The Annals of Statistics
1989, Vol. 17, No. 4, 1447-1471

BOOTSTRAPPING EMPIRICAL FUNCTIONS

By SANDOR Cs6RGG! AND DaviD M. MASON?2

University of Szeged and University of Delaware

We develop the complete bootstrapped parallel to the asymptotic theory
of weighted empirical and quantile processes. Utilizing this parallel theory,
we present a general body of techniques to establish the asymptotic validity
of the bootstrap method of constructing confidence bands for statistical
functions. These techniques are demonstrated to be applicable to the con-
struction of asymptotic bootstrap confidence bands for a variety of concrete
functions.

1. Introduction and discussion. Efron (1979) introduced the bootstrap
method of constructing confidence intervals for a real valued population parame-
ter §(F). Given independent observations Xj,..., X, from F, this method
consists of approximating the sampling distribution of an appropriate parameter
estimator 9,, = ?n (Xy,.-., X,) of 8(F) by means of the sampling distribution of
the quantities 6, , = b,(X,..., X,), where the m > 1 observations X,, ..., X,
are sampled independently from the finite population Xj,..., X, with distribu-
tion function F(x)=n"'#{k: 1<k<n, X,<x}, —o0 <x< o0, ie,
X,,..., X, are conditionally independent random variables (rv’s) with common
distribution function F,, given X,,..., X,,. In less than a decade the literature
on the practical and theoretical aspects of the bootstrap approximation has
become enormous.

Consider also the quantile function belonging to F,
(11) Q(s) =inf{x: F(x) >s}, 0<s<l1,
Q0)=Q(0+), Q1)=Q(1-)

and, with X, , < --- <X, , denoting the order statistics of X,,..., X, its
empirical counterpart

_ | Xns if(k—1)/n<s<k/n;k=1,...,n,
12)  Qus) {X ik~

The bootstrapped empirical and quantile processes are, respectively,

(1.3) mVYF, (x) - F(x)}, —o <x< oo,
and
(1.4) m/Y@, (s) - Q,(s)}, 0<s<1,
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where F, (x)=m #(k: 1<k<m, X, <x) and ‘Qm,n(s)~= X, if

(k- 1)/m<s<k/m, k=1,...,m, and @, ,0) = X, ,, with
X, n< -+ <X, , standing for the order statistics of the bootstrap sample
X,,..., X,, with resampling size m.

Among many other things, Bickel and Freedman (1981) established the weak
convergence of the processes in (1.3) and (1.4), the latter on a proper subinterval
of [0,1] not containing the endpoints, and from these results they were able to
deduce the asymptotic validity of the bootstrap method of forming confidence
bands for F and Q. Shorack (1982) gave a simple proof for the first process in
(1.3). [See also Shorack and Wellner (1986), Section 23.1.] The Bickel and
Freedman result for m'/*(F,, ,(-) — F,(+)) has been subsequently generalized for
empirical processes based on observations in R¢, d > 1, and in very general
sample spaces and indexed by various classes of sets and functions. [See, for
example, Beran (1984), Beran and Millar (1986), Beran, Le Cam and Millar
(1987), Gaenssler (1987), Lohse (1987) and Sheehy and Wellner (1986).] A certain
final result is due to Giné and Zinn (1988). The Bayesian analogue of the Bickel
and Freedman theory has been established by Lo (1987).

In the present paper we pursue further the above line of the Bickel and
Freedman (1981) study and consider the validity of the bootstrap for general
empirical functions on the real line containing as special cases the empirical
distribution function and the empirical quantile function. This means that our
ultimate aim is to show the asymptotic validity of bootstrap confidence-band
estimation of functions on the real line generally different from F and @. Our
prime examples here will be various reliability, econometric and moment-type
functions. In order to enable us to make our program more clear we now
introduce some notations. Any convergence and order relations will be under-
stood throughout as n — oo if not specified otherwise.

Let R;(-) be a statistical function of interest defined in an interval I C R and
let R,(-) = R,(:; X,,...,X,,) be an appropriate estimator of R;(-) on I. We
can allow I to be the union of a finite number of disjoint (finite or infinite)
intervals. Typically, for the process

(1.5) ra(-) = n'*(R,(-) = Ry())

one can find a sequence of copies Z5)(+) of a separable Gaussian process %x(+) on
I ie., 95(-) =9 %p(-) for each n > 1, such that on an appropriate probability
space (2, &, P),

(1.6) P{sup|?p(t)| < oo} =1 and' sup|r,(t) — 9§(¢)| »pO0.
tel tel
Consequently, given 0 < a < 1, we have (on any probability space where the
X’s are defined)
Pr{R,(t) —en V2 < Ryp(t) <R, (t) +ecn 2 tel} > 1—a,

provided that Gp(c)=1-a and ¢ = c(a, F) is a continuity point of the
distribution function

(1.7) Gp(x) = P{stl;I;I?F(t)l < x}, x>0.
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This means that {R(t) + cn™ '/ t € I}, is an asymptotically correct (1 — a)
100% confidence band for the statistical function Rg.

It is rare that this method of forming asymptotically correct confidence bands
is feasible, since there are only a few cases when ¢ = ¢(a, F') is independent of F'
and its analytical form is known. The most well-known case when this is true is
the choice Ry = F, R, = F, and F is continuous.

_ Consider the bootstrapped version of the empirical function R,(-) given by

R, .()=R,(; X;,. , X,). Suppose we were able to show that on an appro-
priate extension (SZ P) of the above probability space (&2, <7, P) there exist a
sequence of versions ?('") of the process 9y, ie., {¢ G\mM(t): t e I =, {Gp(2):

t € I) for each n and a sequence of versions Rm, . of the process Rm, ,, such that
(1.8a) the sequences {X,} ., and { g™} :,1 are independent,

{(Rn(s),ﬁ’m,n(t)): s,tel}
=, {(R,,(s), I’?m,n(t)): s, te I} for each n,

(1.8b)

sup |m'/? ¢ - (m) —>p
(1.8¢) up | m (R, (1) = Ri(8)) = F(D)] =50,

where m = m(n) — oo at an appropriate rate.

(Here and in what follows =, stands for the equality of all finite dimensional
distributions of the stochastic processes on the two sides.) From (1.6) and (1.8)
we can conclude that whenever x is a continuity point of Gy in (1.7), then, by
Proposition 1 in the Appendix,

(1.9) Pr{ supm*? R,, (t) — R, (t)| < x|X,,..., Xn} —p Gp(x)
tel

(on any probability space) for the same m = m(n) sequence. Now fix 0 < a <1
and suppose we can show that

Gy, is continuous at both ¢ = ¢(a, F) = inf{x: Gp(x) = 1 — o}

(1.10) and d = d(a, F) = sup{x: Gp(x) <1- a}.

Given then the observations X, ..., X,, for each m let c,, = ¢,, (X;,..., X,,) be
defined as

= inf{x: Pr{supml/“’lfimyn(t) - R, ()] < x|Xy,..., X, } >1- a}.

n
tel

By Proposition 2 in the Appendix we then conclude from (1.6) and (1.9) that
(1.11) Pr{ supn'/?|R,(t) — Rp(t)| < cm} ->1-a,
tel

provided m = m(n) — o at the rate required by (1.8). Hence from (1.11) we see
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that an asymptotically (1 — a) 100% confidence band for R, is given by
(1.12) {R,(t) £ c,n % teI}.

We note, however, that since, given X,,..., X,, sup{m'/?|R,, (¢) — R,(t)|:
t €I} can take on as many as n™ possible values, which is typically an
astronomically large number, c¢,, must in most practical situations be estimated
by Monte Carlo simulation.

Bickel and Freedman (1981) established the validity of the above procedure
[spelled out very similarly but nevertheless somewhat differently also by Beran
(1984)] in two cases. One is when Rj = F is an arbitrary distribution function,
I =(—o,0) and R, = F,. The other is when R, = @ as given in (1.1), I =
[a, b] € (0,1), a < b, and R, = Q,. Concerning these results, see also Section 3.

The requirement in (1.10) is satisfied in any conceivable statistical situation.
Indeed, it follows from Theorem 1 of Tsirel’son (1975) that if %, is any
separable, mean-zero, almost surely bounded Gaussian process such that
Var @,(t) > 0 for some point ¢ of I, then Gy, is continuous on the whole half-line
(0, ). Without further mention, this will be the case for any concrete example in
the present paper.

On the other hand, to show that (1.6) holds for the processes r, in (1.5) always
requires a specific approach depending on the particular nature of the statistical
function R and the structure of the empirical function R . This is also the case
when one must in addition establish the bootstrap counterpart in (1.8). Subse-
quently, to state and prove a general theorem concerning when the above
bootstrap program works is a hopeless venture. Rather than make such an
attempt, the purpose of this paper is to provide a body of techniques that should
prove useful in establishing (1.8) for a variety of empirical functions of statistical
interest. We will demonstrate how to apply our techniques by showing the
validity of (1.8) in Sections 3 and 4 for a number of concrete examples.

The philosophy of the bootstrap principle includes the appealing heuristic
idea that bootstrapped versions 7, , = m*/*(R,, , — R,,) of processes r, behave
asymptotically the same way as the original processes r, under the same
regularity conditions on the underlying distribution, and, therefore, under the
(preferably optimal) regularity conditions of (1.6) we also have the final boot-
strap confidence-band statement in (1.11). [Of course, the idea is not true
literally in general. See the counterexamples of Bickel and Freedman (1981).]
One of the most powerful techniques of establishing a result (1.6) on the real line
(usually under optimal regularity conditions) is the weighted approximation
method of Cso6rg6, Csorg6, Horvath and Mason (1986a) [see also Mason and
van Zwet (1987)], which has been used in various contexts in Csorg6, Csorgd,
Horvath and Mason (1986a,b,c), and a weaker version of the idea in Csérgd,
Csorgd, and Horvath (1986). The origin of this method goes back to the works of
Chibisov, Pyke and Shorack, Shorack and O’Reilly. [See the references in the
above papers and in Shorack and Wellner (1986).] Now, almost to the contrary of
the negative claims in the preceding paragraph, the principal message or “meta-
theorem” of the present paper intends to be something like the following:
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Whatever result (1.6) can be proved by the weighted approximation method
under some regularity conditions on F the bootstrap is automatically valid under
the same conditions, that is, we also have (1.1).

We have just defined our understanding of the asymptotic validity of the
bootstrap in the present confidence-band context. With the notable exception of
Efron (1979) himself, most authors justify the bootstrap by proving that the
statement corresponding to (1.9) holds in the stronger sense of almost sure
convergence rather than convergence in probability. Our approach cannot be
adapted to produce this. The in probability version of the justification of the
bootstrap is in fact more universally applicable than the almost sure version.
There are cases when the bootstrap construction of confidence intervals and
bands cannot be justified by almost sure convergence while it can be in the in
probability sense. After presenting the main results in Sections 2 and 3 and the
examples in Section 4, we show in Section 5 that our approach contains as a
by-product the asymptotic validity of bootstrapping the mean in the critical case
when F has an infinite variance but still belongs to the domain of attraction of a
normal law, i.e., (2.16) below holds. This result was proved earlier by Athreya
(1985), who showed by completely different direct methods that asymptotically
equivalent versions of (5.1) and (5.2) hold, also in probability only. We point out
there that (5.1) and (5.2) do not always hold almost surely only under (2.16).
However, we view (1.9) as an intermediate step only and the difference between
almost sure and stochastic convergence here disappears when passing to (1.11).
Note that our point of view is closely related to what Hall (1986) writes in the
second half of the third paragraph of his introduction.

This last issue seems to have some bearing on the difference between the
original, very powerful method and our method of validating the bootstrap. The
original method, starting with Bickel and Freedman (1981) and followed and
extended by Beran (1984), Sheehy and Wellner (1986) and others, requires some
uniformity in F in the convergence of the original limit theorem (1.6) [and
thereby yields the almost sure version of (1.9)]. Leaving aside the problem that
none of the processes corresponding to Examples 3-6 in Section 4 can be written
as a single functional of n'/*(F, — F) or as n*/*(F, — F) indexed by a single
class of functions, the uniformity requirement generally stipulates more regular-
ity on F than the original convergence theorem needs. But then there is no
chance to have the bootstrap result under the same regularity conditions. This is
the reason, for example, why Theorem 3.2 for the bootstrapped empirical process
indexed by functions on the line does not follow from any general result of the
same kind: It holds under the same conditions as the original limit theorem.
These conditions (which are optimal in certain “stationary” cases) are individual
for the given F. This point is most transparent again in the mean example of
Section 5: The indexing function is the inverse of F and condition (2.16) as well
as the normalizing sequence in the result (5.1) depend on the whole tail behavior
of the individual F. The counterexamples of Bickel and Freedman (1981) and
Beran (1984) do show that uniformity is necessary in some situations. We do not
think it is necessary in all situations. In fact, the fine result of Giné and Zinn
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(1988) shows that it is not necessary even for almost sure convergence. Similarly,
our method is not universal either to handle all the problems on the real line, to
where it is admittedly restricted.

We emphasize that the bootstrap does solve previously inaccessible problems.
With the exception of Example 1, with continuous F, in Section 3 and Examples
3 and 7 in Section 4, confidence bands have not been previously available in the
other nine examples, due to the intractability of the limiting process.

In order to guard against situations where large variances at certain ¢ points
(usually close to the extreme endpoints of I) dominate and make the bands
R,(+) + ¢,,n"'/? uselessly wide, a referee has suggested the bands

(1.13) {Rn(t) +d,n" V%, (t), te J},
where
R (t) — R, (¢
d,, = inf({x: Pr supml/2| m,nl(t) a )l leXl,...,Xn}zl—a ,
ted on(t)

o,(+) is a uniformly consistent estimator of the standard deviation function o(-)
of the limiting process ¥n(-) and J C I is the union of a finite number of
intervals where o(:) is bounded away from zero and infinity, under which
conditions the theory works, as competitors to the above constant-width bands,
together with the possibility of other weighted or transformed bands.

The problem of deciding which one of the two types of bands in (1.12) and
(1.13), or perhaps yet another type, is better will depend on the type of the
statistical function R to be estimated as well as on the underlying F and the
intervals I or of of interest. It would be hard to get a general recipe that would
work in all situations. Each case should be examined separately. While there is
nothing against the natural choice m = n for the bootstrap sample size, which is
almost forced by condition (2.11) below, the same can be said about the speed of
convergence of the true coverage probabilities to the nominal 1 — a. Of course,
the smaller a is, the larger the number of Monte Carlo simulations for the
computation of c,, or d,, must be to obtain reasonable bands. The investigation
of the complexity of these interesting statistical problems of practical impor-
tance would require very extensive simulation studies and is out of the scope of
the present paper.

In Example 7 we refer to some concrete experience of one of us suggesting that
3000 bootstrap replications should suffice for 1 — a = 0.9 and m = n = 100 for
quantile type functions (which is usually the bad case) on very long intervals. We
illustrate Example 12 by constructing bands for the probability generating
function of the famous horsekick data of von Bortkiewitz (1898).

2. Weighted approximations to the bootstrapped uniform empirical
and quantile processes. Let (2, 7, P) be the probability space constructed
in Csérgd, Csorg6, Horvath, and Mason (1986a). This space carries a sequence of
independent uniform (0,1) rv’s U}, U,,... and a sequence of Brownian bridges
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By, B,, ... such that for the uniform empirical and quantile processes a,(s) =
n'%(G,(s) — s) and B,(s) = n¥*(s — Uys)),0 < s < 1, where G,(s) = n”l#(k:
1<k<n,U,<s}and withU, ,< --- < U, , denoting the order statistics of
U,....U, U(s)=U,, if (k—1)/n<s<k/n, k=1,...,n, and Uy0) =

U,, ., we have

oy 129) = B(0)
0<s<1 (s(1 —s))? ™"

|B:(s) — B,(s)|

Anzs<1-A/n (8(1 — )27

= Op(n™),
(2.1)

= Op(n™")

for all 0 <A <o and 0<w», <%, 0<vw,<3i where B¥s)= Bys) if
1/n < s <1 - 1/n and zero otherwise. For the same construction we also have

sup |a,(s) — B,(s)| = O(n""*(log n)"*(loglog n)*)  as,
(2 1,) 0<s<1
sup |B,(s) — B,(s)|=0(n""%logn) as.
0<s<1
[Alternatively, we could choose (£, &7, P) to be the space constructed by Mason
and van Zwet (1987) with », and », transposed in (2.1) and (2.2) below and the
rate sequences transposed in (2.1').]

Now extend (2, &, P) to obtain a probability space (&, &7, P) which, besides
{U;} and {B}, carries another sequence of independent uniform (0,1) rv’s
1, é5,... and another sequence of Brownian bridges f?l, 32,... such that the
two sets of random elements {U;}2, U {Bi(s): 0 <s<1}®, and {£)2,U
(B(s): 0<s< 1}, are independent and that, besides (2.1), for the pro-
cesses e, (s) = m'/*(E,(s) — s) and k,(s) = m/%(s — £,(s)), 0 < s < 1, where
E.(s)=m™'#{k: 1<k<m, { <s)} and, with §, , < --- <§, ,, denoting
the order statistics of &,,...,¢,, §,.(s) = Som if(B—1)/m<s<k/m, k=
1,...,m,and §,(0) = £ ,, we also have, as m — oo, the parallel to (2.1’) and

o len(s) = Bao)]
o<zt (s(1 =) 7"

|k,(s) — B,(s)]
A/m<s<1-A/m (8(1 _ 5))1/2—,,2

= Op(m™),
(2.2)

= Op(m™"2)

for all 0 <A<o and 0<» <} 0<v, <1, where Bi(s)=B,(s) i
1/m < s <1 — 1/m and zero otherwise. Of course ({2, &7, P) can be obtained by

taking the product of (2, &, P) with itself. Now P can be replaced by P in (2.1).

REMARK 1. Using the fact that for each 0 < § < 1 both
a® sup |B(s)|s™/?*® and
O<s<a

a™® sup |B(1-s)[s" V2 5, sup |W(s)|s~1/2+8

O<s<a 0<s<1
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as a |0 where W is a standard Wiener process on [0,1] [cf. Cs6érgé and Mason
(1985)], it is easy to show that the first weighted approximations in (2.1) and
(2.2) remain true when 0 < », < 1 and B} and B! are replaced by B, and B,,
respectively.

For convenient reference later on we list a number of facts on the linearity of
the uniform empirical distribution and quantile functions:

(2.3) sup G,(s)/s+ sup (1— G,(s))/(1 —s)=04x1),
. 0<s<l1 0<s<l1
(24) sup s/G,(s)+ sup (1-5)/(1—G,(s)) = 041),
U, ,<s<1 0<s<U, ,
(2.5) sup s/U(s) + sup (1-35)/(1-U,(s)) = 0s1)
0<s<l1 0<s<l1
and for any 0 < p < oo,
(2.6) sup Uyfs)/s+ sup (1—U,/s))/(1—s)=041).
p/n<s<l 0<s<l-p/n

All these follow from Remark 1 of Wellner (1978). Of course, all these statements
hold also for the empirical distribution and quantile functions E,(-) and £,(-) of
the {£;} sequence.

Introduce

(27) G, (s)=E,(G,(s)) and U, .(s)=U,(¢.(s)), O0=<s<I.

It is easy to show that given independent rv’s X,,..., X, (on any probability
space) with common distribution function F, for the bootstrapped empirical
distribution function F~'m, » and quantile function @, , given in (1.3) and (1.4) we
have for all n,m > 1,

{(ﬁm’n(x),ém’n(s),Fn(y),Qn(t)): —0<x,y<w,0<s,t< 1}
(28)  =3{(Gn (F(x)),Q(U,, .(5)), G(F(¥)), Q(U,(2))):
-0 <x,y<0,0<s,t<1}.

[This distributional equivalence was used implicitly by Bickel and Freedman
(1981) and by Shorack (1982).] For this reason, by some abuse of language, we
shall sometimes refer to the processes

&y, o(8) = m*(G,, ,(s) — G,(s)) and
B, n(8) = mVA(Uy(s) = Uy, (s)), 0<s<1,

as the bootstrapped uniform empirical and quantile processes, respectively. For
these processes we need the “bootstrapped” versions of (2.1) and (2.2). Set
I(n) = n~Y*(log n)/?(loglog n)'/* for the rate sequence figuring in (2.1").

(2.9)

THEOREM 2.1. For any sequence m = m(n) — oo of positive integers and for
each 0 < v < 1§,

(2.10) sup |am’,,(s) - B,”,‘L(s)|/(s(1 - s))1/2_" = Op((m A n)_")

Ul,nSS<Un,n



BOOTSTRAPPING EMPIRICAL FUNCTIONS 1455

and
(2.10") Oiugl|am A(8) = B.(s)|=0(l(m) v U(n)) a.s.

and whenever m = m(n) satisfies the condition that for two constants 0 <
C, <G,

(2.11) Cm<n<Cm, n=12,...,

forany 0 <A< owand 0 <»v <1,

(2.12) sup B, (s) = B(s)|/(s(1 = )" 7" = Op(m™)
A/m<s<1-A/m

and

(2.12) sup B, .(s) — B,(s)| = 0(l(m)) a.s.

0<s<1

Proor. First we consider (2.10). Choose any 0 < » < 1. Since (2.3) implies
that

sup G, (s)(1 = G,(s))/(s(1 = 5)) = Ox(1),

0<s<l1

it is sufficient to prove that

(2.13) S, = sup  AY) (s) = Oﬁ((n A m)_”),

Ul,nSS<Un,n

where

A (8) =|am als) = B(8)|/(Gu(s)(1 = Gy(5)))/*".
Observe that

Sl < sup AC) a(s) + sup AT u(s)
Uy, ,v1/m<s<U, ,A(1-1/m) U, ,<s<U; ,vV1/m
+ sup A (8) =80 1 + S 0 + S0,
U, . ANQ-1/m)<s<U, ,
where S, , is defined to be zero 1f U1 2V @A/m)=U, ,and 8, ; is defined

to be zero if U,.ANQ—-1/m)=
Notice that

|2, n(s) = BA(G(s))]

1/2—v

S5, sup
L= U, ,v1/m<s<U, ,A(1-1/m) (Gn(s)(l - Gn(s)))

N sup |B.(G.(s)) — B,(s)]
Uy, ,V1/m<s<U, ,A(l—1/m) (Gn(s)(l - n(s)))1/2 ’
< sup |en(s) - B*(s)l/(s(l s)*

0<s<l1

o | ,(Go(5)) = B(5)]/(G(s)(1 = G(5)))"*".

U, ,<s<U
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By (2.2) the first term on the right side is Os(m~"), while the second term is

<2 max  sup |B,(i/n) - By(s)|/(i/n)2"
l<i<n-1 U, n<s<Uia,,
+2 max s |B(i/n) - By(s)|/(1 - i/n)2

l<i<n-1 lJi,n53<lJi+1,n

In the proof of Theorem 2.2 of Csorg6, Csoérgd, Horvath and Mason (19864a) it
was shown that these last two terms are Os(n~"). Hence we have

(2.14) 891 =0p((m An)").
Next we consider S, ,. Note that since Bi(s)=0for0<s<1 /m,
Siln2 = sup o, () |/(Gal(8)(1 = G,(5)))*

Ul,nSS<Ul,nVI/m
< sup eu(s)|/(s(1-s)) 7.
0<s<Gy(1/m)
Choose any p > 1. Notice that whenever G,(1/m) < p/m, this last expression is
1/2—v»
< sup en(s)|/(s(1-5))"

O0<s<p/m

<m™ sup (ms)?*7/(1—-s)V*
O<s<p/m
+ m~{(mE,(p/m)} /{(m, )"~ (1 — o/m)"/*”")
<2m™"+ Op(m~")mE, (p/m)
for large enough m and by (2.5). Since E(mE, (p/m)) = p, the last two terms
are Op(m™"). On the other hand, by Markov’s inequality P{(G(1/m) < p/m} >
1—-1/p for all p>1 and m > 1, and therefore an elementary argument now

establishes that S{, , = Op(m™"). An analogous proof shows that we also have
S, 3 = Op(m™"). The last two relations and (2.14) imply (2.13) and hence the

m, n,3

first statement of the theorem.
To prove (2.12), first we observe that

Bun(5) = Bul)] < 11n(9) = Bol) |+ () 18ul8n(s)) - Bu(En(o))

(2] e 001+ ) a1

= V,s)(S) + ... +V,(:)(S).
Choose any 0 < » < . By (2.2) we have

sup v (s)/(s(1 ~5))"*7" = Op(m™")
A/m<s<1l-A/m
and by (2.1) along with assumption (2.11) we obtain

sup  vi(s)/(s(1-8))"*" = Op(m™").
A/m<s<1-A/m
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Choose any 1 < p < o and set

AD(p) =(s/p<tn(s)and §,(s) <1 - (1-s)/pfor\/m<s<1-\/m}.
Notice that on the event AQ)(p),

sup  vP(s)/(s(1-s))"*"
A/m<s<l-A/m
|B:(£,(5)) — B,(¢,.(3))]
ames<i-am (£,(s)(1 = £,(s)))>"
< " ¥(m/n)"? sup |B.(t) = By(t)|/(¢(1 — £))*7,
A/(pm)<t<1-XN/(pm)

which by (2.1) and (2.11) is Op(n~") = Os(m™"). But (2.5) as applied to £,(-)
implies that

< pl ‘2"(m/n)1/2

lim liminf P{AQ)(p)} = 1.

p— 00 m—o0

Hence

sup v (s)/(s(1 ~ )" = Op(m™).
A/m<s<1-A/m

Finally, to establish that

sp v 9(s)/(s(1 - 8)V* = Opm™),
A/m<s<l—A/m

one requires a routine, though very lengthy, modification of the corresponding
part of the proof of Theorem 2.2 of Csorgd, Csorgd, Horvath and Mason (1986a).
For the sake of brevity these details are omitted.

The primed versions (2.10) and (2.12’) follow from (2.1") and the correspond-
ing primed parallel to (2.2) by usual strong approximation methods. Most of the
details can be read out from Lo (1987). O

REMARK 2. Combining the fact cited in Remark 1 with (2.6), it is straightfor-
ward to show that (2.10) remains true for all 0 <» < 3 when the supremum is
taken over [0,1] and B} is replaced by B,,. Similarly, since for any choice of

0 < A; <A, <1 one has trivially that both
sup |B(s)|s"/2and sup |B(1-s)|s"%2 >, sup |W(s)|s™'/?

Aa<s<Aa ANa<s<ha A <s<A,
as a | 0, it is routine to prove, using (2.6) and assuming (2.11), that when » = 0,
(2.10) still holds when the supremum is taken over [0, 1].

Next we state the Chibisov—O’Reilly theorem for the bootstrapped uniform
empirical and quantile processes in the same generality as given in Csorgd,
Csorgd, Horvath and Mason (1986a) for the ordinary processes. These results can
be deduced from Theorem 2.1 in exactly the same way as the corresponding
results for the ordinary processes were derived from (2.1) and (2.2) [cf. the first
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proof of Theorem 4.2.1 and Corollary 4.3.1 in Csorg6, Csorgé, Horvath and
Mason (19864a)].

Let 2 denote the class of positive functions g defined on (0, 1) such that for
any q € 2 there exists a 0 <8 < ; and an ¢ > 0 such that q(s) > ¢ for all
8 <s <1 — 48 and both g(s) and g(1 — s) are nondecreasing on (0, §]. A func-
tion g € 2 is called a Chibisov—O’Reilly function if and only if

fl/zs‘le‘cqz(s)/sds < o0 and fl/zs_le‘°q2(1‘s)/sds < o0
0 0
for all ¢ > 0.

THEOREM 2.2. Let m = m(n) be any sequence of positive integers converg-

ing to infinity. For any q € 2,
SUp |, (8) = Bo(s)|/g(s) =50
0<s<l1
if and only if q is a Chibisov-O’Reilly function. Also, if €2 is a
Chibisov-O’Reilly function and if condition (2.11) is satisfied, then for any
0 <A< oo,
sup | B, (s) = Bu(s)|/a(s) —50.

A/m<s<1—-A/m

We note that the second statement is in fact true under the weaker assump-
tion that g € 2 is such that both g(s)/s'/? and q(1 — s)/s'/? converge to
infinity as s | 0.

The linearity statements (2.3)—(2.6) were useful in proving Theorem 2.1. They
play very important roles in various contexts, in particular when proving
concrete examples of (1.6). Used in conjunction with Theorem 2.1, their ana-
logues for G,, , and U, , in (2.7) contained in the next theorem are just as

m, n m,n

important when proving concrete examples of (1.8).

THEOREM 2.3. Let m = m(n) denote any sequence of positive integers con-
verging to infinity. Then

sup G, ,(s)/s+ sup (1= G, (s))/(1-s)=041),

0<s<1 0<s<1
sup  8/G, (s)+ sup  (1-35)/(1- G, .(s)) = Ox(1),
Uy, n(0)<s<1 0<5<Up, A1)
sup s/U, (s) + sup (1-s)/(1 - U, .(s)) = Op(1),
0<s<l1 0<s<l1

and whenever there exists a constant 0 < C < oo such that m/n < C for all
n > 1, then for any 0 < XA < o0,
sup U, a(s)/s+ sup  (1-1U,.(s))/(1—s)=0p1).

A/m<s<l 0<s<l-A/m

A complete proof would require showing that all eight terms that appear are
stochastically bounded. This can be seen by simple separate arguments and
observations, using the original statements (2.3)—(2.6). We omit the details.
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Now we formulate a convergence theorem for the bootstrapped uniform
empirical process indexed by functions. This is the bootstrapped analogue of
Corollary 3.2 in Csorgd, Csorgd, Horvath and Mason (1986a). This corollary is a
special case of Theorem 3.2 there and follows from the first relation in (2.1).
Following an appropriately simplified version of the proof given there, with
obvious small modifications requiring (2.11), relation (2.10) of Theorem 2.1
implies the result.

THEOREM 2.4. If £ is a class of functions l defined on (0,1) such that each !
can be written as | = I, — l,, where l, and l, are nondecreasing left-continuous
functions on (0,1) and

s1/2

sup sup (|L(s)] +]L(s)] +]4(1 = )] +]15(1 ~ s)I)L( j

as 8 |0, where L is a fixed positive nonincreasing function defined on (0, 3] and
slowly varying at zero, then
2]

1 1-1/m

sup| [ U(s)da,, (s)—
leg ‘/(‘) ' ( /

Recall (1.1) and let X be a rv with a nondegenerate distribution function F.

In this case, the function

provided condition (2.11) holds.
e o 1/2
(2.15) L(s) = (/ s/ (uAv— uv)dQ(u) dQ(u))

is positive and finite for 0 < s < y with some 0 <y < %, and for y <s < 1 we

put L(s) = L(y). Let I(-) be the indicator function. The classical normal
convergence criterion

(2.16) xlEr:O x*P(|1X| 2 x} /E(1X|2I(X| <x)) =0

can be completely described in terms of @ [Csorgd, Csérgd, Horvath and Mason
(1986b)] and it follows in particular from (2.16) that L is slowly varying at zero.
The two statements of the last result of the present section are the bootstrapped
counterparts of Theorem 2.1 and Corollary 2.1 in Csorgs, Csérgd, Horvath and
Mason (1986b), the second one following from the first and the first one following
from Theorem 2.4 with almost verbatim proofs as given for the original results.

THEOREM 2.5. Let F be nondegenerate and assume (2.11). If (2.16) holds,

then with L in (2.15),
t tax i —a
2 [ [lm ) d05) = ['Bi(6) a@(o)| 2] =50
[ @ a(s)dQs) = [B,(s) dQ(s)| ~50
0 0

If EX? < o0, then

sup
0<t<1
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3. The general bootstrapped empirical process on the real line. The
two examples below show the asymptotic validity of bootstrap confidence-band
estimation of distribution and quantile functions. Example 1, in the special case
g = 1, and Example 2 are originally due to Bickel and Freedman (1981).

ExXAMPLE 1. Let F be an arbitrary distribution function and m = m(n) be a
sequence of positive integers such that m(n) — co. It follows from Theorem 2.2
and (2.8) that on the probability space ({2, &/, P) of Section 2, for each n > 1,

{((F(x), E, o(¥)): —o0 <x, y < 0}

=5 ((F(2), B, (9)): —o0 <, y < 0},

where F, on the right-hand side is defined in terms of X, = Q(U,),..., X,, =
Q(U,) and hence F(x)=G,(F(x)), —o <x <, and where B, ()=
G, (F(¥)), —00 <y < 00, and

sup |mV*(E, (t) - F(t)} — B.(F(t))|/a(F(¢t)) =50,

-0 <t<oo

(3.1)

where q is any Chibisov—O’Reilly function. This approximation with the weight
g(F(-)) in the bottom often provides a quick and easy means to establish the
validity of the bootstrap in many situations.

EXAMPLE 2. Assume that F' has a continuous density f such that f(@(¢)) > 0
for any a < t < b, where 0 < a < b < 1. Let m = m(n) be a sequence of positive
integers such that condition (2.11) is satisfied. Elementary arguments based on
Theorem 2.2 and (2.8) show that on the probability space (2, &7, P) of Section 2,
for each n > 1,

(3.2) {(Qn(s),Qm,n(t)): a<s,t< b} =9{(Qn(s),QAm,n(t)): as<s,t< b}

and

sup [m*{@,, .(t) — @.(8)} — B.(¢)/f(Q(1))]| =50,

a<t<b

where @, .(t) = QU,, (), a <t<b.

Next we formulate the generalized analogue of Theorem 2.4 for an arbitrary
distribution function F and a sequence of integers m = m(n) — co. For simplic-
ity we assume L = 1. This is the bootstrapped analogue of Theorem 1.1 in
Csorgd, Csorgd, Horvath and Mason (1986¢). If we change m to n in the proof of
the latter result, we see that it remains valid word for word and hence shows
that Theorem 2.4 and (2.8) imply this analogue.

THEOREM 3.1. Let 5 be a class of Borel measurable functions h defined on
(Q(0), Q(1)), the support of F, such that the class L= {l(s) = h(Q(s)),0 <s < 1:
h € %)} salisfies the conditions of Theorem 2.4 with L = 1. Then on the space
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(Q, o7, P) of Section 2 we have (3.1) and

sup || A d () = [@/ () B (FL))| -

hexty

as n — oo, where

(33) fn, () = m72{E, (x) = F(x)}.

This result is mathematically quite nice in the sense that it provides a
meaningful approximation even in the case when the supremum over 5 of the
approximating Gaussian sequence goes to infinity. In this case, which shows the
strength of the approximation, the two sequences blow up together. The final
step allows us to extend the integration to (— oo, ) in the approximating
sequence and ensures at the same time that it remains bounded. With a view
toward applications, just as in the primary limit theory, this we do for classes
H# admitting a Euclidean parametrization. Having Theorem 3.1 above, the
proof of Theorem 1.2 in Csérg6, Csorg6, Horvath and Mason (1986¢) is again
valid word for word to give its bootstrapped analogue:

THEOREM 3.2. Let #y = {hy(-): t € [a, b]?} be a function class satisfying
the conditions of Theorem 3.1, where [a, b] is a finite interval and d > 1 is an
integer. Assume that the function

d(s,t) = d(s,0) = [ {((x) = hy(x))" dF(x)]}

is continuous on [a, b]d X [a, b]? and let N, (¢) be the minimum number of
d,.-balls with centers in [a, b]? and radii at most ¢ > 0 that cover [a, b]4,
where a d_,-ball with center t and radius 8§ > 0 is the set {s: d .(s,t) < &}. If,
in addition, the metric entropy condition

A log N, (¢) Y2 de < o0
dye
0

is also satisfied, where d .= sup{d,(s, t): s,t € [a, b1?)} is the d,~diameter of
[a, b]%, then, on the probability space (2, o, P) of Section 2 we have (3.1) and

sup
t€[a, b]¢

f_wooht(x) dfy, o(%) = f_ooooht(x) dB, (F(x))| -

as n = o, where m = m(n) satisfies condition (2.11) and fAm, ,. Is given in (3.3).

As mentioned in Csorg6, Csorgd, Horvath and Mason (1986¢), the entropy
condition is the presently available nicest sufficient condition for the sample
continuity of the Gaussian process { [®_h(x) dW(F(x)), t € [a, b]?}, where W
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is a standard Wiener process and is implied by the simpler condition that
¢ €
f (¢) d<oo for some 8 > 0,
0 yeloge™

where, with || - || standing for the maximum norm in R%, ¢,.(¢) = sup{d 4 (s, t):
s,t €[a, bl |Is —t|| < e}

(3.4)

4. Examples: Bootstrapping reliability, concentration and moment-type
functions. Throughout this section we assume (2.11).

ExXAMPLES 3-6. As discussed in Csorg6, Csorg6 and Horvath (1986), one of
the most important problems of statistical reliability theory and survival analy-
sis is the estimation of the mean residual life function and the total time on test
function, while the estimation of the Lorenz curve and its inverse, the Goldie
concentration curve, of a distribution is of utmost importance in economic
concentration theory. The primary limit theory for the corresponding empirical
“reliability and concentration” processes is worked out in Csorgd, Csorgé and
Horvath (1986). In particular, (1.6) is proved for these four processes in Theo-
rems 4.1, 6.2, 11.2 and 13.5 there, respectively, under optimal conditions. That
the bootstrap method of constructing confidence bands for these four functions is
asymptotically valid was also proved in Section 17 of Csorg6, Csorgé and
Horvath (1986). However, this was done [with almost sure convergence in (1.9)]
under a moment condition stronger than the necessary second-order moment
conditions of the just listed four primary limit theorems. Now these bootstrap
results follow from Theorems 2.1, 2.2 and 2.3 and the second statement of
Theorem 2.5 under the original optimal conditions of the primary limit theo-
rems. This can be seen by more or less repeating the proofs of the primary
theorems. The details for the mean residual life and the total time on test
functions can be found in the unpublished report Csorgd, Csorgé and Mason
(1984), which is a preliminary version of the present paper.

It should be pointed out that for one of the four functions, the mean residual
life, it is possible to construct confidence bands without the bootstrap [see
Corollary 23.5.1 in Shorack and Wellner (1986)].

EXAMPLE 7. Another reliability function of interest is, for 0 < p < 1 fixed,
the (1 — p)-percentile residual life funétion RP(¢) = Q1 — p(1 — F(t)) — ¢,
t > 0, where F(0) = 0. The case p = } gives what is called the median residual
lifetime, a notion competitive to that of the mean residual lifetime in Example 3
above. Note that R/?(0) = Q(%). The primary estimation theory based on the
empirical counterpart R{P(t) = @, (1 — p(1 — F(¢t))) —¢t, t>0, is given in
Csorg6 and Csorgd (1987) together with numerous references to applications.
Assume that F' has a density f which is positive and continuous on the interval
(R — p) — ¢ Q1 — p(1 — F(T))) + ¢), where T' < Q(1) and ¢ > 0 is arbitrarily
small. Complementing the proof of Theorem 1 in Csorg6 and Csorg6 (1987) with
trivial details, we see that (2.1') and (2.10") and (2.12’) of Theorem 2.1, with the
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rates ignored, in conjunction with (2.8) imply that (3.1) and (3.2) are jointly true
and

sup |n"2(RP)(t) — RP)(t))

0<t<T

(4.1)
_ PB,(F(1)) - B,1 - p(1 - F(1)))

F(RP)(¢) + 1) i
and in obvious notation, provided condition (2.11) holds,
sup |m3(RP,(¢) — RP)(t))
0<t<T
(4.2) - .
_ me(F(t)) - 'Bm(1 _p(]' - F(t))) .
F(RP(¢) +¢) i

Here the variance function of the approximating Gaussian processes is ¢%(t) =
p(1 — p)Q — F(t))/f 2(RP)X¢t) + ¢t), so the choice of o,(t) for (1.13) is obvious
with F,, f, and R'? replacing F, f and R‘P, where f, is an appropriate density
estimator.

Similarly as for the mean residual life mentioned above, it is shown by
Csorgb and Csorg6 (1987) under more stringent conditions on f that it is possible
to construct asymptotically distribution-free bands for R(P)(-), which also avoid
density estimation together with the bootstrap, if the unknown distribution of
sup{|pB(s) — B(1 — p(1 — s))|: 0 < s < 1} is simulated once and for all, where
B(:) is a Brownian bridge. [This simulation study is reported in Csérgd and
Viharos (1988).] However, this is achieved by letting T' = T, converge to Q(1), at
some rate depending on @ near 1, which in certain examples may cause very
wide bands even for large n and in spite of the fact that they can be constructed
on very short intervals only. This and another type of band, also not requiring
the bootstrap but involving density estimation, together with the two types of
bootstrap bands of (1.12) and (1.13) as applied to estimation of RA/?(.) are
investigated by Csorg6 and Viharos (1988) using a data set consisting of n = 840
British strike duration times. The conclusion is that the bootstrap bands, based
on 3000 bootstrap simulations with m = n, are much better, this time the
constant-width band in (1.12) being nicer than the “equal precision” or standard-
ized band of (1.13). ,

In a somewhat different but very closely related situation, where the boot-
strap is definitely needed, one of us has constructed constant-width bootstray
bands for F(-) and RA/?(.) for the Channing House data extensively investi-
gated by Efron (1981). We chose m = n = 97 and with 3000 bootstrap simula:
tions obtained very nice bands with nominal 1 — a = 0.9 in both cases [ses
Cso6rgo (1988) for details].

ExaMPLE 8. Consider estimating the moment generating function

M(t) = Ee® = [~ e dF(x)

— 00
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on some ¢ interval [a, b], the choice of which depends on the interval I* where
M(-) is finite. (Roughly, one has to halve I* if it is finite [see Csorgd (1982) or
Csorg6, Csorg6, Horvath and Mason (1986¢)].) The sample version of it is

M(¢t) = —Ze f—f et dF (x

and since in Section 3 of Csorgo, Csﬁrgé'), Horvath and Mason (1986¢) it is shown
that the conditions of Theorem 3.2 are satisfied, we have the conclusion of that
theorem with h,(x) = exp(fx) and d = 1.

We note that many results and problems in Teugels’ (1985) monograph
suggest that the estimation of M(-) is of fundamental importance in insurance
mathematics.

ExaMPLE 9. As pointed out in Section 4 of Csorgd, Csorgd, Horvath and
Mason (1986¢c), the estimation of the Hall translated moment functions H(t) =
E\X + t|P or H*(t) = E(|X + t}?sgn(X + t)), —oo <t < oo, where p > 11is a
fixed number, may be of some statistical interest. Let a < b be arbitrary finite
numbers and assume that E|X|?? < . Then by Section 4 in Cs6rgd, Csorgd,
Horvath and Mason (1986¢), the conditions of Theorem 3.2 are again satisfied
and we have the conclusion with A,(x) = |x + ¢|” or A (x) = |x + t|” sgn(x + ¢)
and d = 1.

ExampPLES 10 aAND 11. Following Section 5 in Csorg6, Csérg6, Horvath and
Mason (1986¢c), suppose P{X > 0} =1 and consider estimating the moment
function K(t) = EX® and the generalized mean function L(t) = (K(¢))/? on
some ¢ interval [a, b], where a < 0 < b, under the assumption that EX?2¢ +
EX?% < 0. Then, for the case of the moment function, by Example 8 we have
the conclusion of Theorem 3.2 with A,(x) = x’. Substituting this conclusion and
Theorem 2.2 for the corresponding primary results, the proof of Theorem 5.1 in
Csorgd, Csorgd, Horvath and Mason (1986¢) gives that

ml/z{(/owx‘dﬁm,xx))w N /watdF,xx))l/t}

K(t) f " B, (F(x))| =5

sup
a<t<bd

Since in all the above examples the corresponding primary limit theorems, i.e.,
the corresponding forms of (1.6), hold with approximating Gaussian sequences
which are distributionally the same as those in the above conclusions [more
specifically, they are the same stochastic integrals with respect to the Brownian
bridges B, from (2.1) in all the Examples 3-6, 8-11, while in Example 7 we have
(4.1) and (4.2)], our final conclusion is that the bootstrap confidence bands (1.12)
and (1.13) are asymptotically valid under the stated minimal conditions in each
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case. [Of course, for (1.13) one has to produce ¢,(¢), but this is usually routine as
in Example 7.] The same is true in the last example that follows.

ExampLE 12. Kocherlakota and Kocherlakota (1986) have recently proposed
that for discrete random variables statistical inference can reasonably be based
on empirical probability generating functions. For simplicity, let X have nonneg-
ative integer values and consider

e [>0)
P(t) = BtX= ¥ t*"P(X = k) = [ t"dF(x), ~-1<t<1.
k=0 0
Its sample version is

1 2 0
Pn(t)=; ZtXf=f0 t*dF,(x), -1<t<1.
j=1

We are not aware that the primary limit theorem, i.e., the present special form of
(1.6), was proved earlier. However, assuming EX? < oo, it is easy to see that for
H=Hp={t50<x <o0: —1<t<1} we have d,(s,t) < (EX?)'?s — ¢,
—1 < s, t < 1, which implies (3.4) and that the other conditions of Theorem 3.2
are also satisfied. Hence by Theorem 1.2 in Csorg6, Csorg6, Horvath and Mason
(1986¢c) we get

sup
—-1<t<l1

jo “t* da(F(x)) - /0 “t* dB,(F(x))

—)I-,()

with the Brownian bridges B, from (2.1). The approximating sequence here
consists of copies of a mean-zero Gaussian process with covariance function
P(st) — P(s)P(t), —1 < s, t < 1. Also, we have the conclusion of Theorem 3.2
witha= —1,b=1,d=1and A,(x) =t~

For illustration we have chosen the (in)famous numbers 3, 5, 7, 9, 10, 18, 6, 14,
11,9, 5,11, 15, 6, 11, 17, 12, 15, 8, 4 of yearly deaths by horsekicks in the Prussian
army recorded by von Bortkiewitz (1898) over the 20 years 1875-1894. Figure 1
depicts the constant-width band {P,(¢) + 0.155/ V20, t € I} of (1.12) by dashed
lines and the standardized band { Py(t) + 0.482( Py(t?) — P2(t))/%/ V20, t € I}
of (1.13) by dashed-dotted lines with nominal asymptotic coverage probabilities
1 - a=09, where I =[—0.9, — 0.1] U [0.1,0.9] and where ¢,, = 0.155 and d,, =
0.482 with m = n = 20 were obtained by 1000 Monte Carlo trials requiring 2.5
min of computer time on the (slow) R-55 machine of the University of Szeged.
The middle solid curve is P,(t). Since P(—1) = n~!(# {even observations} —
# {odd observations}), the variance is largest at £ = —1 and nearby [at £ = —1
its estimator is 1 — P2(—1)], while it is zero at ¢ = 1 and must be nearly zero at
t = 0 if there is no zero observation. These features are reflected by the present
bands.

We stopped the simulation at 100 and 500 replications, where the correspond-
ing c¢,, values were 0.145 and 0.152 and those of d,, were 0.475 and 0.485. At
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Fos

el

e

F1G. 1. Deadly horsekicks in the Prussian army.

1 — a = 0.75, 0.80, 0.85 and 0.95 the discrepancies were similarly small. As a rule
of thumb, 500 repetitions seem to suffice here.

Since this data set introduces the Poisson distribution to many students
[Andrews and Herzberg (1985), page 17], we also plotted with dotted lines the
generating function P(t) = exp(A(¢ — 1)) of the Poisson (M) distribution with
A = A = 9.8, the sample mean. This is 0.007 at ¢ = 0.5 and practically zero below
t = 0.5. Although this is not a bootstrap test (which would be easy to do and
would lead to a similar picture), the picture speaks in favour of a Poisson
distribution. [See, however, the interesting discussion in Section 9.5 of Bishop,
Fienberg and Holland (1975).] It would be of interest to find out by simulation
studies if (m =) n = 20 is sufficiently close to infinitely for distributions near to
Poisson (10).

Similar results can be obtained for constructing bootstrap bands for the
derivatives of P(-).

5. Bootstrapping the mean. Bickel and Freedman (1981) and Singh (1981)
proved that the bootstrap of the mean works if the underlying distribution has a
finite variance. Bretagnolle (1983) and Athreya (1985, 1987) proved that the
naive bootstrap (m = n) of the mean fails when F is in the domain of attraction
of a nonnormal stable law and hence it has infinite variance, and the bootstrap of
the mean can work in this case only if m/n — 0. The borderline situation
between the two cases is when F has an infinite variance but still belongs to the
domain of attraction of a normal law, the latter happening if and only if (2.16)
holds. In this situation, using an ingenious direct proof based on an extension of
the classical characteristic function method, Athreya (1985) has shown that
bootstrapping the mean still works with m = n. As another indication of the
mathematical strength of the present general approach, we now point out that
his result is contained in Theorem 2.5 for any m = m(n) satisfying (2.11).
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Indeed, introducing the sample mean X, = n"'S?_, X,, by (2.8) we have for
any n > 1 that

n 1
( 1/2 ; (Xj_ EX)’ ml/2

M3z

(%,- %]
= [ au(s) d@(s). = ['an,(5) Q00|

and for the independent standard normal rv’s,

Z, = —fl g B,(s )dQ(s)/L( ) and

1

J

w7 B a1/ ),

where L(-) is given in (2.15), we have by the proof of Corollary 2.2 in Csorgd,
Csorg6, Horvath and Mason (1986b) and by Theorem 2.5 that

]— [fas)dats)/a( ) - 2] =50

and

= [lom ) 906) /2 ) = 22 0.

Since L is slowly varying, by condition (2.11) we can replace L(1/m) by L(1/n)
here. Furthermore, we have

{n“élQZ(Uj) - (zQw))} / 23] =51

[In the critical case when F has an infinite variance, this can be inferred, for
example, either from Athreya (1985) or Csorgd and Mason (1987).] Introducing
now the sample variance

12 12 )\

» BX (;; ngx,-) ’

as the present forms of (1.9), under (2.16) and (2.11) we obtain

(5.1) Pr{ il (Xj - )_(n)/(ml/zL(%)) <x|X,..., Xn} —p ®(x)

and j

(5.2) Pr{ f, (X, - X,)/(m/%8,) <x|X,,..., Xn} —p. ®(x)
j=1

for any x € R, where ® is the standard normal distribution function.
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Assume for the rest of this section that m = n. Bickel and Freedman (1981)
and Singh (1981) have shown that (5.1) and (5.2) hold almost surely if Var(X) <
oo. Recently, Giné and Zinn (1989) have proved that convergence in (5.1) takes
place almost surely only if Var(X) < co. Motivated by an idea of theirs, we now
show that the same statement is true regarding (5.2). Moreover, we prove that
(5.2) is true with m = n if and only if (2.16) holds.

First suppose that for all x € R,

(5.3) Pr{ i (X; - X,)/(n"%8,) < x|X,;..., Xn} - ®(x)

j=1
with probability 1. Choose any realization of X, X,,... such that (5.3) holds for
all x € R and set
Y, = (X'n -X,)/(n"%,),
where Xn has distribution function F,. Obviously,

~ - 1
Ep¥,=0 and Eg(Y,)" =~

)

so that by Chebyshev’s inequality,
P{|Y| >} -0

for all & > 0. Hence n independent copies of Y, form an infinitesimal array.
Therefore, on account of (5.3) we must have [cf. Gnedenko and Kolmogorov
(1954), Theorem 1, page 126]

(5.4) nPy{|Y,| > ¢} =0

for all & > 0. Since nPg(A) is necessarily a nonnegative integer for any event A,
(5.4) implies that
(5.5) max |X; — X,|/(n'/%S,) - 0.

1<j<n

We easily see that (5.5) in turn implies that

n
(5.6) max X?/ ) X? - 0.
1<j<n k=1
Thus we have shown that (5.3) holding almost surely forces (5.6) to be true with
probability 1. By Lemma 4.1 of Maller and Resnick (1984) this can happen only
if0 <EX? < oo.

Next suppose that (5.3) holds in probability. Then for every subsequence
{n,} € {n} there exists a further subsequence {n,} < {n,} such that (5.3) holds
almost surely along {n,}. Repeating the above argument we get that (5.6) is true
along {n,} almost surely. This says that

1<j<n

n
(5.7) max XJ?/ Y X2 -p,0.
k=1
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From Theorem 2 of Breiman (1965) it can be inferred that (5.7) is equivalent to
(2.16).

APPENDIX

Passage to (1.9) and (1.11). In Proposition 1 we work on the space (Q, o, P)
of (1.8). Then (1.9) results from (1.8b).

PROPOSITION 1. If (1.6) and (1.8) hold, then at each continuity point x of
Gp,

(A1) Y, (x) = P{ su13|fm, D] < xXy,. ., Xn} -5 Gp(x).
te

Proor. For any & > 0 consider the event
Ap () = {sup |7 () = FEO()| > o).
tel
First we claim that

(A.2) B(A,, ()X,,..., X,} —»50.

Setting B, (&) = {IS{Am’ AO|Xy, ..., X,} > n}, we see by restricting the do-
main of integration from { to B, (¢, 1) that

BlA, (2)} = E(B(Ay ()X, X)) = nB(By, (e,1)}-

Hence (1.8c) implies that P{Bm’ (&,m)} = 0 for any n > 0 and this is (A.2). Also,
obvious probability inequalities and (1.8a) give that

Gp(x —¢) — P{A,, () Xy,..., X,} < Y, (x) < Gp(x +¢)
+ B{A,, (e)X,,..., X,)
almost surely. These inequalities and (A.2) clearly imply (A.1). O

PRrOPOSITION 2. If (1.6), (1.9) and (1.10) hold, then we have (1.11) and

(A.3) Gp(cn) ”p 1 — @
and if ¢ = d, then
(A4) Cp —pr C-

PROOF. Choose any & > 0 such that ¢ — ¢ and d + ¢ are also continuity
points of Gy. Putting , ,(¢) = m*(R,, ,(t) — R,(t)), observe that

Pr{c,<c—¢} < Pr{Pr{sup|Fm,n(t)| <c—¢Xy,..., Xn} >1- a},
tel
but since by (1.9),
Pr{sup|Fm’n(t)| <c-¢Xy,..., Xn} —p Gp(c—¢) <1-aq,
tel
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we see that Pr{c,, < ¢ — ¢} - 0. Similarly,

Pr{c, >d+¢} < Pr{Pr{sup|Fm,n(t)| <d+¢X,..., Xn} <1- a},
tel

Pr{sup|f'myn(t)| <d+¢X,..., Xn} =p.Gp(d+€)>1—aq,
tel

which implies that Pr{c,, > d + ¢} — 0. Thus we have
Pr{ic—e<c,<d+e¢ -1,

which yields Pr{Gz(c — &) < Gg(c,,) < Gg(d + ¢)} — 1. Clearly, all three state-
ments follow. O
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