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MINIMAXITY OF RANDOMIZED OPTIMAL DESIGNS!

By PETER M. HOOPER
University of Alberta

A strategy of randomizing a design that is L-optimal for an ideal model
is shown to possess a minimax property under a larger, more realistic model.
This generalizes a result of Li. :

1. Introduction. Experimental randomization is generally regarded as a
source of robustness against model inadequacies; see Wu (1981) and references
therein. Li (1983) showed that any nonrandomized design can be improved in a
minimax sense by randomization. More precisely, he considered the performance
of estimators under violations of an ideal unit-effects model and showed that the
maximum risk is reduced when the design is suitably randomized. His main
assumption was that the enlarged model (ideal model plus violations) is invariant
under a group of permutations of the experimental units. “Suitable” randomiza-
tion was defined as the uniform distribution on the group.

This result suggests that randomizing a design that is optimal under the ideal
model might produce a randomized design that is minimax under the enlarged
model. Li (1983) proved that in certain situations this is indeed the case. For this
second result, he restricted attention to linear estimators and quadratic loss
functions. Under the ideal model this leads to the family of design criteria known
as linear criteria, or L-criteria, which includes the well known A-criterion.

The purpose of the present paper is to generalize and simplify Li’s second
result. The generalization involves a weakening of model assumptions. The
simplification results from considering the enlarged model first and the ideal
model second. The structure of the enlarged model is described by a group of
permutations, e.g., the group related to a simple orthogonal block structure
[Nelder (1965)]. The ideal model is obtained by averaging over the group and
then choosing a least favorable distribution.

2. Statement of the theorem. Consider a comparative experiment in which
treatments are assigned to experimental units and univariate responses are
observed. There are n experimental units indexed by a set A. By ordering A in
some way, we may identify A with {1,..., n}. It is assumed that treatment and
unit effects are additive and that a known linear model is suitable for the
treatment effects. Thus each potential treatment is identified with a known
vector x € R? and the treatment effect is x’8 for some unknown B € R”.
The treatment-effects model might involve nontrivial assumptions, such as a

Received September 1987; revised August 1988.

'Research supported in part by the Natural Sciences and Engineering Research Council of
Canada.

AMS 1980 subject classification. 62K05.

Key words and phrases. A-optimality, design robustness, experimental randomization, L-opti-
mality.

1315

e]
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )z

The Annals of Statistics. MIKOIE ®

WWWw.jstor.org



1316 P. M. HOOPER

regression model for a quantitative treatment factor. Sacks and Ylvisaker (1984)
studied designs that are robust against inadequacies in the treatment-effects
model. This problem will not be considered here.

A nonrandomized design is an assignment of treatments to units. It is useful
to adopt a somewhat redundant description of the set of designs by splitting the
assignment into two stages: First assign treatments to labels 1, ..., n; then assign
labels to actual units. There is a one-to-one correspondence between the set of
possible first stage assignments and a set 2 of n X p matrices X = (x,,...,x,)".
The effect of the treatment assigned to label i is x/B. Each second stage
assignment is equivalent to a permutation G of A defined by: Label i is assigned
to unit G~'i. The permutations G will be restricted to a subgroup ¢ describing
the structure of the experimental material. It is assumed that every first stage
assignment X € % can be combined with every second stage assignment G € ¥,
so that 2'X ¢ defines the set of all nonrandomized designs under consideration.

For each G € ¢ let G be the n X n permutation matrix defined by

(Gu); = ug-v, ueR*i=1,...,n.

It is easily verified that G — G is an isomorphism between ¢ and a group ¢ ' of
permutation matrices. We will suppress the bar and identify (¢, G) with (%, G).
Notice that (X, G) and (HX, HG) define the same design for all H € 4.

For a given design (X, G), let y; denote the response from unit G~'i. (All
random variables will be expressed in boldface notation.) The treatment associ-
ated with y; depends on X while the unit associated with y; depends on G. Since
treatment and unit effects are assumed additive, we have

(2.1) yi=xB+ugy, i=1,...,n,

where x/B is the treatment effect and u-,; is the unit effect. In vector notation
(2.1) becomes

(2.2) y = X8 + Gu.

Here S € R? is an unknown vector of parameters and u is an unobservable
random vector whose distribution is independent of (X, G).

This model can be expanded slightly to incorporate technical errors arising
from variability in treatment application. Let #(-) denote the distribution of its
argument. Consider a model
(2.3) y=XB +t+ Gi,
where t and i are independent and £(Gt) = Z(t) for all G € 4. Defining
u = G~ 't + i reduces (2.3) to (2.2).

Suppose the experiment is designed to estimate LB, where L is a known ¢ X p
matrix. We restrict attention to linear estimators Ay, A € R?*", and adopt the
quadratic loss function

Ay — LB||* = (Ay — LB)'(Ay — LB).

Using randomization if desired, consider the problem of choosing a design (X, G)
and corresponding estimator Ay to minimize the maximum risk. A distribution
on X ZxX R?*" will be called a strategy. Let 2, be a family of distributions
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on R" representing prior information about the unit effects. A strategy
Z(X, G, A) will be called Z,-minimax if it minimizes

(2.4) sup E||A(XB + Gu) — LB||?,

where the supremum is over (8, £(u)) € R? X #, and (X, G, A) is distributed
independently of u.

A & -minimax strategy depends only on the second-order model determined
by 2,. This will be described by functions y: R — [0, co] defined by

¥(a) = E(a’w)’.

Put ¥ = {¢: L(u) € £,}. Observe that E|u|® < oo for all L(u) € %, if and
only if Yy(a) < oo for all (¢, a) € ¥ X R" and, in thlS case, y(a) = a’(Euu )a
defines a bijection between y and Euu'.

Suppose ¢ describes the basic structure of the experimental material. The
principal example is the automorphism group defined by a block structure; see
Section 3. The second-order model y contains further, perhaps more tentative,
assumptions about the unit effects. It is reasonable that the more detailed
description be compatible with the basic description The following assumption
makes this idea precise.

The usual action of ¥ on the set of distributions on R”?, #(u) - £(Gu),
determines a corresponding action on the set of y-functions, Y — ¢ G’, where

¥vG'(a) = ¥(G'a) = E(a’Gu)’.
It is assumed that ¥ is %invariant, i.e.,
(2.5) Yy €V implies yG' € ¥ forallG € 9.

This will be the case if 2, is %invariant, i.e., #(u) € £, implies £(Gu) € Z,
for all G € 9.

Let H be distributed uniformly on ¢ and independently of u. The uniform
distribution is characterized by the invariance property

(2.6) H~ GH ~ HG forallG e 9.
For ¢ € ¥ define $:R" - [0, o] by ¥(a) = E(a’Hu)? or, more briefly,
¢ = EyH'.
Notice that ¢ is %invariant:
(2.7) YG' =y forallG € 9.
Consider the set
(2.8) {a € R™ supy(a) < oo}.
yev

It is easily verified that (2.8) is a %invariant subspace. Let @ denote the
corresponding projection matrix. Thus @ is an n X n symmetric idempotent
matrix satisfying @ = GQG’ for all G € ¥ and QR" equals the set (2.8).
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Let %, be the set of n X n nonnegative definite symmetric matrices. For
Y € ¥ put
V, = E(QHuu'H'Q)

and observe that a'V,a = ¥(Qa) so V, € ¥, and V, depends only on . Further-
more we have V,, = QV,, and V, = GV,G’ for all G € ¥. Recall the usual partial
orderingon %,: V, < V, if V, — V| € %,. Let tr V denote the trace of V.

The following assumption is nontrivial and important: There exists a matrix
V € S, that is least favorable relative to {V,: ¢ € ¥} in the sense that

V,<V forally € ¥,

(2.9) suptrV, = tr V.
yev
It is not hard to show that V is uniquely determined (see Lemma 3), V = QV
and V = GVG' for all G € 4. Condition (2.9) is a generalization of (3.5) in Li
(1983). See Li (1983), page 233 for an example where the condition fails.
Suppose there exists a solution (X, A,) to the problem:

minimize tr A VA’ subject to
AX =1L, AQ=A and (X,A)e IXRI*",

The problem is usually posed in the following context. Given (X,G) € X ¥,
consider the model

(2.11) y=XB+ G(n+e),

where 7 is an unknown vector in (/, — Q)R" and e is an unobservable random
vector with Ee = 0 and Eee’ = V. We will refer to this as the ideal model.
Notice that G7 is an unknown vector in (I, — @)R" and E(Ge)(Ge) = GVG' =
V, so the ideal model depends only on X, not G. We have AX = L and AQ = A
if and only if Ay is an unbiased estimator for L8 under (2.11). The risk of an
unbiased estimator Ay is tr AVA’. Thus X,, is an L-optimal design under the
ideal model and A,y is the corresponding best linear unbiased estimator.

If X is compact, as is the case in most applications, then a solution to (2.10)
exists. To see this, let A,y be the best linear unbiased estimator of LS under
the ideal model (2.11) and observe that tr A ,VA’y is a continuous function of X.

The matrix V may be replaced by ¢,V + c(I, — @), ¢; > 0, without changing
the solution to (2.10). In particular, if V « @, then we may take V = I,.

The main result can now be stated. The proof is given in Section 4.

(2.10)

THEOREM. If ¥ is Y-invariant, V satisfies (2.9) and (X,, A,) is a solution to
(2.10), then the strategy L (X,, H, A,) is P -minimax.

3. Application. The theorem reduces the problem of finding a £, -minimax
strategy to one of finding an L-optimal design under an ideal model. The latter
problem has been studied extensively; see Silvey (1980), Li (1983), Hedayat and
Majumbar (1985) and references therein. To apply the theorem one must specify
the relevant aspects of the second-order model for the unit effects, namely ¢, @
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and V. The choice of @ and V is usually made easier by the following considera-
tions.
Put W = E{Huu'H’ |u}, i.e.,

W= (#%)"' ¥ HuuH'.
He%
Notice that
(3.1) W=GWG' forallG e 9.

For many groups ¢ that are transitive on the label set A, condition (3.1) implies
that the spectral decomposition of W has the form

(3.2) W= Z(terW/ter)Qj’

where the @; are nonzero symmetric idempotent matrices, summmg to I,,, with
Q; = GQ,G’ for all G € ¥, see Speed (1987). The important point is that the Q;
depend only on ¢ and hence are, in theory, known. The subspaces @ R" are
called strata.

If (3.2) holds, then

¥(a) = Ea’'Wa = Z&WaQ a,

where
(3.3) £y, = B QW/trQ)) = E(IQHul|*/tr Q).
Define
(3.4) §=supf,; and J={j:§ < oo}.
yev
Observe that
(3.5) Q=X @ and V, = )y £,,Q;
Jjed jed
The only possible choice for V is
(3.6) V=Y £Q,.
jed

Condition (2.9) holds if and only if
(3.7) sup Y &,,= 2§

vev jed jed

or, equivalently, the vector (£;, j € J) can be approximated by (£,;, j € J)
with ¢ € ¥. Roughly speaking, this means that maximum variability can occur
simultaneously in all strata where variability is bounded.

The matrix V is determined, up to a scale factor, by §,/§,, J, k € J. If we
thought that the maximum variability was the same for all strata indexed by
J € J, then we would take V « @ and, in the ideal model (2.11), we could replace
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V by I,. If J contains only a single element, then we have V « @ by definition
and (3.7) is trivially satisfied.

Specifying the set oJ is effectively the same as assigning fixed effects to certain
unit factors in the ideal model. For example, in units-within-blocks models ¢ is a
wreath-product group (independently permute units within each block, then
permute blocks) and there are three strata: mean, interblock and intrablock,
indexed by j =0, 1 and 2. If we thought that variability between blocks was
much larger than variability within blocks, then we might take £, = £, = o0 and
£, < oo. This leads to an ideal model with fixed block effects and many optimal-
design results are available. On the other hand, it might be more realistic to take
¢, < & < oo. This leads to an ideal model with random block effects and little
about optimality is known; see Rosenberger (1986) for a review of the literature
on combined interblock—intrablock estimators.

In criss-cross models such as Latin squares, where units are arranged in rows
and columns, ¢ is a direct product group (independently permute rows and
columns) and there are four strata: mean, row, column and row X column
interaction, indexed by j = 0, 1, 2 and 12. Taking {, = ¢, = §, = 0 and £, < ©
leads to an ideal model with fixed row and column effects.

The most commonly used models for unit effects are the simple orthogonal
block structures of Nelder (1965). Units-within-blocks models and criss-cross
models are the simplest nontrivial structures in this class. General structures are
obtained by iterating and combining the nesting and crossing operations. The
factorial dispersion models described by Speed and Bailey (1982, 1987) and Speed
(1987) form a generalization of Nelder’s class. In these models the label set A is a
cross product of sets A;, f € F, where F is a set of block factors and A, indexes
the levels of factor f. There is a partial order less than or equal to on F, where
f; < f, means that factor f, is nested within factor f,. Bailey, Praeger, Rowley
and Speed (1983) derived the largest group preserving the block structure: ¢ is
the generalized wreath product of ?,, f € F, where ?, is the group of all
permutations of A,. If we take ¥ = 9, then (3.2) holds and there is a general
algorithm for computing the @;. A simpler version of the algorithm, given in
Nelder (1965), suffices for most applications.

Other there is secondary structure in the experimental material not accounted
for by the factorial dispersion model, e.g., location in blocks. For the sake of
simplicity, it may be reasonable to ignore secondary structure when considering
optimality questions; however, it is desirable that treatment assignments be
approximately balanced with respect to the secondary structure for all possible
designs. The potential for serious imbalance throws in doubt the conditional
relevance of the randomization. Approximate balance can sometimes be ensured
by using a minimax strategy with restricted randomization.

Suppose ¥ is the generalized wreath product of ¥, f € F, where ¥, is a
subgroup of gf Theorem C of Bailey, Praeger, Rowley and Speed (1983) 1mp11es
that ¢ produces the same decompos1tlon (3.2) as ¢ if and only if each 9 is
2-transitive on_A;. Suppose this is the case. Let H and H be dlstnbuted
uniformly on ¢ and ¥, respectively. _Suppose 2, ignores the secondary unit
structure so that (2.5) holds for G € ¢. Assume, w1thout loss of generality, that
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% is Zinvariant. Suppose .‘?(XO,H Ap) is a #,-minimax strategy. It follows
that #(GX,,H, AG") is #minimax for each G € 4. The above mentioned
appllcatlon of Theorem C then implies that $(GX0, H, AG) is % minimax for
all G e &. It is sometimes possible to choose G and ¥ so that treatment
assignments are approximately balanced with respect to the secondary structure
for all possible realizations of H; see Bailey (1986).

If the secondary structure is deemed sufficiently important, then an even
smaller group ¢ may be chosen. This complicates the choice of @ and V. The
decomposition (3.2) may no longer be available. Even if (3.2) does hold, the
number of strata will be increased.

Li (1983), Theorem 3.1, considered models with the following structure.
Suppose the experimental units are arranged in b blocks, A = A, U .-+ UA,,
and that each block has a unique structure. It makes sense to permute units
within each block but not to permute blocks. Suppose ¥= &, X -+ X 9,, where
9, is a group acting transitively on A, and permutations are defined by
Gi=G,iforie A, G=(G,,...,G,). Thus each block is randomized indepen-
dently of the others. Suppose ¥, determines a spectral decomposition of the
form (3.2) for the kth block, £ = 1,..., b. In each block one of the strata is the
one-dimensional block-mean stratum. Let @,, be the orthogonal projection
matrix onto the (n — b)-dimensional within-blocks subspace. It is not hard to
show that @,,W@Q,, admits a spectral decomposition of the form (3.2). The
strata are all those determined by ¢,, k£ = 1,..., b, with the exception of the b
block-mean strata. If it is thought that variability between blocks is very large
compared with variability within blocks, then it is reasonable to restrict @ so
that QQ,, = @. This reduces the problem of choosing @ and V to that previ-
ously considered. Li assumed, for each block, a simple orthogonal block structure
with all factors crossed, i.e., no nesting. He further assumed that exactly one §; is
finite for each block, namely the £; corresponding to the highest-order interac-
tion.

Li’s Example 4 provides an interesting application. There is one block with
eight experimental units classified by three factors, each at two levels. Let
factors 1, 2 and 3 correspond to rows, columns and layers. Applying the
algorithm and notation of Nelder (1965), one finds there are eight strata indexed
by 0, 1, 2, 3, 12, 13, 23 and 123. Li defines two families #,, and #,,—determined
by G, and G, in his notation—and two nonrandomized designs d; and d,. It is
straightforward to show that, up to a scale factor we have{,=§, = §,=§; = oo,
§13=~¢ = o < o0 under both families, £, = 62, £, =1 + 62 under #,; and
£105 =1+ 0%, &, = 0? under 2,,. It follows that

Q=Q,+ Q13 + Qg3 + Quas,
V, =@, +0’Q under Z,,
V, = Q95 + 6’Q under Z,,.

The designs d, and d, are Youden hypercubes and hence are A-optimal under
(2.11) with V « @ [Cheng (1978), Theorem 5.1]. Now the best linear unbiased
estimator of the treatment difference is based on stratum 123 using d, and

V=
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stratum 12 using d,. Thus d;, but not d,, is A-optimal for V = V| while d,, but
not d,, is A-optimal for V = V,. The theorem shows that a £, -minimax strategy
is obtained by randomizing d;.

The minimaxity theory helps clarify the relationship between randomization
and optimality. Two weaknesses in the present theory should be noted, however.
First, the optimality criterion ignores the desirability of a valid estimate of error
for each stratum; see Bailey and Rowley (1987). Second, the restriction to linear
estimators is undesirable when estimates are combined from several strata.

4. Proof. The proof of the theorem is based on three lemmas. The proofs of
Lemmas 1 and 2 are straightforward and so are omitted.

LEMMA 1. Let z and w be jointly distributed-with z € R? and w € R. If

sup E(zB + w)? < o0,
BER?

then z = 0 with probability 1.

LeEmMA 2. If a is a random n-vector with sup, c 4 EY(a) < oo, then P{a €
QR") = 1.

LEmMMma 3. If (29) holds and A is a random q X n matrix, then
supy <y E(tr AV, A’) = E(tr AVA).

ProOF. Let A, > -+ 2A,and A, > -+ > A, denote the ordered eigen-
values of V and V, and let r be the rank of V. Recall that trV =1XA,.
Assumption (2.9) implies that A, <A; for i =1,...,n, sup,cy A, = A, >0
and inf, c y(tr V — tr V) /A, = 0. Using standard methods, one may verify that
if A,, >0, then

(4.1) (tr AVA') /), < (tr AV, A') /A,
and
(4.2) 0 < trAVA’ — trAV, A’ < (trAVA)(tr V- tr V) /A,

The conclusion of the lemma follows from (4.1) if E(tr AVA’) = oo and from (4.2)
if E(tr AVA’) < 00.0O

ProoF oF THEOREM. The main assumptions are given at (2.5), (2.9) and
(2.10). Let Z(X, G, A) be a strategy with bounded risk M defined as
M = supE||(AX — L)B + AGu||® < o0,

where the supremum is over (8, £(u)) € R? X 2, and (X, G, A) is distributed
independently of u. If no such strategy exists, then all strategies are trivially
minimax. Lemma 1 shows that M < oo implies

(4.3) AX = L with probability 1.
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Let a’; denote the ith row of A and observe that

q
M = sup E||AGu||?> = sup ) EyG'(a;).
Yyev =1
By (2.5) we have
q
M = sup ) EyH'G/(a,)
VEY i=1
for all H € 4. Thus

q
M=(#9)"" Y sup Y EyH'G'(a,)
HegyevY (=1

wp 3 E((#9)" T yHGa)

Yyev j=1 Hegw

v

q
sup ). EYG'(a,)

yev =1

sup 3 B (a,).

yev j=1
The last step uses (2.7).

Next, Lemma 2 and M < c show that P{a, € QR"} =1 for i =1,...

Thus
(4.4) AQ = A with probability 1

and

q
M= sup ¥ E¥(Qa;)
yev j=1

q
sup ) Ea}V,a,
yeVv j=1

sup E tr AV A’
yev

By Lemma 3, (2.10), (4.3) and (4.4) we have
M > E tr AVA’
> tr A VA

= sup tr A,V, A;
yev

=supE|(A,X, — L)B + A Hu|.
This completes the proof. O
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