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MODEL SELECTION UNDER NONSTATIONARITY:
AUTOREGRESSIVE MODELS AND STOCHASTIC
LINEAR REGRESSION MODELS!

By B. M. POTSCHER
Yale University

We give sufficient conditions for strong consistency of estimators for the
order of general nonstationary autoregressive models based on the minimiza-
tion of an information criterion a la Akaike’s (1969) AIC. The case of a
time-dependent error variance is also covered by the analysis. Furthermore,
the more general case of regressor selection in stochastic regression models is
treated.

1. Introduction. The statistical properties of order estimation and model
selection procedures based on so-called information theoretic criteria like Akaike’s
AIC or its variants have been intensively studied in recent years. Most of the
work has been done in the field of time series analysis. In the framework of
stationary autoregressive models strong consistency of the order estimators
obtained through minimization of certain variants of AIC, like BIC, has been
discussed in Hannan and Quinn (1979) for the univariate case, and in Quinn
(1980) for the multivariate case. Parallel results for stationary autoregressive
moving average models are given in Hannan (1980, 1981). The latter two papers
give also weaker conditions under which weak consistency holds. For an alterna-
tive approach using sequences of tests see P6tscher (1983, 1985). Weak consis-
tency results for the closely related model selection problem for linear regression
models with asymptotically stationary regressors and normal ii.d. errors are
given in Geweke and Meese (1981) [for a review of the literature on selection of
regressors, see Amemiya (1980) and Thompson (1978a, b)]. On the contrary, for
nonstationary autoregressive models with i.i.d. errors weak consistency of the
order estimators has been established independently by Paulsen (1984) and Tsay
(1984); the former also treating the multivariate case. The nonstationarity
considered in both papers arises from the fact that the characteristic polynomial
is allowed to have roots not only outside but also on the unit circle. Another case
of nonstationarity is considered in Paulsen and Tjestheim (1985): Here the
autoregressive scheme has to be stable, that is, all zeros of the characteristic
polynomial are outside the unit circle, but the error process is allowed to have a
nonconstant variance.

The present paper gives strong consistency results for model selection proce-
dures based on variants of AIC for general nonstationary stochastic linear
regression models where the errors constitute a not necessarily stationary
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martingale difference sequence using recent results of Lai and Wei (1982a, b,
1983, 1985). These results are then applied to yield strong consistency results for
order estimation in nonstationary autoregressive models. The assumptions used
in the present paper are weaker than each of the assumptions employed in
Paulsen (1984), Paulsen and Tjestheim (1985) and Tsay (1984); hence they
provide a common framework for models exhibiting both kinds of nonstationar-
ity. After the first version of this paper was written, Wei brought the related
papers by Wang and An (1984), An and Gu (1985) and Gu and An (1985) to my
attention. The first one of these papers discusses model selection in stochastic
linear regression models and autoregressive models by means of BIC, that is,
criterion (2.1) with C(T') = log T in our notation. In this paper Wang and An
give conditions for “overconsistency” of the selected models, that is, conditions
under which the selected models contain all relevant, regressors but possibly also
redundant ones. Their paper neither gives conditions for the full consistency
property nor explores the domain of feasible rates for the penalty term C(T')
such that consistency results as is done in this paper. For a further discussion of
the results in Wang and An (1984) and their relation to the present paper see
Sections 3 and 4. The two other papers, An and Gu (1985) and Gu and An (1985),
deal essentially only with the stationary case. The paper is organized as follows:
Section 2 gives consistency results in the general context of a linear regression
model with stochastic regressors and martingale difference errors; in Section 3
the special case of autoregressive models is treated; Section 4 contains comple-
mentary remarks; all proofs are relegated to the Appendix.

2. Model selection in linear regression models. The dependent variable
of a linear regression is modeled as a real-valued stochastic process (y,). The
family of potential regressors under consideration is a family Z = ((z,,): k € X")
of real-valued stochastic processes defined on the same probability space
(R, F, P) as y, is. The set X is an arbitrary index set and the index ¢ varies in
N, the set of positive integers. More specifically, the researcher has in mind a
(nonvoid) set .# of regression models M, where each M is a finite subset of ",
that is, under model M the regressors (z,,) for k£ € M enter the regression
equation for (y,) (if M is void regression is on the null space). Important special
cases are the case where the regressors are ordered in a natural way, for example,
X is N, or an initial segment of N (in the natural order), and M runs through all
initial segments of ', or the case where ./ is the set of all finite subsets of /.
We shall be concerned with the problem of choosing a “minimal” and “true”
model M from the set .#. The notion of a true model is here to be understood in
the sense of the following definition and is defined relative to a given filtration
Z., s € N U {0}, of the o-field #. In this section, the filtration %, will be
throughout assumed to have the property that z,, is %,_,-measurable for all
t € N and k € X". The prototypical examples for this situation are the case of an
autoregressive model where %, _, represents, for example, the o-field generated
by the past of the process ( y,), or the case of a general linear dynamic regression
model. For the rest of this section, we shall also assume that a true model in the
sense of Definition 2.1 exists in M.
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DEFINITION 2.1. A model M is called a true model for ( y,) relative to (%) if
there exist real numbers B,, 2 € M, such that y, can be P-a.s. decomposed as
Y = L e mPBrzu + U, such that for all t € N

D) E(u)#;_,) =0,
(ii) u, is measurable w.r.t. %,

Notice that condition (i) in Definition 2.1 determines u, and ¥8,z,, uniquely
up to null sets. Similarly, if two models M and M satisfy condition (i), then the
respective residuals u, and #, are P-a.s. equal; especially if M is a true model so
is then M. Notice that in a true model the error process u, is a martingale
difference sequence (taking the conditional expectation of a random variable, it is
always understood that the random variable is integrable) and that no integra-
bility assumptions have been made for y, or z,,. Of course, it is the decomposi-
tion of y, in a linear part plus an error and the “orthogonality” condition (i)
which reflect the notion of a linear model; condition (ii) which makes the error
process u, then a martingale difference sequence is only necessary to make the
asymptotics work.

The selection of a model given the first T observations of y, and z, will be
based on minimization over .# of one of the criterion functions

(2.1) log 62(M) + size(M)C(T)/T
or
(2.2) 62(M) + size(M)C(T)/T,

where 62(M) is the residual variance after fitting model M. Here C(T') denotes
a nonnegative real-valued random variable; further properties of C(T') will be
specified later. The quantity size(M ), which is assumed to be real-valued, stands
for any measure of the size or complexity of the model M as, for example, the
number of parameters. If size(M) is chosen to be the number of parameters and
C(T) = 2, then (2.1) reduces to Akaike’s (1969) AIC criterion; if C(T') = log 7,
(2.1) reduces to Schwarz’s (1978) BIC criterion. Notice also that for the mini-
mization of (2.1) it is irrelevant whether in (2.1) the term 6Z(M) is replaced by
the residual sum of squares RSS(M) or not, since 6%(M) = RSS(M)/T. The
results of this section also apply to criteria similar to (2.1) and (2.2), where the
penalty term size(M)C(T)/T is replaced by C(M,T)/T, or where size(M) is
random; see Section 4.

The following lemmas are the essential building blocks for the consistency
result. The first lemma gives conditions which guarantee that the value of the
criterion function (2.1) or (2.2) at an incorrect model is eventually larger than the
corresponding value at a true model. We use the following notation and conven-
tions: The quantity 62(M) is given as T 'y'(I — Zy(ZyZy)*Zsy)y, where
y=(¥,..-, ¥yr). The matrix Z,, is T X m, where m = card(M), with its ¢th
row equal t0 (2y,...,2y4,) and k..., k, enumerate M. (If M is void or M
contains only the zero regressor, then Z,, = 0 € R”.) The projection matrix on
the column space of Z,, is denoted by Py, = Zy,(Z;;Zy,)* Zyy, where A™ denotes
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the Moore—Penrose inverse of A and the prime denotes transposition. Further-
more, we use f = (fy,..., fr), u = (uy,..., ur), where f, and u, are defined (up
to null sets) via the decomposition: y, = f, + u, P-as., f, is %,_,-measurable and
E(uJ%,_,) = 0. Such a decomposition exists in view of Definition 2.1 and of the
assumed existence of a true model (if y, is integrable of course such a decomposi-
tion always exists). We note that f, and u, do not depend on a particular model
and that u, can be chosen to satisfy (ii) of Definition 2.1. As a convention we set
log0 = — o0, log(a/0) = logoo = o0 if @ > 0. The symbol log*x islogx if x > 1
and 0 if 0 < x < 1. For x € RT we set ||x|| = (x’x)"/2. We say that a sequence
E;, E; C Q, is eventual if for almost all w € @ the relation w € E; holds for
T > T(w). Now consider the following condition with M € .#:

(1) | f = Pyfl|® > o as. and [log* tr(ZMZM)]/”f Pyf?
converges to 0 a.s. as T — co.

LEMMA 2.1. Let M, € #4 be a true model and M, € #. If
sup,  E(|u|%%,_1) < o a.s. for some a > 2 and if (1) holds for M,, then we
have:

(a) 62(M,) > 0 eventually, hence log(6%(M,)/6%(M,)) is well defined eventu-
ally.

(b) 62(M,) — 62(M,) > (size(M,) — size(M,))C(T)/T holds eventually if
c(m/f - PM f||2 converges to 0 a.s. as T - oo.

(c) log(é (Mz)/ 2(M,)) > (size(M,) — size(M,))C(T)/T holds eventually if
C(T)/(T log1 + |If — PM2f||2(u u)~ 1)) converges to 0 a.s. as T — oo.

We note that under (1) the quantity | f — Py, f |? is eventually positive,
hence C(T)/||f — Py, f ||? is eventually well deﬁned and similarly B(T) =
log(1 + || f — Py, f ||2(u u)~') is eventually well defined and positive (possibly
+oo if v'u= 0); for later use we remark that under sup T~ 'u'u < « a.s. the
condition C(T')/(T log(1 + ||f = Py, fI*T~")) - 0 a.s. implies C(T')/TB(T) -
0 as., and the converse is true if liminf 77 'u’u > 0 a.s. holds. (Note that
sup E(|u,|*|%,_,) < o as. for some a > 2 implies u'u = XT_ E(u2|%,_,) + o(T)
[see Chow (1965) and Lai and Wei (1982a)]; hence sup 7 'u'u < oo a.s.) Under
the classical assumptions for the asymptotic theory in linear regression models
|f = Py, f11* and u’u behave like T and then the conditions in (b) and (c) reduce
to C(T)/T — 0 as.

Notice also that eventual positivity of ||f — Py, f |? implies that M, is not a
true model. Condition (1) is a separation condition, that is, it tells us how well
separated from the true models the incorrect models have to be in order that
they can be recognized as such, cf. Remark 1. Furthermore, since all the
conditions on M, in Lemma 2.1 are only in terms of P, and tr(ZM Zy,), they
depend only on the space spanned by the model M,, that i is, the image “of Py,
and not on the special way this space is represented by the regressors in M,
(cf. Lemma A.2 in the Appendix).

The next lemma gives conditions under which in particular the value of the
criterion function (2.1) or (2.2) at a true model of minimal size is eventually
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smaller than the corresponding value at a nonminimal true model. We introduce
the condition (2) for a model M € .#:

C(T) > oo as. and [log* tr(Z},Z,,)]/C(T) — 0 as. as
2) T — co.

LEMMA 2.2. Let M, € # and M, € .# be true models with size(M,) <
size(M,). If sup,.,E(|u)*%_,) <« a.s. for some a > 2 and if M, and M,
satisfy (2), then we have:

(a) 62(M,) > 0 eventually [ hence log(67(My)/67(M,)) is eventually well de-
fined] and log(62(My)/63(M,)) > (size(M,) — size(M,))C(T)/T eventually
holds, if liminf,_ T ‘u'u>0 a.s. and [log* tr(Z{;Zy))/T — 0 a.s. as
T - oo fori=1,2. .

(b) 62(M,) — 62(M,) > (size(M,) — size(M,))C(T)/T holds eventually.

Clearly, the as. boundedness of C(T)/T is a sufficient condition for
[log* tr(Z3,Zy)1/T — 0 as. under (2). Notice that under sup E(|u,|*|#,_,) < o
a.s. for some a > 2 the condition liminf 7 'z’u > 0 as. is equivalent to
lim inf, _ T 'ST_E(u?|%,_,) > 0 as., which is in turn implied by
liminf E(u?%,_,) > 0 as., a condition used in Lai and Wei (1982b, 1983).
Furthermore, condition (2) and the conditions in (a) depend on the models
M,, M, only through the space spanned by them [note, however, that models
spanning the same space may have assigned different values of the complexity
measure size(M)].

_ A simple consequence of Lemmas 2.1 and 2.2 is Theorem 2.3. Denote by
M(T,1) and M(T,2), respectively, an arbitrary model which minimizes the
criterion function (2.1) or (2.2), respectively, over .#. Under a minimal true
model we understand a true model which has minimal size among all true
models.

THEOREM 2.3. Let ./ be finite and assume sup, . E(|u,|*|%;_,) < « a.s. for
some a > 2.

(a) Assume that for each M € M, which is not a true model, condition (1)
holds. ThAen:
(a.1) M(T,1) is a true model eventually if

C(T)/(T log(1 + IIf = Py I3(w'n) "))

goes to 0 a.s. as T — oo for all M € M which are not true models.

(a.2) M(T,?2) is a true model eventually if C(T)/||f — Pyf||* goes to 0 a.s. as
T — o for all M € # which are not true models.

(b) Assume that for each true model M € A condition (2) holds. Then:

(b.1) M(T,1) is a minimal true model or a false model eventually if
liminf, T 'w'u> 0 a.s. and if [log* tr(Z};Z3))]/T - 0 a.s. as T > © for
all true M € /.

(b.2) M(T,2) is a minimal true model or a false model eventually.
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Combining parts (a) and (b) of Theorem 2.3, one obtains rather general
conditions under which the selected models M(T,1) and M(T,2) are eventually
minimal and correct. Note that we have not assumed in Theorem 2.3 that only
one minimal true model exists.

REMARK 1. (i) The conditions involving ||f — Py, f||?> and tr(Z;;Z,,) in the
results above can be expressed in terms of eigenvalues. For example the condition
lim|| f — Py f||> = o as. for a model M which is not a true model is implied by
im A ((Zy: f)(Zy: [)) = o as. in view of (1.6) in Lai and Wei (1982b). This
simply means that f and Z,, are asymptotically not multicollinear. The other
condition in (1) essentially balances the growth rates of the largest eigenvalue of
Z}Zy; and of the smallest eigenvalue of (Z,;: f)(Zy: f). The conditions on
C(T) in Lemma 2.1 give, loosely speaking, an upper bound for the growth rate of
C(T) in terms of the growth rate of A _,.(Zy: f)(Zy: f)). Similarly, the
conditions on C(T') in (2) typically specify a minimal rate of divergence of C(T')
in terms of A, ,(Z};Zy,), M now a true model.

(i) In the spemal case where all models M € ./ are submodels of an overall
true model (not necessarily a member of .#), that is, Z,, is a selection of columns
from a matrix X corresponding to the overall model, then the condition
lim A, (X'X) = o as. is sufficient for lim|| f — Py, f||*> = oo a.s., where M is not
a true model: Clearly, ||[f — Pyf||?>=|f — Py-f||?> where Z,. is a matrix
obtained from X by deleting a column which is not a column of Z,, and which
has a nonzero coefficient 8, in the overall model. This choice is possible since M
is not a true model. But then ||f — Py f||> = BZK A nin( X' X)), where K is the
number of columns of X. Similarly, given lim A, (X’X) = oo as., it follows for
incorrect models M that A} (X'X)log A, (X'X) — 0 as. implies the second
part of (1) and that the conditions for C(T') in Lemma 2.1 are now satisfied if
C(T)/A ;i (X'X) > 0 as. and C(T)/(T log(1 + A (X' X)uw'u)" 1) - 0 as.,
respectively; furthermore, condition (2) is then implied by logA ,(X'X)/
C(T) - 0 as. (Of course an overall true model can always be constructed;
however the sufficient conditions in terms of X’X may then be overly restrictive.)

REMARK 2. Lemma 2.1 [and hence Theorem 2’.3({1)'] also holds without the
conditional moment condition if condition (1) is replaced by the following
condition: || f — Py, fl?> Oeventuallyand If- PMjll‘ ‘u—-0as.asT — .
This condition may be useful in a situation where the second part of (1) is
violated. We note that the proof of this version of Lemma 2.1 does not make use
of (ii) of Definition 2.1, that is, of %,-measurability of u,, and of %, ,-measur-
ability of z, (if z, is not %,_,-measurable, P-as. %, ,-measurability of
Y. « MBr?, has then to be added as a condition to Definition 2.1). Furthermore,
Lemmas 2.1 and 2.2 and Theorem 2.3 hold for a = 2 if some of the other
assumptions are slightly sharpened. For details see P6tscher (1986).

REMARK 3. Inspection of the proof of Lemma 2.2 shows that the following
more general result holds. Let M, € # and M, € # be true models with
size(M,) < size(M,). If (i) w'u >0 eventually, (ii) (v'u)"'w'Pyu—0 as,
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(iiiy TC(T) Yu'u) 'w'Py, u— 0 as. and (iv) C(T) > 0 eventually, then the
conclusions of Lemma 2 2(a) hold. Clearly, (i), (ii) and a.s. boundedness of
T/C(T) imply (i)—(iv). Another set of sufficient conditions for (i)—(iv), which
w111 be of importance in Section 3, is the following: C(T) 'v'Py, u—0 as,

'PMu - 0 as., liminf T-'u'u > 0 as. and C(T') > 0 eventually Similarly,
1f C(T) 'w'Py, u—0 as. and C(T)>0 eventually, then the conclusion of
Lemma 2.2(b) holds (In fact, the proof of Lemma 2.2 proceeds by venfymg the
latter two sets of conditions.) Of course, the condition C(T) 'v'u — 0 as.
suffices for C(T') 'u'Py, u - 0 a.s. Although in many cases where Lemma 2.2(b)
applies the condition C(T) w'u > 0 as. will g1ve a weaker result, it may be of
value if log* tr(Z}; Z,;) increases faster than u’u. Finally, a similar remark on
the measurablhty conditions for u, and 2, asin Remark 2 applies to the proofs
of the versions of Lemma 2.2 discussed here.

REMARK 4. We note that the assumption liminf 7" 'u’'u > 0 as., which
means that the noise does not die out eventually, has only been used in the
“underestimation” part related to criterion function (2.1). If the magnitude of
the errors does not affect the regressors, for.example, if no feedback is present,
then clearly an (asymptotically) vanishing noise should make model selection
easier and therefore a condition like liminf 7" 'u'u > 0 a.s. is unnatural in this
context. (If feedback is present as in the case of an autoregression, then a
vanishing noise entails a degenerate design matrix, thus possibly compensating
the positive effect; cf. Remark 4, Section 3.) As the above results show we can
indeed avoid explicit use of this condition for the criterion function (2.2). For the
criterion function (2.1) the “overestimation” part also works without this condi-
tion since the systematic bias in 63(M,), M, not a true model but satisfying (1),
dominates the residual error variance 2(M,) of a true model anyway. However,
in the “underestimation” part we have to differentiate between different true
models M, and M, on the basis of log 6%(M,), log 67(M,) and their respective
sizes if we use criterion (2.1). Now if the noise is for example not existent, that is,
u'u = 0 as., then the first term in (2.1) equals — oo regardless of the size of
M,, M, and hence we cannot discriminate between a minimal and a nonminimal
true model in this case. This is of course an extreme case and the condition
liminf T~ 'u’u > 0 can be relaxed somewhat, cf. Remark 3.

The following example shows how Theorem 2.3 works in the framework of
asymptotically stationary processes. It also shows how asymptotic stationarity
can be used to relax the condition on the penalty term C(T') resulting from
Theorem 2.3.

EXaMPLE. Let 2,1 <k < K, K € N, be jointly asymptotically stationary
processes in the sense that T~ 12,=1ztkz,1 converges a.s. to some real-valued
(possibly stochastic) quantity g, ;. We assume that the processes are not multi-
collinear in the sense that the matnx Q@=(q), 1<Jj, k<K, is as. positive
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definite. The process y, is generated as y, = LX_,B,2, + u,, where u, is a
martingale difference sequence w.r.t. a filtration %, such that z,, is %, _,-mea-
surable (typically the filtration will be generated by current and past errors,
current and past regressors as well as the regressors leading by one). We assume
that sup E(|u,|*|%,_,) < © as. for some « > 2 and that liminf T~'u'u > 0 as.
If we choose £ as the set of all models M;, 0 < I < K, where M, contains all
regressors with indices running from 1 to /, and M, is the void model, we face the
situation of model selection where we have an a priori ordering of the regressors
expressed through their enumeration. If we choose .# as the set of all possible
models (including the void model) with regressors from (z,, 1 < 2 < K), then

we have the subset selection problem In the first case we want to end up with
the model M,, where [, is the maximum of {k: B, # 0} and [, = 0 if this set is
empty; in the second case the desired model contains only the regressors with
indices from the set {k: B, # 0}. We shall now verify the conditions of Theorem
2.3 and show that in both cases we shall eventually pick the desired model if
either one of the model selection criteria (2.1) or (2.2) is used with size(M) =
number of regressors in M [size(M) = 0 if M is void] and C(T') is such that
log T/C(T) and C(T)/T converge to 0 a.s. First of all a model M is true iff it
contains all regressors with indices from {k: B, # 0}. One-half of this statement
is trivial; the other one follows from the fact that liminf 7Y f — Py, f|* >
liminf T7Y|f — Py f||* = B K~ '\ in(@) > O as., where M* contains all vari-
ables z,, except for k =k, where By, # 0 and z, is not contained in M (if
¥, = u,, then there are only true models and the above claim is trivial). Hence we
have also shown that || f — P,,f||? grows at least linearly for M not a true model.
Next for an arbitrary model M we have lim T~ ! tr(Z;,Z,,) = £q,, a.s., where
the summation is over all & such that 2 € M, hence log* tr(Z},Z;;) = O(log T')
a.s. But then all conditions in Theorem 2.3 are satisfied (note that sup 7~ 'u'u <
oo a.s.) which gives the desired conclusion. The condition log T/C(T) — 0 as.
can be weakened to loglogT/C(T) — 0 as. if we additionally assume that
22, =0o(T") as. for some 0 <y <1 and all 1 < & < K. To verify this claim, we
have, in the light of Remark 3, only to show that C(T')™'u’Py,u — 0 a.s. for any
true model M. This is trivial for the void model, hence assume M # @. Since
Z},Zy/T converges now as. to a nonsingular matrix by assumption and since
T 2u, = O(TY*(loglog T)'/?) as. for 1 < k < K by Lemma 2 in Wei (1985),
the result follows. Obviously in this example the analogous results hold for any
other set of models .# too.

3. Autoregressive models. In this section we apply the general results
obtained in Section 2 to the order estimation problem in general autoregressive
models. We shall first discuss nonexplosive processes and purely explosive ones
and then general autoregressive processes. The result for nonexplosive processes
will then be sharpened in the case of stable autoregressive processes.

Let us now fix the notation. The process y, is for £ > 1 assumed to be
generated by

(3.1) Y%= Byt By Yip, t U
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where B = (B,,...,8, ,) 18 the parameter vector satisfying By, # 0. Let %,
denote the o-field generated by the starting values jy,,..., yl_ Gf py = 0
i.e., ), =u, then % is set equal to the trivial o-field) and let Z#, be the
o-ﬁeld generated by the starting values and u,,...,u,. The error process is
assumed to be a martingale difference with respect to the filtration { %), that is,
E(u)%,_,) = 0. These assumptions will be maintained throughout this section,
except where otherwise noted.

The order p, of the autoregressive process will in general not be known and
hence has to be estimated. One way to do this is to minimize as usual one of the
criterion functions (2.1) or (2.2) over all autoregressive models M, of order p,
0 < p < P, where it is assumed that py< P and P> 1is a prespec1ﬁed con-
stant. In more detail, autoregressive models of order p are fitted to the data
Ypi1---» Y by least squares and the residual variance 63( p) is calculated which
is then used to calculate (2.1) and (2.2). We set y = (¥py1,---> ¥p), U=
(psrs--osur)s f=(fpirs---s fr) and Z, is the (T — P) X p matnx whose ith
row is given by (¥p_14i-+-) yp_pﬂ) if p=0 we put Z, =0 R”"P. This
conforms with the notation of the previous section if we take into account that
the sample period used for the calculation of 6Z(p)isnow P+ 1 < t < T, that
is, 6%(p) = (T Py YWw(I-2Z (Z3Z,)"Z})y. Let prp(1) and Dr(2), respectively,
denote a minimizer of log oT( p)+ pC(T)/T and of 6%(p) + pC(T)/T over
0 < p < P, respectively. Then we have the following consistency result for
nonexplosive processes.

THEOREM 3.1. Assume that the characteristic polynomial of (3.1), that is,
1-Bz—--- —,BpozPO, has all its zeros outside or on the unit circle in the
complex plane. Let sup,.,E(|u%%_,) < © a.s. for some a > 2 and
liminf,_,  T7'ET_ | E(u?|#,_,) > 0 a.s. hold. Then pp(1) > p, and pp(2) = p,
hold eventually if C(T)/T —» 0 a.s. as T — oo. Furthermore, pr(1) < p,,
Dr(2) < p, eventually if C(T)/logT — o0 a.s. as T — oo.

Of course combining both parts of the theorem shows that a growth rate of
C(T) between logT and T gives consistent estimators. For purely explosive
processes Theorem 3.2 provides the analogous result. Note that the assumptions
of Theorem 3.2 and B, # 0 imply that (3.1) is purely explosive in the sense of
Lai and Wei (1983).

THEOREM 3.2. Assume that the characteristic polynomial of (3.1) has all its
zeros inside the unit circle in the complex plane and p,> 1 holds. Assume
sup, ., E(|u|*%#,_,) < © a.s. for some a > 2 and liminf,_,  E(u?l%_,)> 0
a.s. hold. Then pr(1) > p, holds eventually if C(T)/T? —> 0 a.s. as T = oo.
Similarly, pr(2) > p, holds eventually if C(T)/e®" - 0 a.s. as T — oo for some
0 < a = a(w) < —2log m, where m is the maximum of the moduli of the zeros of
the ¢haracteristic polynomial. If liminfy_,  C(T)/T > 0 a.s., then pp(1) < p,
and pr(2) < p, eventually.
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The slightly stronger assumption on the conditional variance of the error
process in Theorem 3.2 compared to Theorem 3.1 is needed to ensure the validity
of Theorem 2 in Lai and Wei (1983) which gives an exponential rate for the
eigenvalues of Z) Z,. The general case, that is, the case where there are no
restrictions on the location of the zeros of the characteristic polynomials, is

treated in the next theorem.

THEOREM 3.3. Assume sup,., E(|u|*%,_,) < © a.s. for some a > 2 and
liminf, ,  E(u2l%,_,) >0 a.s. hold. Then pr(1) > p, and pp(2) > p, hold
eventually if C(T)/T -0 a.s. as T — . Furthermore, py(1) <p, and
Pr(2) < p, hold eventually if liminf,_,  C(T)/T > 0 a.s.

REMARK 1. It is interesting to note that (2.1) and (2.2) lead to different
feasible rates for C(T') in case of explosive processes. Notice also that Theorem
3.3 does not give a common feasible rate for C(T') such that both parts of that
theorem are satisfied and consistency is ensured. Of course such a rate for C(T')
may nevertheless exist since Theorem 3.3 gives sufficient conditions only. A proof
of such a result, however, would essentially have to produce a convergence rate
for the least-squares estimator in a general autoregressive model which seems to
be very difficult. The consistency proof for general autoregressive models in Lai
and Wei (1983) may be a starting point for such a result.

REMARK 2. The proof of the overestimation part (i.e., of the first half) of
Theorem 3.3 is based on the method of proof used in Wang and An (1984). The
proofs of the underestimation parts of Theorems 3.2 and 3.3 are based on
generalizations of Lemma 2.2 discussed in Remark 3, Section 2, and on Lemma
A.l. Lemma A.1 is implicit in the proof of Theorem 1 of Lai and Wei (1983) and
appears also in Wang and An (1984). In the context of general autoregressive
models Wang and An (1984) prove only that p, (1) > p, eventually a.s. for
C(T) = log T (they actually treat the corresponding problem of subset selection
of autoregressive parameters, see also Remark 3 below).

REMARK 3. The results of this section can be extended to model selection in
autoregressions where models are chosen from a more general set of models ./Z,
to some extent. Theorems 3.1 and 3.4 carry over completely to this case; however
the full strength, for example, of the overestimation part of Theorem 3.2, does
riot necessarily go through. This is so because estimating || f — Py, f||* for wrong
models M from below by A ;(Z#Z3), where M is the smallest true model
containing M, may give only a linear growth rate since the difference equation
corresponding to model M is not necessarily purely explosive in the sense of Lai
and Wei (1983) although the true process is. Another potential difficulty is that
the proof of Theorem 3.3 relies on the consistency of least-squares estimators in
general autoregressive models as established in Lai and Wei (1983). If a subset
autoregression is estimated by least squares, then this consistency result does not
immediately apply. [Referring to the result of Lai and Wei (1983), Wang and An
(1984) make use of consistency of the least-squares estimator in general subset
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autoregressions in the proof of their result mentioned in Remark 2; An has
informed me that in the meantime he has found a proof of this consistency
result.]

REMARK 4. (i) The conditions liminf T'LE(u?|%#,_,) > 0 as. and
liminf E(u?|%,_,) > 0 as. are, in the context of autoregressive models, used to
ensure that the design matrix Z, does not degenerate and that the lower bounds
for A ,;.(Z}Z,) given in Lai and Wei (1983, 1985) hold. Hence these conditions
are—in contrast to Remark 4 in Section 2—now essential for the overestimation
parts of the theorems of this section. As discussed in Remark 4 in Section 2 a
condition of this type is also used to prove the underestimation parts for the
estimator p,(1). In contrast to that the underestimation result for p,;(2) in
Theorem 3.1 and in Theorems 3.2 and 3.3 [in the latter‘two theorems under the
slightly stronger condition C(T')/T — oo a.s.] hold without any of these two
conditions as can be seen from the proofs. Furthermore, pr(2) < p, eventually
holds under the single condition u'u/C(T') — 0 a.s. [and C(T) > 0 eventually]
without any further assumptions on u,, cf. Remark 3 in Section 2. However,
without such further conditions also models with p < p, might be true models.

(ii) Under the assumptions of the theorems of this section p, is of course
uniquely determined. Clearly, this is already true under weaker conditions on u,.

Finally, we show that in the stable case the condition C(T')/log T — o can be
weakened to C(T')/loglog T — . A similar result was proved in Hannan and
Quinn (1979) in the stationary case [and where 6%( p) was obtained from the
Yule-Walker equations]. We have not been able to prove such a result also for
nonexplosive models although it might be possible.

THEOREM 3.4. Assume that the characteristic polynomial of (3.1) has all its
zeros outside the unit circle in the complex plane, sup, ., E(|u|*|%,_,) < « a.s.
for some a > 2, and that liminf,_, , T7'YT_ E(u?|%_,) > 0 a.s. holds. Then
Pr(1) = py, Pr(2) = p, eventually hold if C(T)/T - 0 a.s. as T - o, and
Dr(1) < py, Pr(2) < p,y eventually hold if C(T')/loglog T —  a.s. as T — oo.

Under stronger assumptions on u,, the loglog T' bound for C(T') in Theorem
3.4 can be slightly weakened to liminf C(T')/loglog T > c for a suitable constant
c. This bound is then sharp, in general; compare the discussion in Hannan and
Quinn (1979), page 193. We note that Akaike’s AIC, that is, (2.1) with C(T') = 2
and size(M,) = p, does not satisfy all the conditions in the above theorems.
Actually, AIC does not even give weakly consistent order estimators for nonex-
plosive processes, see Tsay (1984). The criterion BIC, that is, (2.1) with C(T') =
log T and size(M,) = p, does not satisfy all the conditions in Theorem 3.1. A
close inspection of the proofs of Lemma 2.2 and Theorem 3.1, however, reveals
that Theorem 3.1 is still valid if C(T)/logT — « as. is replaced by
liminf C(T)/log T > c a.s. The constant ¢, however, depends on (y,). Thus if
BIC would be modified to BIC’ by setting C(T') = ¢’log T, ¢’ > ¢, then we could
be sure that BIC' gives consistent estimates. This is of course of no great
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practical interest since ¢ is unknown. Furthermore, BIC gives consistent estima-
tors under the conditions of Theorem 3.4 of course. Finally, we note that the
theorems in this section obviously remain true if the upper bound P increases
with the sample size (possibly depending on w) slowly enough. We do not know
how fast P is allowed to increase. For some results in this direction for
stationary autoregressions, see, for example, An, Chen and Hannan (1982).

4. Complementary remarks. The “overconsistency” result for stochastic
linear regression models selected by BIC as given in Wang and An (1984) can be
derived under weaker assumptions as is seen from an inspection of their proof:
Conditions (2.6) and (2.8) can be dropped without any loss since—in the notation
of that paper—S(<J,)~! can be estimated from below by (s’s)”! and hence
Lemma 2.1 in that paper is not necessary for the proof of their Theorem 2.1
[notice that their assumption (2.1) implies (s’s)"! > MT"!, M = M(w) > 0].

The results of Section 2 easily carry over to more general criteria of the form
(2.1) or (2.2), where the penalty term size(M )C(T)/T is replaced by C(M, T')/T.
Lemma 2.1 carries over where now the conditions for C(T') in (b) and (c) of this
lemma have to be satisfied by AC(M,, M,,T)= C(M,,T) — C(M,,T). For
Lemma 2.2 to carry over the penalty term has to be such that at least for true
models M and M’ always either AC(M, M’,T)> 0, =0 or <0 eventually
holds. This gives then the required ordering of the models according to their
“size.” Lemma 2.2 is then true if all conditions for C(T') are satisfied by
—AC(M,;, M,, T) and AC(M,, M,, T') < 0 eventually holds. These results are of
some importance for an analysis of model selection criteria such as Mallows’
(1973) C,, or in a situation where C(M,T) = size(M)C(T) but size(M) is
random.

APPENDIX

Proor or LEMMA 2.1. We start from the basic a.s. identity
T(63(M,) - 67(M,))

(A1)

=\1f = Py, f1I>+2f (I = Py, )u — w'Pyu+ u'Pyu.

Under our assumptions the second term on the r.h.s. of (A.1) is

/2
0(||f — Py, flI[max(1,log* (I f = Py, £ 1), log™ (tr(Zir Z0s,)))| ) as.
and the term u’Py, u on the r.hs. of (A1) is

O({max[l, log*(tr(Z,{,,2ZM2))] }) a.s.

This follows from Lai and Wei (1982b), Theorems 4 and 3 [in Theorem 3, (2.2), a
printing error occurs: The term in braces on the r.h.s. of (2.2) should read
max(1, 10g+(Eszj))]. Since ||f — Py, f|| = o a.s. under (1) and since the last
term on the r.h.s. of (A.1) is nonnegative, we hence have for every 0 <e <1
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eventually
(A.2) 67(M,) — 83(M,) > &l f — PM2f||2/T-
This proves parts (a) and (b).

Since

67(M,) = T"Yuw'u — w'Pyu) < T 'w'u
we obtain from (A.2) under either set of assumptions that eventually
(A.3) [67(M,) — 63(M,)]67%(My) = el f = Py, f|I*(w'ne) ™.

Notice that (A.3) trivially holds if 62(M;) = 0 or u'u = 0 because GZ(M,) —
6%(M,) > 0 eventually as shown above. Now the rhs of (A.3) is eventually
positive. But then

log(67(My)/67(M,)) = log(1 + [67(My) — 63(My)] 67°(My))
> log(1 + el| f — Py, fI1*(w'n) ")
eventually and hence (c) holds, since log(l + x)/log(1 + ex) is bounded on the
interval (0, c0). O

PROOF OF LEMMA 2.2. Clearly, for i = 1,2 we have T67(M;) = u'u — u'Py u
a.s. From Lai and Wei (1982b), Theorem 3, we get

wPyu= 0({max[1,log+ tr(Z{; Zy,))] })
a.s. Now since C(T') - oo and [log* tr(Zy; Zy )1/C(T) — 0 as. under (2) we get
lim C(T)~ 1u’PM u = 0 a.s. Since size(M,) < s1ze(M2) this proves (b) because
TC(T) (OT(M2) - OT(MI)) =C(T)" (u'PMlu - u’PMzu)

which goes to 0 as just shown. Now under the assumptlons of (a) we clearly have
liminf 62(M;) = liminf T~ 'u'u > 0 a.s. since lim T'~* u'Pyu = 0 as. follows from
[log™ tr(ZM Zy))]1/T — 0 and Theorem 3 in La1 and Wei (1982b). This clearly
implies 62(M,) > 0 eventually; im(62(M,) — 62(M,))65 %(M,) = 0 as. also fol-
lows. Finally,

log(67(M,)/63(My)) = log(1 + (83(My) — 63(M,))é7%(M,))
and (62(M,) — 6%(M,))é;7%M,) goes to zero as just shown. Hence
TC(T) ™ log(67(M,) /63(M,))
= (1 + &) 'TC(T) " (63(My) — 63(M,))67%(M),
where £, is a mean value going to 0 a.s. But then (a) follows since the r.h.s. of

the last equation goes to 0 a.s. by what has already been established. O

PROOF OF THEOREM 2.3. Since ./ is finite M(T,1) and M(T,?2) exist. We
give the proof for (a.1) and (b.1) only; the proof for (a.2) and (b.2) is completely
analogous. Assume (a.1) is not true. Since .# is finite we would have M(T,1) = M.
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infinitely often on a set of positive probability, where M, is a fixed model which
is not true. Choose a fixed true model M, € .#. Applying Lemma 2.1 to M, and
M,, we see that the value of the criterion function (2.1) at M, is eventually
larger than the value at M, which leads to a contradiction. To prove (b.1),
assume that it would not be true. Then similar as above M(T,1) = M, infinitely
often with positive probability, where M, is now a fixed nonminimal true model.
By finiteness of .# a minimal true model exists, say M,. Now from Lemma 2.2
we conclude that the value of (2.1) at M, is eventually larger than the value at
M,, which leads to a contradiction. O

In the following proofs we use results from Section 2. Recall that the actual
sample size in Section 3 is 7' — P; hence, in order to apply the results of Section
2 properly the penalty term C(T') has to be translated into a penalty term
C'(T — P), where C'(T — P) = C(T )T — P)/T. Since all conditions for C(T)
used below hold for C(T) iff they hold for C'(T — P) we shall ignore this
difference for the sake of brevity.

ProoF oF THEOREM 3.1. First we show that an autoregressive model M,
with p < p, is not true by showing that liminf,_, (T = P)7!||f — Py, flZ>0
a.s. Of course, it suffices to prove this for p = p, — 1. Now a.s.

(T = P)7f = By, fI*= (T~ P)Z,8- Py, Z,BI
= (T P) ”D PMpo—lvaollz’
where v denotes the last column of Z, . The last expression equals
BolT = P) Mo = Py, _ol* > pg Bo(T — P) Ain( 25 Z,,)

the inequality following from (1.6) in Lai and Wei (1982b). Since ,B # 0 and
Liminf(T — P)~ A mllrl(ZI;OZPO) > 0 a.s. by Theorem 3 and Example 3 1 in Lai and
Wei (1985), we arrive at the desired conclusion. Furthermore, for p < p, we have

log* tr(Z,2,) < log* tr(Z; Z, ) < log* py + log* A pae( 2} Z,,)-
It follows now from Corollary 1 in Lai and Wei (1985) that A . (Z. Z, ) = O(T)

a.s. if all zeros of the characteristic polynomial are outside the 1;,311? circle and
Amax(Zp2,,) = O(T 20 loglog T') a.s. otherwise where p is the sum of the multi-
plicities of all of the zeros on the unit circle. In any case log™* Amad Zp Zp,) =
O(logT') as. Since || f — PM f|I? increases at least as T' as just shown above, we
have log™ tr(Z, Z, )/||f — PM flI? = 0 as. for p < p,. This shows that assump-
tion (1) is satlsﬁed and, applying Theorem 2.3, we obtain the first half of
Theorem 3.1 taking into account the remarks after Lemma 2.1. On the other

hand it is obvious that M, is a true model if p > p,. Furthermore,
log*tr(Z;Z,) < log* p + log* A,,.(Z,Z,) = O(log T) as.,

again by Corollary 1 in Lai and Wei (1985). Hence log ™ tr(Z;Z,)/T — 0 a.s. and
log™ tr(Z,2,)/C(T) - 0 as. since C(T)/logT — o a.s. by assumption. This
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establishes condition (2) and the conditions in Theorem 2.3. The theorem then
follows from Theorem 2.3. O

ProoF oF THEOREM 3.2. For p < p, we have similarly as before
1f = Pag, FI2 2 11f = Py, FII? 2 PG BN min 25, Z5,) = P BZeT

eventually for 0 < a < —2logm using Theorem 2 in Lai and Wei (1983) (to
make this theorem applicable, the origin of time has to be shifted). Since
log* tr(Z}Z,) < log™* tr(Z, Z,)) = O(T') as. in view of Corollary 1 in Lai and
Wei (1985), this shows that condition (1) is satisfied. Furthermore, C(T')/e*T — 0
as. clearly implies C(T)/|| f — Py f |2 - 0 as. and C(T)/T? - 0 a.s. implies

c(T)/T 1og(1 +1f - PMpf||2(u’u)_1) 50 as.

since certainly sup 7~ 'u’u < co a.s. The first half of the theorem then follows
from Theorem 2.3. Now for p > p, the model M, is certainly true and
C(T) u’PMu — 0 as. by Lemma A.1 and since hmme(T)/T > 0 a.s.; this
gives

TC(T) " (33(p,) — 63(py))
= T(T -~ P)7'C(T) (wPy u — wPy u) > 0as.

for p, > p, = p,, hence 62(p,) + p,C(T)/T > 6%(p,) + p,C(T)/T eventually.
But then p,(2) < p, eventually follows. To prove p,(1) < p, eventually observe
that liminf T~ '’ > 0 a.s. holds and Lemma A.1 implies lim inf 62( p,) > 0 a.s.
and (62(p,) — 62(p,))67% p,) — 0 as. Proceeding as in the proof of Lemma 2.2,
we get log 6%(p,) + p,C(T)/T > log 62(p,) + p,C(T)/T eventually from which
the result follows. [We note that, if C(T') satisfies C(T')/T — « as., then
br(2) < p, eventually can be proved without Lemma A.1 by directly verifying (2)
using Corollary 1 in Lai and Wei (1985).] O

ProoF oF THEOREM 3.3. For p < p,wehaveliminf(T — P)~!||f — Py 11>
0 a.s. by a similar argument as in the proof of Theorem 3.1, hence M, is true iff
P = py. The proof of the second part of the theorem is identical to the proof of
the corresponding part of Theorem 3.2. The first part is proved as follows: For
P < p, we have

6%(1’) - 6’?‘(1’0) > 672‘(130 - 1) - 672‘(170) =(T- P)_l 32 ||” - PM _U||2,

where v is the last column of Z,, and ,é ,, 18 the least-squares estimator for By,
based on model M, . This follows from a standard formula used in step\mse
regression and (3.3) i in Lai and Wei (1982b) Hence '

(p) = OT(po) = (T P)” lp B,z?.,}‘nnn( Do Po)

and the r.h.s. is eventually larger than (p, — p)C(T')/T since ,82 - 30 > 0 a.s.
by Theorem 1 in Lai and Wei (1983), liminf T7'A,;(Z; Z,, ) > 0 as. by Theo-
rem 3 in Lai and Wei (1985) and since C(T')/T — 0 a.s. by assumption. This
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shows also that
liminf 62(p) > liminf[62(p) — 62(py)] >0 as,;

furthermore, since 63(p,) < (T — P) 'v’u and sup T~ 'u'u < oo a.s. we obtain
that [6%(p) — 62(py)167%(py) = c(w) > 0 from which we conclude that
log(62(p)/6%(py)) > (py — P)C(T)/T eventually holds. The result pr(1) > p,,
Dr(2) = p, then follows along the lines of the proof of Theorem 2.3. O

ProoF oF THEOREM 3.4. We have to prove the second half only, since the
first half follows from Theorem 3.1. In light of Remark 3 in Section 2 it suffices
to show that C(T) 'u'P, U= 0 as. for p = p,. This is trivial if p = p, = 0,
hence assume p > 0. Smce u'PMu =u'Z,Z;Z,)*Z,u and since Theorem 3
in Lai and Wei (1985) shows that liminf T~ 1}\ min(ZpZ,) > 0 as., we are fin-
ished if we can establish that ||u'Z,|| = O(T loglog T)l/ 2) as.: Since a > 2
we obtain from Theorem 1 in Lai and Wei (1985) that y2 = o(T") a.s. for some
0 <y<1 and hence y2_;, = o(ELp,152)"), 1 <i < p, because of
liminf T~ 1)\ min(ZpZ,) > 0 as. Smce tr(Z,Z,) = O(T) as. from Corollary 1 in
Lai and Wei (1985), we get ||u'Z,)| = O((T log log T')'/?) a.s. from Lemma 2 in
Wei (1985). O

LEmMMA A.l. In the notation of Section 3 let sup,., E(|u|*#,_,) < o a.s.
for some a > 2 and liminf,_, E(u?|%#,_,) > 0 a.s. hold and let y, be generated
by (3.1). Then lim,_ T 'u ’PMu—O a.s. for p >p, holds, where u =
(#pyys---ur).

Proor. The case p = p, = 0 is trivial. For p > 1 it is shown in the proof of
Theorem 1 in Lai and Wei (1983) that there is a matrix A, which is eventually
a.s. nonsingular such that A;Z;Z A7 converges to an a.s. nonsingular matrix.
Furthermore, it is shown that A;Zju = o(T'/?) [note that the cases r = 0 or
s = 0 in the notation of Lai and Wei (1983) are covered by their arguments]. The
lemma follows now from u'Pyu= uwZ,Ar(ApZ)Z,Ar) ApZju. O

LEMMA A.2. Let A, B be real matrices with countable infinitely many rows
and k,, respectively k,, many columns. For T > 1 let Ay, By denote the
submatrices consisting of the first T rows. If the column spaces of Ap and By
coincide for all T > 1, then c, tr(A}Ar) < tr(BfBr) < ¢y tr(A4Ar) holds for
all T > 1, where ¢, and ¢, are positive real numbers.

ProoOF. From the assumptions we immediately see that A and B span the
same space. Hence we can find matrices M and N such that AM = B and
BN = A hold. But then A;M = By and B;N = A;. We arrive at

tr(B4By) = tr(MA3Ar M) < A o (MM')tr(ALA7) = cytr( ALAg)
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and
tr(A4Ar) < A NN)tr(B4By) = ¢; ' tr(B;Br).

Clearly, ¢, > 0 and ¢, > 0,if not A=0and B=0.If A =0 and B =0, then
the result trivially holds. O
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