition of {1,..., n}, {C(i): i =1,..., n(p)} be the cells of the
partition p, e; be the number of elements in C(z) and k(p) = I, _; _ ) (e; — D!
Let 0 < x(1) < x(2) < --- < x(n) < o be the ordered values of n distinct real
numbers x,,...,x, and max(i) = max{x,: k& € C(i)}. Let m; be nonnegative
integers such that X, _,_m;<j for 1<j<n-1and X,_,_,m,=n. Let
m=(my...,m,), §;=X,_;.;m; and k*(m) =T1.(i—1-s; ) /(- s),
where the product I;. is over the set of i such that m, > 1.

LEMMA 2.1. For any nonnegative function h,

_/;en{lj[h(vi)I{Osxi<oi)]l_i[(a + Y 80j)(dvi)

1<y/<i—-1

(2.4) =Xk®) T [12(0)]“Lo < maxgiy< (o)

1<i<n(p)

= L) IT [[2(0)] ™ Lo < iy < p(lo);
in particular,

(25) T(a(R) +n)/T(a(R)) = La(R)"Pk(p) = La(R)*™k*(m),

P m

where #(m) is the number of m; > 1 and I'(-) is the gamma function.

ProOOF. This lemma follows from combinatorial results in Dykstra and Laud
(1981) and Lo (1984). For clarity, the following direct proof is inserted. The first
expression reduces to the second one by Lemma 2 in Lo (1984); see also Ghorai
and Rubin (1982). That the second expression reduces to the third one can be
seen as follows. Relabel the cells {C(z)} by letting C; be the cell whose maximum
element is the integer i; the number of elements in C; is m,. Note that each of
the summands in £, depends on the partition p only through m and, for a given
m, it reduces to

(26) LT0m, = 1! [12(0)] ™o xip < (o)

It remains to show that the number of partitions corresponding to each
m is k*(m)/Tl,(m;— 1. If m, > 1, the possible number of elements in
C, is 1. Assume that m,,...,m;_; are determined for i >2. If m,> 1,
the possible number of elements in C; is equal to the binomial
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coefficient C(i — 1 — s;,_;, m; — 1). The number of partitions corresponding to
m is then

(2.7) [TIcGi-1-5,_,,m—1)= k*(m)/n(mi - 1)
The equalities in (2.5) follow from (2.4) by equating the integrands to 1. O

The next theorem gives the posterior means of G and f as sums over the
m-vectors.

THEOREM 2.1. For each x > 0,

[ (+1G)P(dGIX) = [a(R)/(a(R) + n)]do(x)
(2.8)
+[n/((R) + )] T Wm) . (my/n)d,(x|m),

where W(m) = ¢(m)/Lp(m), p(m) = k*@)[ L. [o™ ™I x;) < o dV),

(2.9) dy(x) = [v7Tg, < aldv)/a(R),

fv_(m‘+ 1)'I{mza\x[::c, X)) < v}a(dv)

2.10) d,(x|m) = —
( Jom™ (X(i)<o}0‘(d°)

The posterior mean of G(u) is obtained by replacing dy(x) by Gy(u) =
a(u)/a(R), and d;(x|m) by

U_m.I{X(i)<oSu}a(dv)
M X(i)<u)*
o™i x iy < e o) (X@)<w)

(2.11) G,(ulm) = /

Proor. We compute the posterior mean of f(x|G) only; the posterior mean
of G(u) can be derived similarly. Put A(G) = f(x|G) = [ [y, ,G(dv) in
(2.2). We obtain
fR"f@fv_lI(OSx<v}G(dD)P(dGla + Eiaol)y‘n(dle)

pa( R"X)

E[f(xIG)X] =

Byt 1(Rn+1|X)

(2.12) " Ta(R) + nlu (B

_ Zap(m) o Ly, ya(dv) + e (m)Z;m;d;(x|m)
[a(R) + n]Z p(m) ’

where the second equality is obtained by regarding x as X, , ,, the last equality
by applying Lemma 2.1 to the numerator and the denominator separately, and
then simplifying. O
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The following alternative representation of d; is more interesting:
12
fU_(m'“)I(X(i) < u)a(dv)
Joo™ (X(@i) < o)a( dv)
Jo~ "L a(dv)
—-_m X 7 <x)}*
Jo 'I(X(i) < o)a(d") XH=x)

d;(xlm) =

{x < X(i))

(2.13)

Each d; is a constant function on [0, X(i)]; beyond this interval, it decreases to
zero as an inverse moment function. Substituting (2.13) into the expression (2.8)
results in a posterior mean of the decreasing density as a sum of two parts. The
first part is the result of a mixture of the first term in (2.13) and is a decreasing
step function which decreases only at the data sites. It is quite similar to the
step-wise maximum likelihood estimate of a decreasing density reported by
Grenander (1956) [see also Wegman (1970)]. The second part is a mixture of
inverse moment functions and serves as a smoothing device.

Let us consider the problem of choosing a(R) and the shape probability
a/a(R). The size of a(R) reflects the strength of our prior belief in the shape
probability and can be regarded as the prior sample size.

The determination of the shape probability might proceed as follows. Suppose
the prior data result in a decreasing step density

(2.14) mo(x) = )y wkI(b,,,,sx<bk)7

1<k<oo
where 0 < w;,, < w; for all j and b, = 0. The previously mentioned result in
Feller (1971) implies that =y(x) is a scale mixture of uniform densities with a
discrete mixing distribution P = ¥, _, _ . p;0,,, given by

(2.15) fv‘lI(0<x<v)P(dv) = ¥ biYocresPr

l1<k<oo
Hence, p, = by(w, — wy,,) for k = 1,2,... . Clearly, P is the shape probability.
Similar considerations may be used to determine the shape probability in
Section 4.

REMARK 2.1. The problem of estimating a symmetric unimodal density with
mode at the origin can be reduced to that of estimating a decreasing density on
the half line by noting that Y has' such a symmetric density, X = |Y| is a
sufficient statistic and has a decreasing density on the half line. The preceding
results apply.

3. The Pareto syndrome and a gamma alternative. The idea of conju-
gate priors [ DeGroot (1970), page 172] suggests that letting the shape probability
a/a(R) be a Pareto (a,, r,) distribution in Theorem 2.1 would lead to an
integral-free (2.8). This choice of a does simplify the expressions somewhat and
the resulting posterior mean is computationally efficient. Indeed, the usual
prior-to-posterior updating step in sampling a uniform density prevails here. For
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example, a/a(R) is Pareto (a,, ry) implies that G, is Pareto (a,, 1) and d,, is a
mixture of a uniform (0, r,) density and a Pareto (ay, r,) density with mixing
weights «,/(a, + 1) and 1/(a, + 1), respectively. The corresponding G;(:|m)’s
and d,(-|m)’s can be obtained by updating a, to a; =a,+ m; and r, to
r; = max{ry, X(i)}. The form of the d’s is worth noting:

"‘o("o)m0

dy(x/m) =
(x{m) (@ + 1)[max(x, r,)]

ag+1

_ % 1 1 ag(r,)*
= (ao T 1) X —r—OI{Osx<r0) + (ao T 1) xa0+1 (ro<=x}*

The role of the location index r, is critical. First of all, it washes away the
effect of any observed X(i) which is less than r,. Hence a moderate-to-large r, is
not desirable [this “Pareto syndrome” is very well known in the case of sampling
a parametric uniform distribution; see the above reference to DeGroot (1970)].
One way out is to choose a small r,, yet a small r, invites a large spike on [0, r;]
and is not palatable. Figure 1 illustrates the association between r, and the size
of the spike when a, = 1. The computation employs the Monte Carlo method
developed in Section 5.

The foregoing discussion indicates that the choice of a Pareto («a,, r;) shape
probability results in a trade-off between a loss of data (large r,) and a bad spike
close to the origin (small r,); a different shape probability a/a(R) might
perform better. An inspection of (2.8)-(2.11) suggests that the next candidate is
an inverted gamma (a,, B,) distribution and, in this regard, the following
reparametrization of the submodel {v™',_,.,: 0 <v < o0} is convenient.
Upon reparametrization, the d’s can be rewritten as

do(xm) = /yI(o< y<1/x)a*(dy)’

Jytmt 1)I(o < y<min[1/x, 1/X(i)])“*(dy)

d;(xjm) = —
(jm) Jy 'I(0<y<1/X(i))a*(dy)

3.2 m,
(3.2) fy( '+1)I(0<y<1/X(i))“*(dy)

fym‘I(0< y< ’/X(i))a*(dy)

[yt 1)I(o <y<1/m@*(dy)
fy'"'I(O <y <1/X(i)}a*(dy)

{0 <x < X(i)}

{X(@) <x}

where a* is a probability on the half line and a/a(R) is the “inverted”
distribution corresponding to a* in the sense that v ~ a/a(R) is equivalent to
-1 *
y=0v"1~a*
Let o* be a gamma (a,, B8,) distribution. a/a(R) is then called an inverted
gamma («a,, ;) shape probability. Denote the cumulative distribution function
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Fic. 1.

The Pareto syndrome. Monte Carlo simulation of (2.12) based on 200 uniform m vectors

and n = 50 observations from a standard exponential density. a/a(R) is Pareto (ay, ry) with
ay = 1.0 and ry = 0.1, 0.5 and 1.0; a(R) = 1.0.

of a gamma (a, b) random variable evaluated at ¢ by y(¢|a, b). Then
do(x|m) = (ao/ﬁo)Y(l/xlao, Bo),

di(x/m) = (a/Bo)Y(1/X(D)lag + m; + 1, )
(3.3) " y(1/X(i)lag + m,, By) (=< X))

(a/By)Y(1/x|ag + m; + 1, B,)
Y1/X(i)ag + m;, B,) KOs

The d; is constant on the interval [0, X(i)] and then tapers off very smoothly to
zero beyond this interval. Note the spike-free nature of the second term.

Figure 2 uses the Monte Carlo method developed in Section 5 to plot posterior
means of a decreasing density with respect to Pareto and inverted gamma shape
probabilities (i.e., a* is a gamma distribution). The sample consists of 50

observations from a standard exponential density. Notice the lack of spike when
an inverted gamma shape probability is used.

1557
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Fic. 2. Estimates of decreasing density: Comparison of Pareto and inverted gamma shape proba-
bilities. Monte Carlo simulation of (2.12) based on 200 uniform m vectors and n = 50 observations
from a standard exponential density. Pareto (ay, 1) shape probability has ay = 1.0 and ry = 0.1.
Inverted gamma (ay, B,) shape probability has ay = 1.0 and B, = 1.0. a( R) = 1.0 in both cases.

Next, we turn to the question of deflating the prior. Ferguson’s posterior mean
of a distribution function [Ferguson (1973)] has the interesting property that
letting a(R) — 0 reduces it to the maximum likelihood estimate of the distribu-
tion function (i.e., the empirical distribution function). Lo (1986) has shown that
letting a(R) - 0 or a(R) — oo does not yield useful estimates in mixture
models. In particular, if a(R) — 0, the dominating term in (2.8), i.e,
L W)X, (m,/n)d,(x|m), tends to the posterior mean of a U(0, §) density
based on a sample {X,..., X}, obtained by i.i.d. sampling from the parametric
model {U(0, §): 6 > 0} with respect to the prior a(d)/a(R). On the other hand,
if a(R) — oo, this quantity tends to the average of the same posterior quantities
based on samples of size 1; neither limiting estimate is useful. In contrast,
deflating the shape probability «/a( R) while keeping a( R) fixed yields nontriv-
ial estimates. These limiting estimates are not, in general, the maximum likeli-
hood estimate. For example, in the case of Pareto shape probability, the limiting
estimate is not constant between adjacent order statistics.

4. Bayes methods for a symmetric unimodal density and its mode.
This section provides Bayes solutions for a symmetric unimodal density with an
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unknown mode. The random variable X has a symmetric unimodal density with
a mode at @ if and only if | X — 6| has a decreasing density on the positive line.
Therefore, according to (2.1), the model can be defined as follows:
(4.1) Given the pair (4,G), X,,..., X, are i.i.d. with density given

) by f(xloyG) = 2_1/D_II{|x—0<o)G(dD)'

where 6 is the unknown mode and G is an unknown probability on the half line.
The parameter space O is the collection of (8, G) pairs. Note that since the map
(6, G) — f is one to one, the model { f(- |0, G): (8, G) € O} is identifiable. Again,
Doob’s (1949) result guarantees consistent Bayes procedures for almost all (6, G).
Assume any prior on the pair (6, G). The usual double expectation formula

(42) E[R(8,G)X] =//h(O,G)P(dG|0,X)P(d0|X) for any positive A,

determines the posterior distribution of the pair (8, G). Suppose

the prior distribution of 6 is #(d#@), and given 8, the prior
distribution of G is a Dirichlet process P(dG|a,)

where a, is the shape measure. Then P(dG|6,X) is defined by (2.2), with a and
X, replaced by a4 and |X; — 6|, respectively. It remains to identify the posterior
distribution of the mode P(d#|X) in (4.2); as a consequence of (4.3), this
distribution will be denoted by P,(d8|X).

(4.3)

4.1. Posterior distribution of the mode. The posterior distribution of the
mode 6 has an explicit form, which can be derived using the technique developed
in Section 2.

THEOREM 4.1. Let the prior and the model be defined by (4.3) and (4.1). The
posterior distribution of 8, given X = (X,,..., X,), is defined by

ka*(m)/AHi*fD_miI(X(i, 8) < ye(dv)m(d0)
zmk*(m)fni*fv_miI(X(i, < o)at(d”)‘”(dt) ’

where 0 < X(1,0) < --- <X(n,0) < co are the ordered values of |X; — 0],
i=1,...,n, and A is any Borel set on the line.

(44)  P(AX)=

Proor. Note that G is a nuisance parameter to be averaged out by the
conditional distribution of G given 6, ie., P(dG|a,). This integration can be
carried out by repeatedly applying Lemma 1 in Lo (1984) and then Lemma 2.1,
resulting in the following conditional density of X given 6:

[2"T(ay(R) + n)] _l/Rn[l:[l’i_lqu,.—mwi)]1:[(0‘0 + 151§i—180j)(dvi)

(4.5)
= [2°T(ag(R) + )] " @) TT [0 ™l x0)<opol o).

Theorem 4.1 follows from the last equality and the assumption that the prior
distribution of 8 is 7(d6). O
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Expression (4.4) can be simplified slightly by assuming that the index measure
a,y is independent of § and that 6 has a prior density 7'(f) with respect to
Lebesgue measure. Then the posterior density of 8, p,(0|X), is given by

ka*(m)"r,(e)ni*/D_miI(X(i,0)<v}a(dv)
Lok*(m)[7'(2) {ni*f”_mi (X, t)< v}a(dD)} dt’
For a flat prior on 6, i.e., 7/(§) = 1, the posterior density reduces to

Lk * ()T fo™ ™Iy gy < pyet(dv)
ka*(m)f{ni*fv_miI(X(i, z)<o}“(d”)} dt

The idea of a conjugate prior suggests a Pareto (e, r;,) distribution for the
shape probability a/a( R). Expression (4.7) becomes

pr(81X)
(48)  Ta(R)™™k*(m)[T,rge max(r,, X(i,0)} ™ ay/(ay + m,)
2ma(R)#(m)k*(m)[l_Ii.r0“° max{ry, X(Z,¢)} _(“°+m')a0/(a0 + m;) dt

(4.6) p,(01X) =

47 p(6X) =

Posterior Density

Fic. 3. Posterior density of the mode: Pareto shape probability. Monte Carlo simulation of (4.8)
based on 200 uniform m vectors and n = 10, 30, 50 and 75 nested observations from a standard
Cauchy density. a/a(R) is Pareto (ay, 1)) with ay = 1.0 and ry = 0.1; a(R) = 1.0.
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Posterior Density

F1G. 4. Posterior density of the mode: Inverted gamma shape probability. Monte Carlo simulation
of (4.9) based on 200 uniform m vectors and n = 10, 30, 50 and 75 nested observations from a
standard Cauchy density. a/a(R) is inverted gamma (ay, By) with ay = 1.0 and B, = 1.0; a(R) = 1.0.

In the reparametrized form with an inverted gamma (a,, 8,) shape probabil-
ity, the posterior density of the mode is given by

#(m) . T(ey + m;)
p(olx) = {Zma(R) k*(m)n,*'}’(l/X(l, 0)'(10 + mi, BO) I‘(ao)ﬁ(;"‘ }
(1) T(aq + m;)
= {Zma(R)#(m)k*(m)fni*}’(l/X(i, t)|a0 +m,, 'BO)—f(:)KO)—B(;"t t} .

It is tempting to “deflate” the prior, i.e., taking limits for a,, r, and B,. Yet
this limiting procedure does not lead to simplified and reasonable expressions;
for example, if 7, — 0 in (4.8), the denominator blows up to infinity.

Figure 3 plots the Monte Carlo approximation (developed in Section 5) of
(4.8), which is the posterior density based on a Pareto shape probability. For
comparison, Figure 4 plots the approximation of (4.9). Nested samples of sizes 10,
30, 50 and 75 from a standard Cauchy density are used to show a peaking
posterior density.
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REMARK 4.1. The fact that the choice of a Pareto shape probability invari-
ably results in a posterior density with a more profound (and desirable) peak at
the true mode is worth noting. This phenomenon does not contradict the results
in the last section in which the defect of a Pareto shape probability is discussed.
Instead, it suggests that estimating a symmetric density and estimating its mode
are ‘“‘independent” affairs and what is a disadvantage for one could very well be
an advantage for the other.

4.2. Posterior mean of the symmetric unimodal density. Posterior quantities
of the model (4.1) with respect to the prior (4.3) can be obtained by appropriate
choices of (8, G) in (4.2). In particular, one can obtain the posterior mean of the
symmetric unimodal density evaluated at x by letting h(8, G) = f(x|0,G). In
this case, the inner integral [f(x|6, G)P(dG|8,X) in (4.2) is given by (2.8)
multiplied by 0.5, with X(i) replaced by X(i, 8), x replaced by |x — 8] and «

061

Density Estimate
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|
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I
b

Fic. 5. Estimate of symmetric unimodal density: Pareto shape probability. Monte Carlo simulation
of (4.2) with h(0,G) = f(x|0, G), based on 200 uniform m vectors and n = 30, 50 and 75 nested
observations from a standard Cauchy density. a/a(R) is Pareto (a, ry) with ay = 1.0 and r, = 0.1;
a(R) = 1.0.
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Fie. 6. Estimate of symmetric unimodal density: Inverted Gamma shape probability. Monte Carlo
simulation of (4.2) with h(8, G) = f(x|6, G), based on 200 uniform m vectors and n = 30, 50 and 75
nested observations from a standard Cauchy density. a/a(R) is inverted gamma (ag, By) with
ay = 1.0 and By = 1.0; a(R) = 1.0.

replaced by a,. P,(df|X) is given by Theorem 4.1. Therefore, E[ f(x|0, G)|X] is
a two-stage sum over m-vectors and can be evaluated by the Monte Carlo
method developed in the next section.

We conclude this section by a Monte Carlo evaluation of a posterior mean of
the symmetric unimodal density based on a uniform distribution on the m’s
developed in Section 5. For simplicity, a, is assumed to be independent of 6. A
Pareto shape probability for the prior results in Figure 5, where P (df|X) is
given by (4.8). Since #'(6) = 1 for all 6, the prior mean of the random density is
the constant 1. Note the presence of the Pareto syndrome in Figure 5. For
comparison, an inverted gamma shape probability results in Figure 6; P (df|X)
is given by (4.9). Nested samples of sizes 30, 50 and 75 from a standard Cauchy
density are employed to indicate the convergence of posterior quantities. The
presence of outliers in a Cauchy sample for a moderate-to-large sample size
(n = 75) retards the convergence, resulting in a plot shifted to the right. This
phenomenon does not prevail when sampling from light-tailed densities.
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5. Numerical evaluation of the posterior quantities. The evaluation of
the posterior quantities obtained in the previous sections is based on computing
sums of the form ¥ g(m) where the g’s are known functions of m. A sum of the
form ¥, g(m) was computed exactly by Dykstra and Laud (1981) for a sample
size (n) of 10. However, we must point out that as far as exact computation is
concerned, the case of n =12 or 13 is the limit. The recursive formula (5.3),
which follows, can be used to generate the numbers of m-vectors corresponding
to different sample sizes. For example:

n=28 10 12 14 20 50 100
# of m’s = 1430 16796 208012 2674440 6.564 X 10° 1.98 X 1027 8.97 x 10%

In view of the preceding list, the evaluation of ¥ _ g(m) is impractical even for
modest sample sizes, say n > 14. This section develops Monte Carlo methods to
approximate ¥ g(m) based upon a probability distribution p(m) on the m’s. A
random sample of size M, say m,,...,m,,, is selected according to this distribu-
tion. By the law of large numbers, M™%, _ j<m&(m;)/p(m;) is a Monte Carlo
approximation of X g(m).

Note, however, that each posterior quantity can be written as a ratio
L n8&(m)/L h(m) for given functions g and A [this is obvious for (4.4) and its
consequences; it is also easy to show that (2.8) can be so written] and it is more
efficient to approximate this ratio directly. A Monte Carlo approximation of
% mg(m)/L,,h(m) is given by

(5.1) L em)/pim,)| / | T pm)/otm)|

1<j<M 1<j<M
It is well know that the standard error of this approximation is O(M~1/2)
[Rubenstein (1981)].

A distribution on the m’s can be conveniently defined using the Markov chain
method. Each m uniquely defines a path of partial sums s = (s,,...,s,) of
length n + 1 which increases from s, = 0 to s, = n subject to §;=XicicMm<J
for j =1,...,n — 1. Since the correspondence between m and s is one to one, it
suffices to define a distribution g(s) on the s-paths. This can be easily done as
follows: Let 8 = (S,, S,,...,S,_,, S,) be a Markov chain such that Si|S;_1 =8j_,
has a uniform distribution on {sj—psji—1+1,..., ) for j=1,...,n—1; let
Sy =s,=0and S, = s, = n. Then

ae)= II G+1-s_)7,

1<i<n-1

p(m)= ] (i+1— Y mj)_l.

l<i<n-1 1<j<i—-1

(5.2)

Let sy, ..., s, be M independent realizations of the Markov chain § ~ ¢(s). The
corresponding m,, ..., m,, is then a sample from p(m).

When the sample size n is large, the p(m) in (5.1) is likely to be very small,
creating the usual computational difficulty of evaluating a ratio with a very
small denominator. Therefore, it is desirable to select an m-vector according to a
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uniform distribution on the m’s; in this case p(m) is a constant which cancels in
(5.1), and the problem of division by a number close to zero does not arise. To
describe this uniform distribution on the m’s, we let (i, j) be the number of
paths of length i + 2 such that S; = j (by definition, S;.;, =i + 1 and #(n, n) is
the number of m-vectors corresponding to a sample of size n). A moment of
reflection, taking into account the nondecreasing property of the s-paths, shows
that the ¢’s satisfy the recursive relation

t(i,j)=0 fori<j, ¢(i,0)=1 fori=0,1,...,
(5.3) Hi, j)=t(i-1,j)+t(i,j-1)= Y #i-1,k)

0<k<j
forl<j<i=1,2,....

Define a Markov chain S =(S,, S,,..., S,) as follows: S,=n,S,_,|S,=n
equals x with probability #n —1,x)/#n,n) for x =0,1,...,S,. For j=
2,...,n—1,8,_|S,_;., equals x with probability t(n — j, x)/t(n —j + S,_;11)
forx = 0,1,..., Sn—j+1'

ProPOSITION 5.1. For the preceding Markov chain S = (S,, S,, ..., S,), all

paths are equally likely. Equivalently, all corresponding m-vectors are equally
likely.

Proor. It suffices to note that
(I(s) = [t(n -1, sn—l)/t(n’ n)]
(5.4) X l_[ t(n -7, sn_j)/t(n -Jj+1, sn_j+1)

2<j<n

=1/t(n, n),
proving that S has a uniform distribution. O
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