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THE JACKKNIFE AND THE BOOTSTRAP FOR GENERAL
STATIONARY OBSERVATIONS

By Hans R. KUNscH

ETH Ziirich

We extend the jackknife and the bootstrap method of estimating stan-
dard errors to the case where the observations form a general stationary
sequence. We do not attempt a reduction to ii.d. values. The jackknife
calculates the sample variance of replicates of the statistic obtained by
omitting each block of ! consecutive data once. In the case of the arithmetic
mean this is shown to be equivalent to a weighted covariance estimate of the
spectral density of the observations at zero. Under appropriate conditions
consistency is obtained if / = /(n) - oo and I(n)/n — 0. General statistics
are approximated by an arithmetic mean. In regular cases this approximation
determines the asymptotic behavior. Bootstrap replicates are constructed by
selecting blocks of length / randomly with replacement among the blocks of
observations. The procedures are illustrated by using the sunspot numbers
and some simulated data.

1. Introduction. The jackknife [Tukey (1958)] and the bootstrap [Efron
(1979)] have become well established as nonparametric estimators of the variance
of a statistic. However, the assumption of independence of the observations is
crucial. It is easily seen that they give incorrect answers if dependence is
neglected; compare Remark 2.1 of Singh (1981). Recently the two methods have
been extended to ARMA models by reducing to innovations which are i.i.d.; see
Davis (1977), Freedman (1984) and Efron and Tibshiriani [(1986), Section 6].
Still ARMA processes are not able to model essential features of many observed
time series; compare Priestley (1981), Chapter 11. Fitting models which go
beyond ARMA is, however, an extremely difficult task and it seems impossible to
take the effects of parameter estimation or misspecification of the model into
account. Moreover a variance estimator can be unreliable even if the true
distribution differs only slightly from the model and the statistic is robust; see
Section 2.4.

Because of these reasons we propose here an extension of the standard
jackknife and bootstrap which does not require us to fit a parametric or
semiparametric model first. It works for arbitrary stationary processes with
short-range dependence expressed, for instance, with mixing conditions. For the
jackknife we delete each block of I consecutive observations once and calculate
the sample variance of the values of the statistic obtained in this way. Moreover
we make a smooth transition between observations left out and observations
with full weight, similar to tapering in time series analysis. For the bootstrap we
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1218 H. R. KUNSCH

choose n/l blocks of length ! with replacement from the n — [ + 1 blocks of
observed data.

If the statistic is not a symmetric function of the observations, leaving out
observations in the middle or joining randomly selected blocks causes problems.
Our definition in Section 2 takes care of this, but we have to restrict ourselves to
statistics which are given by a functional of an empirical marginal with fixed
dimension. In Section 3 we show that these procedures are consistent in the case
of the arithmetic mean and obtain the asymptotic bias and variance. In this case
the jackknife reduces to a standard spectral estimation procedure. In Section 4
we study general statistics by von Mises expansions. We show that for smooth
functionals the linear approximation completely determines the asymptotic
behavior of the jackknife. Section 5 contains examples with real and simulated
data. )

Carlstein (1986) has prop ssed a variance estimator which selects nonoverlap-
ping blocks. For the arithmetic mean, deletion of blocks is the same as selecting
blocks. So in this case our jackknife differs only by using overlapping blocks and
tapering. However, for general statistics, deletion is better than selection, both in
theory (see Remark 4.1) and in the simulations of Sections 5.1 and 5.2.2.

2. Definitions. When we try to formalize the intuitive ideas from the
Introduction, some problems occur. For the jackknife we need to define the
statistic with a missing block of observations and with the bootstrap we have to
take care how we join two randomly selected blocks. These difficulties can be
solved for a certain class of statistics which we are going to introduce in Section
2.1 before defining our jackknife and bootstrap in Sections 2.2 and 2.3. This class
is sufficiently general to include many statistics of interest.

2.1. Estimators defined by functionals on empirical distributions. For obser-
vations X,,..., Xy from a stationary process the empirical m-dimensional
marginal is

N-m
(2.1) pp=(N-m+1)"" ZO O Xyarreens Xpom)?
t=

where 8, denotes the point mass at y € R™. In this paper we will always

consider statistics Ty of the form
(2.2) TN(XI””’ XN) = T(p%),

with some fixed m and a functional T with values in R? defined on the set of all
probability measures on R™ (or a sufficiently rich subset of it). For simplicity of
notation we take g = 1. Often it is convenient to introduce blocks of observa-
tions Y, = (X,,..., X, ,,—,) and set n = N — m + 1. Since p} = n”'E}_ 8y, we
are then formally in the case m = 1.

- In order to illustrate the scope of this class, we give some examples.

ExXaMPLE 2.1. M, L and R estimators of location and scale [see Huber
(1981)] are of the form (2.2) with m = 1.
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ExXAMPLE 2.2. Functions of linear statistics,
N-m+1

=f (N—m+1)_1 Z o(X,,.. Xivm-1)|s

where ¢ = (¢,,...,¢,) and f: R* > R. This includes the least-squares estimator
of the parameters of an AR model and certain versions of the sample correla-
tions.

ExaMPLE 2.3. von Mises’ statistics Ty = N‘kZQLI e Za'=1¢(X yeees Xp)
with a symmetric kernel ¢.

EXAMPLE 2.4. Statistics defined implicitly as solutions of an equation
N-m+1

Z ‘I’(Xt’ t+m 15 N)‘“O

This includes robust estimators for the AR model [see Kiinsch (1984)] and
maximum likelihood and conditional least squares in Markov processes.

In the context of ARMA models, Martln and Yohai (1986) considered estima-
tors which are of a slightly more general form than Example 2.4. They are
defined as solutions of

N
Z ‘I"t(Xt’ D. GENTIND. ¢F: TN) =0,

where Y, (a,, a,,...,a,; 0) = Y(a, a,,...; 8) for all (a,) € R®. All our proce-
dures and results can be extended to this class.

In order to investigate the asymptotic properties of variance estimators, we
need an expression for the asymptotic variance of 7. So we make the following
assumptions on the statistics Ty and the underlying stationary process ( X,).

(Al) Ty converges almost surely to T(F™) where F™ denotes the marginal
distribution of (X,..., X,,).

(A2) The influence function IF(y, F™) = lim, ol T(@ — &)F™ + &) —
T(F™)]/¢ [see Hampel, Ronchetti, Rousseeuw and Stahel (1986)] exists for all
yER™ ,

(A3) n“/ 2yr IF(Y,, F™) is asymptotically normal with mean zero and
variance o2 where

2= Y E[IF(Y, F")IF(Y, F™)).
k=—o0

(A4) The remainder term R, in the linearization 7Y o) = T(F™) +
n~'ZIIF(Y,, F™) + Ry is of the order o, (n~"2).
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Obviously, (A3) and (A4) imply that n'/%(Ty — T(F™)) is asymptotically
normal with mean zero and variance o2. If (X,) is ergodic, p% converges weakly
to F'™, so (Al) follows for instance from weak continuity of 7. (A3) holds under
mixing conditions on (X,) and moment conditions on IF(Y,, F™). For (A4) many
techniques from the ii.d. case can be carried over. In the examples above
rigorous conditions can be found in Gastwirth and Rubin (1975) for Example 2.1,
Denker and Keller (1983) for Example 2.3, Bustos (1982) and Tjestheim (1986)
for Example 2.4. :

2.2. The jackknife. For the jackknife we delete or downweight blocks of
m-tuples in the calculation of the marginal p7:

n

(2.3) PR =(n—w,l,) " X (1 - w,(t—j))sy

t=1
and calculate
(2.4) Y = T(p%), j=0,...,n—1

The weights w,(i) are assumed to satisfy 0 < w,(i) < 1, i € Z, and w,(i) > 0
iff 1 <i < I Here l is the length of the downweighted block and ||w,||, = X w,(i).
In many cases w, will be of the form

(2.5) w,(i) =h((i-1%)/1), 1<i<l,

for a function A: (0,1) — (0,1) which is symmetric about x =  and increasing
on (0,3). Choosing for A the indicator function 1,1y corresponds to simple
deletion of blocks. In some cases, however, there is an advantage by taking A
smooth; see Section 3.1.

The jackknife estimate of the variance of T}, is simply the sample variance of
the T{/)’s with a suitable standardization:

n—1

N _ — _ ; )2

(26) 6= (n—llw,l,)’n Y (n = 1+ 1) w32 X (TY - TS,
Jj=0

with T{) = (n = I + 1) 'E7Z{T{ and ||w,||2 = T!_ w,(i)%

That this is the right standardization will become clear in Sections 3.1 and 4.1.
There we will also discuss the choice of ! as a function of sample size and
strength of dependence of (X,).

2.3. The bootstrap. In analogy to the i.i.d. case we select blocks of length /
at random instead of deleting blocks. Assuming n = kI with £ € N, the boot-
strap m-dimensional marginal is therefore

k S;+1

J

(2.7) pvt=nt Y X 8y,

J=1t=8+1
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where S,,..., S, are iid. uniform on {0,1,...,n — I}. We can also write this as
n
(2.8) p’,'\‘,"=n‘12f,8y¢ Withf,=#{j;t—lsSj_<_t—1}
t=1
or as
n
(29) ot =n"t Ly,
t=1

where the & blocks (Y;*,..., Y *),(Y*,.... %), ..., (Y y1p ..., V) are iid.
with distribution (n — [ + 1)_122‘;38(16 P p'y »- We then form the boot-
strap statistics

(2.10) Ty = T(o *

and approximate the unknown distribution of Ty — T(F™) by the distribution
of Ty — Ty, where Y,,..., Y, are fixed, but S,,..., S, vary. In particular we use

(2.11) 8300 = Var'(Ty¥) = E*[(Tyt — E*[T¢])’].

Here E* denotes expectation with respect to S,,..., S,. Similarly we can esti-
mate quantiles or other quantities of interest. Usually 63, and the distribution
of Ty — Ty have to be evaluated by simulation.

The rationale for our proposal is as follows: The distribution of Ty depends
on the unknown distribution F of X,,..., Xy. Even asymptotically, the vari-
ance of T depends on the distribution of the whole process and not on some
finite marginal; see (A3). Obviously it is impossible to estimate F N from
X,,..., Xy without assuming a special structure like independence or a linear
model. Using independence, Efron’s bootstrap estimates FV by (p}y)®", ®
denoting the product of measures. For m = 1 our proposal estimates F' N by
(p%y)®* and thus coincides with Efron’s method if / = 1. However we will let /
tend to infinity as n — oo, since in this way we asymptotically get all marginals
correct.

For m > 1 our proposal does not give an estimate of F. When we write out
the bootstrap sample (Y;*,..., ¥,*) in terms of the original observations (X,), we
obtain n + k(m — 1) data points. The reason for this is that we do not want to
use observations from different independent blocks in the calculation of p7 *. In
this way we reduce the effect of joining independent blocks together.

The bootstrap marginal is by (2.8) an empirical marginal with random weights
n~Yf,. For ¢, s not at the border

Cov(f, f,) = (n— 1+ 1) "kmax(l— |t — 5],0) — (n — [+ 1) "ki*
~ max(1 — |t — s|/1,0).
This leads to the following modification suggested by a referee. Take

-1 n

(2.12) o = ( i W(t/l)) gj W(t/1)dy,
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where (W(t)),cr is a positive stationary process with continuous covariance
function R(t), independent of ( X,).

2.4. Other methods. Carlstein (1986) has proposed using nonoverlapping
subseries. In our notation .this means to calculate a suitable standardization of
the sample variance of (T/*);_, ... 1, where k = [n/I] and

(2.13) T/ =T(pf), p/=1" ¥ 8.

t=j+1

Obviously we could also take overlapping subseries, i.e., the sample variance of
(T/);=,.... n—1» We will compare this method with durs in Remarks 3.1, 3.3 and
4.1(iii).

A different approach is to directly estimate the asymptotic variance o2 as
given in (A3). We assume that the influence function exists also at p}% so that we
can use IF(y, p%) as estimator of IF(y, F™). We then calculate

-1 n—|k|
(214) 6I2nﬂ = n_2 Z wn(k) Z IF(YVH p')?l)IF(YhL]kp pr[r\;),
k=—-1+1 t=1

where the w,(%) are lag weights with w,(k) — 1 for fixed £ and I = I(n) — oo,
I(n)/n - 0. It is well known from spectral analysis [cf. Priestley (1981), Section
6.2.3] that such weights are needed to obtain consistency. In Sections 3 and 4 we
will see that the jackknife is asymptotically equivalent to (2.14) for some special
weights w,.

Another method is to fit a parametric model Fj to the data and then to use

(2.15) 620 = o2(E)) /.

However, in complicated models like nonlinear time series the calculation of
02(F;) may be quite difficult. Often it requires extensive simulations so that
jackknifing may be a simpler alternative. Moreover there is always the danger
that the parametric model does not hold exactly. Because o2 is an infinite sum,
02(F) and o2(F,;) may differ considerably even if all finite-dimensional marginals
are close and IF(Y,, F™) is bounded. This shows that with dependence, paramet-
ric methods are even more dangerous than in i.i.d. situations.

3. The arithmetic mean. Here we investigate the properties of our proce-
dures for the arithmetic mean. This corresponds to m = 1, T(F!) = [xF(dx) =
E[X,] = p and IF(x, F') = x — p. This functional is linear and allows explicit
calculations of all quantities of interest. At the same time it will be the first step
toward a theory for general functionals, since by (A4) they can be approximated
by an arithmetic mean. The effects of the remainder R, in (A4) will be discussed
in Section 4.
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3.1. Relation of the jackknife to spectral estimation. By definitions (2.3) and
(2.4), we have for any real number cand 0 <j < n — [,

TISIj) = (n - ”wnlll)_l i (1 - wn(t _]))Xt

(3.1) .
=Ty + (n = llw,lly) "|Ilwly(Ty — ¢) = XL w,(t —7)(X, - ¢)|.

t=1

In order to obtain a transparent formula for T, we introduce

n—1

(3:2) a,(t) = (llwall) " (n = 1+ 1) 7 X w,(t - j).
=0
Note that a(¢) =(n -1+ 1) tforl<t<n-1+1 and Y a,(t) = 1. Hence

n

(3.3) o= L a,(t)X,

t=1
is an unbiased estimator of p. It is asymptotically equivalent to the arithmatic
mean T) if I = o(n). By putting ¢ = fi, in.(3.1) it follows that

n

TISI‘) = TN + (n - "wnnl)—l”wnnl[(TN - ﬁn) - Z an(t)(Xt - ﬁ‘n)

(3.4) t=1
=Ty + (n = llwylly) “wlly(Ty = A,)-
Hence
(3.5) T]S]j) — T]s]) = _,(n —_ "wnul)—l Z wn(t —j)(Xt _ ﬁn).

t=1

REMARK 3.1. Formulas (3.1) and (3.5) show that the jackknife for the
arithmetic mean does not change if we replace p7”) by |lw,|| 'L w,(¢ — j)dy,
and adjust the standardization. This means that in this case our procedure
differs from Carlstein’s (1986) method only by using overlapping blocks and
general weights w,.

In order to make our formula for 6;,, more transparent, we again have to
introduce some notation. Let v, be the convolution of w, with itself,

I—|k|

(3.6) ol(k) = XL w(Nw,(J + |k]).
j=1

Note that v,(0) = ||w,||3. Furthermore we put

n—1

(87) Bt k) =v,(k) (n—1+ 1) ¥ w,(t - J)w,(t+ k| —j), |k <L

Jj=0

As for a,(t), we have B (t,k)=(n—1!+1) ' for - |k|<t<n-1+1 and
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Yr-lkg (¢, k) = 1. Hence

n—|k|
(3-8) ﬁn(k) = Zl Bn(t’ k)(Xt - ﬁ‘n)(Xt+|k| - ﬁn)

is an estimate of the covariance R(k) = E[(X, — p)(X,,, — p)] which is very
similar to the usual sample covariance except that it has a smaller bias.

Now by inserting (3.5) in the definition (2.6) of 6%, we arrive at the
following.

THEOREM 3.1. In the case of the arithmetic mean we have

-1 -
(3.9) Ghae=n"" X 0,(k)/v,(0)R, (k).

k=—1+1

In particular, né}, turns out to be a lag weight estimate of the spectral
density at zero. If we choose the weights accordingly, it almost coincides with
62,4 from (2.14). )

In order to make a precise statement about the bias of né?% . as an estimator
of 02, we first investigate the bias of R (k).

LEMMA 3.1. If I = o(n) and X|j] |R(j)| < oo, then:
(i) Var(f,) = n7'Z3 _ R(j) + O(l/n®).
(i) E[R, (k)] — R(k) = —Var(i,) + O(l/n®) = —n"'L R(j) + O(l/n?).

The proof is given in the Appendix.
Together with (3.9) this gives

-1
E[néfa] =oi+ L (vJ(k)/0,(0) -~ 1)R(k)

k=-1+1

— Y R(k) = n7%2||v,ll,/v,(0) + O(i2/n?).
|\k|=1

(3.10)

If w,(i) is of the form (2.5), then
(3.11) ‘ v,(k) ~ th* h(k/L).
The asymptotic bias thus depends on the smoothness of the convolution 4 * A at
zero.

THEOREM 3.2. Consider the jackknife of the arithmetic mean with w, of the
form (2.5) and I = l(n) — co. Then:

(@) If h(x) = 1 1(%), if I = o(n'/?) and L|k||R(k)| < oo,

E[néy] — 02 ~ —I'TIk|R(k).
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(ii) If h* h is twice continuously differentiable around zero, if I = o(n'/3)
and ¥ k?|R(k)| < oo,

E[n}a] — ol ~ 1724(h* h)"(0)/h* h(0) LE*R(k).

REMARKS 3.2. (i) Theorem 3.2 demonstrates the advantage of choosing a
smooth A.

(ii) Theorem 3.2 justifies the choice of the standardization for 62, at least for
the arithmetic mean. If we multiply 6%, by n/(n — ||v,/l,/v,(0)), the fourth
term in (3.10) which is due to estimation of p drops out. Moreover, for [ = 1 our
formula would agree with the usual jackknife. However, the effect is small and
the results of the next section do not suggest that this factor brings an
improvement also for more general statistics. )

(iii) The condition Y |k|/|R(k)| < o0, j =1 or 2, excludes models with long-
range dependence. As an example, let us consider the case R(k) ~ |k| 74,
0 < B < 1. A lengthy, but not difficult calculation gives E[6%,] ~
n~ 'R0 - B)"Y2—-B)7 ' if I=0(n) and I(n) > . On the other hand,
Var[Ty] ~ n~#2(1 — B)~%2 — B) . The jackknife thus underestimates the true
variance systematically by a factor (I/n)'~# which tends to zero. In situations
with long-range dependence, the only possibility to obtain confidence intervals
with asymptotically correct levels seems to be to treat the decay exponent 8 as
an unknown parameter and to estimate it; cf. Hampel, Ronchetti, Rousseeuw
and Stahel (1986), Section 8.1. Beran (1986) has given a procedure which takes
the variability of the estimated B for Gaussian observations into account.
Nothing seems to be known about non-Gaussian cases.

(iv) Our procedures can be generalized to spatial data (X,),c z2 in an obvious
way. In that situation, the smaller bias of Rn(k) becomes important. The bias of
the usual sample covariance is asymptotically not negligible; see Guyon (1982).

The calculation of Var{ 62, ] is lengthy. In the literature there are expressions
for the asymptotic variance of a lag weight spectral estimate; see Priestley
(1981), (6.2.113) or Brillinger (1975), Theorems 5.6.2 and 5.9.1. However, there is a
small problem with the conditions used by these authors. In the next section we
want to apply our results not to (X,) itself, but to (IF(Y,, F™)). It is not clear
whether their conditions carry over from the former to the latter. The following
theorem uses the strong mixing coefficients a(k) and thus avoids this difficulty.

THEOREM 3.3. Consider the jackknife for the arithmetic mean and assume
that E[|X,|%*%] < oo and ¥ k2%a(k)*/6*® < co. If the w, are of the form (2.5)
with l(n) = o(n), then

(3.12) Var(na) ~ In"'204 [ hx h(x)? dx/hx h(0)".
-1

The proof is given in the Appendix.
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COROLLARY 3.1. Under the conditions of Theorem 3.3 the jackknife for the
arithmetic mean is consistent if ] = o(n) and l(n) > .

REMARK 3.3. If we use disjoint blocks as proposed in Carlstein (1986), then
Var(né?,,) ~ In"'204. In the case h(x) = 14 (), (3.12) becomes In~'40,1/3.
Since this reduction is substantial, overlapping blocks should be used when one
can afford the computations.

From Theorems 3.2 and 3.3 we can determine the optimal order of I(n) by
equating bias squared and variance. It is in the first case [ = O(n'/3) and in the
second case [ = O(n'/®). The mean square error of né?,, is then O(n~2/%) and
O(n~*%), respectively. In order to determine not only the order of I(n), but also
the constant in front of it, we need to know o2 and X|k|’R(k) for j = 1 or 2. This
is actually more than what we are trying to estimate. Carlstein (1986) proposes a
method to overcome this well known dilemma of spectral analysis. He assumes
an exponential decay of (R(k)) and estimates the decay coefficient. Another
possibility is to use subjective judgement based on inspection of the sample
correlations.

3.2. Validity of the bootstrap approximation. By definition the blocks
(X1 XX J=0,..., k— 1, are iid. with distribution p,. This implies
that the bootstrapped arithmetic mean Ty} is of the form

k
(3.13) Ty=k"1XYU,,
i=1

where the U, ;’s are i.i.d. with

PlU, ;= (X1 + - +X, )/l =(n=1+1)7",  j=0,...,n-L

J
In particular
E[T¥X,,..., Xy]

n-1 1
= E[Un,l] = (n -1+ 1)_11_1 Z Z Xj+t

(3.14) j=0t=1
=(n-1+1)"1" Zn‘, X,(min(¢ — 1,n — ) — max(¢ — 1,0) + 1)
t=1
and
Var[Ty|X,,..., Xy] = k7' Var(U, ,)
2
(3.15) =k Y n-1+1)""1"2 nz_)l Zl) (X, - E[U,,])] -

Jj=0\t=1

Comparing this with (3.2), (3.3) and (3.5) we see that the bootstrap and the
jackknife with simple deletion lead to the same variance estimate.
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THEOREM 3.4. If we choose the weights w, i) =1, 1 <i<l, for the jack-
knife, then in the case of the arithmetic mean 6%, = 6% .

In particular 63, can be calculated without using simulations.
For Z(Ty — Ty|X,,..., Xy) to be asymptotically a valid approximation of
ZL(Ty — ), the first two moments should be asymptotically equivalent:

(B1) néi, . — o2 almost surely.
(B2) nV*E[T¥|X,,..., Xy] — Ty) = 0 almost surely.

Theorems 3.2-3.4 show that E[né3,.] — o2 and Var(néi,,) = O(In"1).
Similarly to Lemma 3.1(1)) we can show that Var(E[T,:,"le, y Xnl—Ty) =
O(In"%). These results imply convergence in probability, but not almost sure
convergence. We have to consider fourth moments. If we can show that

(3.16) E(n?/13(n/Y(E[T#|X,,..., Xy] = Ty))") < const.
and
(3.17) ( n?/1%(né3 .. — E[noBoot )4) < const.,

(B1) and (B2) follow for I = O(nl/ 2-e), The left-hand side of (3.16) contains
fourth moments. Using the inequality (A.1) of the Appendix it can be proved
under the conditions of Theorem 3.3. (3.17) involves eighth moments. Similarly
to (A.1) we can express an eighth moment by cumulants and estimate these
cumulants with the mixing coefficients a( ). However in order to complete the
proof, we need an even faster decay of the a(j)’s than in Theorem 3.3.

The distribution of Ty — Ty is by (3.13) a k-fold convolution. So except for a
very small k&, direct calculation is not advisable. However (3.13) together with
the central limit theorem for triangular arrays suggest that Z(Tx|X,,..., Xy)
will be approximately normal like #(Ty ). For Lindeberg’s condition we need an
assumption on the fluctuations of partial sums:

(B3) With probability 1, max,_ ;. ,_J|Z/25 (X, — p)| = o(n'/?).

The most elegant way to prove (B3) is via strong approximations. If there is a
Wiener process W(t) such that with probability 1,

(3.18) (X, — p) — W(t) = o(£?),

s<t

(B3) follows for /(n) = O(n®), a < 1, from (3.18) by well known properties of the
Wiener process. For (3.18) one needs E|X,|? < co for some p > 2 and a quick
decay of the strong mixing coefficients; cf. Philipp and Stout (1975), Chapter 7. If
l(n) increases slowly, (B3) can be obtained without any restriction on the
dependence structure.

LEMMA 3.2. (B3) holds if E|X,|P < oo for somep > 2 and l(n) = o(n'/271/P),

The proof is given in the Appendix.
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. With the above conditions we can show:

THEOREM 3.5. If (Al), (A3) and (B1)-(B3) hold, then
sup | P[(Ty — Ty) <x|Xy,..., Xy] = P[(Ty —») <x]| =0
x

almost surely.

This is an extension of Theorem 1A of Singh (1981) and of Theorem 2.1 of
Bickel and Freedman (1981).

REMARK 3.4. For the arithmetic mean we can have approximate equality
between 6%, and 6%, for arbitrary weights of the form (2.5) if we use the
proposal (2.12) with R = h* h. A rigorous analysis of this method seems,
however, difficult.

A natural question is whether the bootstrap distribution contains more than
just the normal approximation. If ¥|E[(X, — p) X, — p) X, — w]|(|¢] + |s]) <
o0, a straightforward calculation shows that

N2{E[E[(T,(," — E[T1Xy- o, Xy )Xo, Xy ]

~E[(Ty - M)S]} - 0.

Hence at least on the average the bootstrap distribution has the correct skew-
ness. This might be surprising because by joining independent blocks, we reduce
the dependence. But since we are dealing with weak dependence, the main
contributions come from short lags which are well approximated by the boot-
strap.

(3.19)

4. Nonlinear statistics.
4.1. The jackknife. Linearization of T at F™ gives

(4.1) Ty=T(F™)+n~! Y IF(Y,, F™) + Ry = Ly + Ry,

t=1

n
T = T(F™) + (n = llw,ll) ™" X (1 = w(t - /))IF(Y,, F™") + RY
(4.2) t=1
= L{ + RY.

We want to show that for large n, 6%,(Ty) behaves similarly as 6},.,(Ly). Ly
is an arithmetic mean, so the behaviour of 6%, (Ly) follows from Section 3. In
partlcular, under the conditions given there, néZ (L) converges in probability
to o2, the asymptotlc variance of T).

The simplest way is to use results on the asymptotic order of R which is in
regular cases O, (n~'). Hence we expect L R{® to be O (n™"). A sufficient
condition for this i is, for instance, max E[ R{’?] = O(n"2).
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Because

(43) T(RY - RY)" < LRY”

and the standardizing factor in 6%, is O(I™'), the following theorem follows
from the Cauchy—-Schwarz inequality.

THEOREM 4.1. If T"ZLR§? = O (n") and w, is of the form (2.5), then
noJack(TN) = naJack(LN) + 0, (l 1/2). Hence under the conditions of Theorem
3.3, né2,,(Ty) converges to o2 in probability.

However this result is not completely satisfactory because the contribu-
tion of the remainders R{’ seems to be of higher order than the difference
né2 (Ly) — o2. For this reason we do not check the condition on R in
concrete examples, but we develop a different approach which gives better
results.

In the above argument the inequality (4.3) is too coarse. The remainders R
typically contain many similar terms which partially cancel if we subtract R{).
In order to exploit this without using higher-order expansions, we linearize T at
p’% instead of F™. Assuming that IF(y, piy) exists, we write

T = Ty + (n —|lw,ll;) " X (1 — wy(t —7))IF(Y,, o%) + SY
(4.4) t=1

=My + S{.

Thus we have split R’ into S’ and M§> — L{). First we consider the
contribution of S{’. It is much smaller than R% because p%/) and p7 are
much closer than p%(? and F™. For instance. For instance, the total variation
distance is

(4.5) dpy(p, 0%) < El(n lwally) " (1 = wy(t — ) — n7Y| < 20n7".

Hence we expect S’ to be at most of the order O,(I?n~?). With the same
arguments as above we can show:

THEOREM 4.2. If LS{? = 0(14 =3), if 62a(My) = O(n"") and w, is of
the form (2.5), then né2,.(Ty) = naJack(MN) + 0,(1%*n7Y).

The following lemmas, which are proved in the Appendix, give sufficient
conditions for £ S{’? = 0,(I*n~?). We do not strive for maximal generality, but
rather for simplicity of the arguments; see also Remark A.2.

LEMMA 4.1. Let Ty be a function of linear statistics as in Example 2.2.
Assume that | is differentiable with df/dx; Lipschitz in a neighbourhood of
/¢ dF™ and that ¢.,..., ¢, are bounded. Then max |S{’| < const.!’n~?
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LEMMA 4.2. Let Ty be a von Mises statistic as in Example 2.3. If the kernel
¢ is bounded, max ;|S{/’| < const. *n"2

LEMMA 4.3. Let Ty be as in Example 2.4. Assume that there are a C € R
and a neighbourhood U, of T(F™) such that:

() Y(y,0) < ConR™ X U,.

(i) ¢ = (8/80)y exists and |(y,8)| < C on R™ X U,
(i) (5, 8)) — ¥(3, ;)| < C|8, — b,| for y € R™, 0,8, € .
(iv) [¥(y, T(F™))dF™(y) # 0.

Then max |S{/’| < const.*n"2

We consider next the contribution of L{’ — M{/. Since M’ is like L§’ a
weighted average, we are going to use formula (3.9) for 67, (Ly) and 6%, (My).
Except for the nonstandard version of the sample covariances, 6%, (My) = 61 4.
We thus obtain also results on the difference between 6%, (Ly) and 6Z4. In
order to proceed, we need more information on the difference of IF(y, F™) and

IF(y, o)

LeEMMA 44. In the situation and under the conditions of Lemma 4.1 or 4.3
the following condition is satisfied:

(C) There exist bounded functions h;: R™ - R and random variables U, ; =
O, (n~"?),i=1,...,q, such that

q
sup,|IF(y, F™) — IF(y, of) — X hi(»)U, ;| = O,(n71).

i=1

The proof is given in the Appendix. For von Mises statistics (C) holds if the
kernel ¢ is a linear combination of products of functions of one argument.

THEOREM 4.3. If (C) holds and w, is of the form (2.5), then néj, . (My) =
n&}ack(LN) + Op(n_l/Z) + Op(ln'l).

The proof is given in the Appendix.
COROLLARY 4.1. Under the conditions of Theorems 4.2 and 4.3,
n65al(Ty) = né}ack(LN) + Op(max(l3/ ’n71, n—1/2)).
- REMARKS 4.1. (i) According to Theorem 3.3 and Corollary 4.1, the standard
deviation of the jackknife for the linear part dominates all effects of the

nonlinearity if / - oo and I = o(n'/2). In particular, the asymptotically optimal
choice of / depends only on the correlations of IF(Y,, F™).
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(if) Theorems 4.2 and 4.3 show that for I = o(n'/?) the dominating effect of
the nonlinearity is the use of the empirical influence function IF(y, p%) instead
of IF(y, F™). Compared to this, the difference between 62, and 63,4 is negligi-
ble. This is of interest also in the classical jackknife with i.i.d. observations and
=1 for all n.

(iii) An analogue of Theorem 4.1 holds also for Carlstein’s (1986) method,
but Theorems 4.2 and 4.3 are limited to our procedure. In order to obtain
the exact order of the effect of the nonlinearity on Carlstein’s method, we
consider first i.i.d. observations where in regular situations E[(Ty — T(F™))?] —
E[(Ly — T(F™)?] = yn~% + o(n~2?) with y # 0. From this it follows immedi-
ately that E[né,(T,)] — E[néZ(Ly)] ~ yI~ . The same behavior is expected
to hold under suitable conditions of weak dependence (Theorem 4.1 is not sharp
here because of Cauchy-Schwarz). But this means that the nonlinearity of T
introduces an additional bias which is of the same order as the bias of the linear
part. In particular the optimal choice of / depends also on the nonlinear part.
Moreover the effects of the nonlinearity on our procedure are by Corollary 4.1 of
smaller order if I = o(n%/%).

4.2. The bootstrap. Unfortunately the analysis of our bootstrap procedure
turns out to be even more difficult than for the standard bootstrap with [ = 1. If
we want to generalize Theorem 3.5 to smooth nonlinear functionals T with
m = 1, we need the distribution of the Kolmogorov—Smirnov distance between
Pk * and ply. For I =1 it is not too difficult to show that it behaves like the
Kolmogorov-Smirnov distance between p'y and F! for ii.d. observations; see
also Bickel and Freedman (1981), Chapter 4. The difficulty with / > 1 is that the
weights attributed to distinct order statistics by p * are dependent in a way
which is difficult to control.

The only case which is fairly easy is the one where T is a function of linear
statistics as in Example 2.2. With the delta technique, Theorem 3.5 can be
generalized to such statistics; cf. Bickel and Freedman (1981), (3.6). Moreover in
this situation the bootstrap distribution will usually give a better approximation
than the central limit theorem with an estimated variance. The reason for this is
that when the bootstrap and the true distribution are in good agreement for the
linear statistics n™ 'L ¢(Y,), then they will be in good agreement for any trans-
formed statistics f(n~'X ¢(Y,)). However if f is strongly nonlinear, the distribu-
tion of f(n~'L ¢(Y;)) can be very nonnormal. Theoretical work to confirm this
heuristic is now in progress. An empirical confirmation is given by the simula-
tions reported in Table 5.

5. Examples.

5.1. The trimmed mean. As our first example we estimate the variance of the
40%-trimmed mean in the situation considered by Carlstein (1986). The observa-
tions (X,) come from an AR(1) process with innovations ¢, ~ 0.74°(0,1) +
0.3.47°(0,10). We calculated 6%, with weights obtained from the split cosine



1232 H. R. KUNSCH
TABLE 1

Simulation study of different estimators of the variance of the 40%-trimmed mean. The data are from
an AR(1) process with 30% innovation outliers as in Carlstein (1986). Series length n = 100.

B =02 B=08
E[6]]* Var(})* MSE(S))* E[57]* Var(6?)* MSE(S])*
1. Jackknife
split cosine window 31 1.10 1.1 29 211 3740
1=7,04=3 (0.07) (1.0)
2. Jackknife
split cosine window 3.8 2.45 2.7 43 560 2576
1=10,4, =4 (0.11) (1.7
3. Jackknife
split cosine window —_ —_ —_ . 53 1262 2519
1=16,1, =6 (2.5)
4. Subseries with
adaptive choice of 4.5 1.95 34 50 1383 2827
length; see (0.10) (2.6)
Carlstein (1986)"
5. Truef 3.3 — — 88 — —

*Estimated from 200 simulations. An estimate of the standard deviation of E[G2] is given in

?arentheses.
From Carlstein (1986).

window
1 -cos(n(i-3)/n),  1s<is<u,

(6.1)  w(i)=A1, L+1<i<i(l+1),
w(l+1-1i), +1) <i<l,

and compared it with Carlstein’s (1986) method of subseries. Since the differ-
ences between the two methods are expected to be larger for small samples, we
restricted ourselves to the sample size n = 100.

Table 1 shows that for 8 = 0.2 the jackknife is a clear improvement over the
subseries method, whereas for 8 = 0.8 the improvement is within the order of
magnitude of the random error of the simulations. This can be explained by the
different subseries lengths chosen by Carlstein’s method. For n = 100 the opti-
mal subseries lengths are 3 and 13 for 8 = 0.2 and 0.8, respectively. Now for
short subseries the nonlinear terms become important and increase the bias of
Carlstein’s method. For longer subseries the effect of the nonlinear terms disap-
pears. Even then the jackknife should have a smaller variance because it
corresponds to using overlapping subseries, but this is hardly visible in our
simulations.

In the remaining examples we consider the least-squares
' ) of an AR(p) model

.5.2. AR parameters.
estimator Ty, for the parameters § = (B8,,...,

P
(5.2) X,=Y BX, ,+v+e,.
=1

J
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It is obviously a multivariate function of linear statistics as in Example 2.2. At
the same time it belongs also to the class of Example 24 with m=p +1
and multivariate ¢,

ll/i=xp+1_i(xp+l_EBjxp+1_j_V), i=1,...,p,

and
Vpi1 = Xpi1 — LB%xpir—y— ¥

This latter interpretation shows that the influence function for each component
of T is a linear combination of ¢,..., ¢, ,; see Hampel, Ronchetti, Rousseeuw
and Stahel (1986), (4.2.9). .

The asymptotic variance of the components of T, depends on the distribution
of the data. If they follow the AR model (5.2), the psi-function satisfies

(5.3) Eo[4/(Xpreees Xpips 0)|Xeip1s Xipss-..| = 0.

This holds then also for the influence function. Thus E,[IF(Y,, 0)IF(Y,, 8)] = 0
for all ¢+ s and all j, k; cf. Kiinsch (1984), Section 1.4. By the results of
Sections 3 and 4, the optimal choice for / is I/(n) = 1 provided the model (5.2)
holds. If it does not hold, the influence functions are correlated and we have to
let [ increase with n in order to obtain consistency.

5.2.1. The sunspot numbers. As an example with real data we consider
Wolfer’s sunspot numbers from 1770-1889. Efron and Tibshirani (1986) used the
same data set so that we can compare our procedure with theirs. The results are
summarized in Table 2. For p = 1 there are two groups of methods. The first one
estimates the standard error close to 0.05 and contains methods 1(a), 2(a), 3(a), 4
and 5. The remaining methods estimate the standard error to be 0.035 or 0.036.
The first group contains all methods which are based on the assumption that the
AR(1) model holds. However it is well known that the AR(1) model does not fit
at all to the sunspot numbers. We thus trust the second group more. It is also
known that an AR(2) model gives a better fit. With this model the standard
error of the AR(1) coefficient becomes 0.023 which is closer to the value of the
second group.

Next we look at the case p = 2. The most striking feature is the large
difference between the methods 1(a), 2(a) and 3(a) on the one hand and methods
4 and 5 on the other hand. Remember that all of these methods should give
roughly the same answers if the AR(2) model were correct. The simulations
reported in Table 3 show that these differences cannot be reasonably explained
by chance variations. A better explanation is that the AR(2) model does not hold
even though it fits better than AR(1). This is known also from other analyses of
the data; see Priestley (1981), Chapter 11. Because of this we again trust the
estimates of 1(b), 2(b) and 3(b) most. )

We also computed the bootstrap histograms for ﬁl and B,. In contrast to the
ones obtained by Efron and Tibshirani (1986), they looked very much like
normal distributions.
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TABLE 2
Estimated standard errors for the parameters of an AR(p) model, p = 1,2, fitted to the sunspot
numbers for 1770-1889.

AR() ARQ)
Estimated s.e. Estimated s.e.
Method of B, of B, of B,
1. Jackknife )
(al=1 0.048 0.113 0.099
(b1=5 0.036 0.075 0.086
w, = (0.25, 0.75, 1.0, 0.75, 0.25)
2. Influence function
(@l=1 0.047 0.100 0.090
(b)yl=5 0.035 . 0.067 0.078
w, = (1.0, 0.83, 0.47, 0.17, 0.03)
3. Bootstrap, ng = 200
(al=1 0.050 0.105 0.095
(b)l=14 0.035 0.076 0.086
4. Bootstrap of empirical 0.055 0.070 0.068
innovations; see Efron and
Tibshirani (1986)
5. Asymptotic s.e. under ©0.053 0.067 0.067
the AR( p) model

5.2.2. Simulations for the AR(1) parameters. The results of some simple
simulation experiments are shown in Table 4. Note that for p = 1, Ty, is just a
version of the lag one correlation. First we see that Carlstein’s (1986) method is
by far the worst in all situations. Because the statistic considered here is highly
nonlinear, this method needs much longer subseries in order to achieve a bias

TABLE 3
Simulation study of different estimates of the standard error for ﬁl, ﬁz. The data are from an
AR(2) process with B, = 1.372, B, = —0.677. Number of simulations = 200.

Estimated s.e. for B, Estimated s.e. for i,
Mean S.D. Mean S.D.

1. Jackknife /=1 0.068 0.0081 0.067 0.0078

2. Jackknife [ =5 0.068 0.0118 0.066 0.0107
w, = (0.25,0.75,1.0,0.75, 0.25)

3. Asymptotic s.e. 0.067 0.0055 0.067 0.0055
under the AR(2) model

4. Difference between —0.00010 0.0086 0.00092 0.0080
methods 1 and 2

5. Difference between 0.00095 0.0061 0.00028 0.0059
methods 1 and 3

6. Difference between 0.00105 0.0107 —0.00064 0.0093

methods 2 and 3
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TABLE 4
Simulation study of different estimators for the standard error of the lag one correlation in different
situations.
B=08 a=08 a=08
AR(1) n =48 MAQ) n =48 MA(1) n=192
Method E[é]* S.D.8)* E[6]* S.D.(8)* E[é]* S.D.(8)*
1. Jackknife .
(al=1 0.099 0.021 0.131 0.021 0.0637 0.0049
(0.0015) (0.0015) (0.0003)
(b) ! = 4, weights 0.097 0.028 0.108 0.028 0.0539 0.0064
w, = (0.5,1.0,1.0,0.5)  (0.0020) (0.0020) (0.0005)
2. Influence function
(al=1 0.103 0.027 0.125 0.020 0.0629 0.0047
(0.0019) (0.0014) (0.0003)
(b) I = 4, weights 0.096 0.030 0.099 0.021 0.0524 0.0059
w, = (1.0,0.8,0.4,0.1) (0.0021) (0.0015) (0.0004)
3. Bootstrap, 200 replicates
(al=1 0.097 0.020 0.129 0.017 0.0634 0.0064
(0.0014) (0.0012) (0.0005)
b)yl!=3 0.099 0.026 0.106 0.017 0.0549 0.0060
(0.0018) * (0.0012) (0.0004)
4. Disjoint subseries
(see Carlstein, 1986)
(a)l=4 0.172 0.054 0.162 0.065 0.0889 0.0230
(0.0038) (0.0046) (0.0016)
(b)l=38 0.117 0.043 0.107 0.041 0.0568 0.0091
(0.0030) (0.0029) (0.0006)
©l=12 0.102 0.048 0.089 0.037 0.0527 0.0094
(0.0034) (0.0026) (0.0006)
5. Asymptotic s.e. 0.097 0.015 0.127 0.009 0.0631 0.0021
under an AR(1) model (0.0011) (0.0006) (0.0001)
6. Estimated from 0.107 0.112 0.0540 -

1000 simulations

*Estimated from 200 simulations. An estimate of the standard error of E[6] is given in parentheses.

comparable to the other methods. This leads then to a much larger standard
deviation.

The performance of the other methods depends on the number and the
distribution of the observations. In the AR(1) case the bias of all methods is
similar. The parametric method 5 has the smallest variance, as was to be
expected. In accordance with the theory the variance increases as / increases.

In the MA(1) case the methods differ also in their bias. The methods 1(a), 2(a),
3(a) and 5 are always biased upward. Increasing / reduces the size of the bias and
changes its sign for n = 48. Except in the case of the bootstrap,
the variance increases with /. From the point of view of mean square error, the
estimates with a larger bias but smaller variance are better for the small sample
size n = 48. There the parametric estimate is by far best although the model is
wrong. With the larger sample size n = 192 the bias becomes dominant and the
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TABLE 5
Nonnormality of the bootstrap distribution: Simulation study of truncated skewness y = E[Z%] and
truncated kurtosis k = E[Z*] — 3 where Z = max(— 4, min(4, Var(Ty)~ /4Ty — E[Ty])). Statistic
Ty is the least-squares estimator of the AR(1) parameter. Data are sample of size 60 of a Gaussian
AR(1) process with B = 0.8. Number of bootstrap replicates 1000.

YTIn)*  x(Ty)* 1 E[T¥HIT SD(Tx)  ETHI  SD.((Ty))

- 078 0.62 2 -0.17 . 018 0.18 0.22
(0.013) (0.016)

4 -0.39 0.22 0.39 0.36
(0.016) (0.025)

6 -0.51 0.27 0.50 0.49
(0.019) (0.035)

*Determined from 1000 simulations
*Determined from 200 simulations. An estimate of the standard error is given in parentheses.

nonparametric methods 1(b), 2(b) and 3(b) with / > 1 are best. The number of
simulations is too small to see differences between the jackknife, the bootstrap
and the influence function. ‘

Since the statistic considered is strongly nonlinear, its distribution is not close
to the normal. We wanted to see how much the bootstrap distribution picks up
of this nonnormality. For the bootstrap distribution one needs more replicates
than for the bootstrap variance; see Efron and Tibshirani (1986). We thus
restricted ourselves to one situation and took » to be known. The results of
Table 5 show that the bootstrap indeed reflects the nonnormality of the distribu-
tion to some extent. How much depends on the block size /. In particular, small
I’s are not good although I = 1 is optimal for the jackknife.

APPENDIX
Proofs of results from Sections 3 and 4.

ProoF oF LEMMA 3.1. For (i) we write

-1 n—Il+1
B i= TaO(X=p) + (n =1+ )7 T (X )

+ E a, (X, —p) =2+ Z, + Z,,
t=n—1+2
say. By a standard argument Var(Z,) = n~'Y R(j) + o(In~2%). Furthermore by
definition (3.2), a,(¢) < (n — I + 1)L Hence
-1

Var(Z,) = Var(Z,) < (n—1+1)"> ¥ |R(t—s)|=0(ln"?)

t,s=1
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and
-1 n-1+1

|Cov(Z,, Z,)| =|Cov(Z;, Z,) | < (n =1+ 1) ¥ ¥ |R(t—s)|=0(n"?).

t=1 s=I
Finally

|Cov(Zy,Z,)| < (n=1+1)7"L ¥ |R(j)|=o(in?).
JlI>n-21

For (ii) we have by definition
E[R,(k)] - R(k)

n—\k| n

= Var(i,) = X X Bt k)a,(s)(R(t—s) + R(t + |k| —5)).

t=1 s=1

Now B, (t, k) = a,(t) for I<t<n—-1+1 and Bt k) — a,(t)] <
2(n — 1 + 1)~ 1. So the assertion follows by similar arguments as above. O

PROOF OF THEOREM 3.3. Let S’ = Luw,(¢ — j)(X, — ). In a first step one
shows that :

Cov(S©, 8¢”) ~ v,(j)a2

and
Y. Cov(S©, S9)* ~ 6AY v,(/)? ~ I’ f h* h(x)? dx.

This is done by straightforward calculations using ¥ j%|R(j)| < oo and the form
(2.5) of w,. In a next step one shows that
|Cov(SL?, 89?) — 2Cov(8®, SP)7| = o(1%).
ThisO)is done by using the following inequality for s < ¢ < u < v (assuming
p = 0):
|E[X,X,X,X,] - E[X,X,]E[X,X,] - E[X, X, ]E[X,X,]
(A1) -E[X,X,]E[X,X,]|

< const. a(max(t — s, u — t,0 — u))s/(6+s)’

which follows by a repeated application of Theorem 17.2.3 of Ibragimov and
Linnik (1971). In a last step one has to show that on the right-hand side of (3.5)

we may replace fi, by p, i.e.,
Var(néfa) ~ n=%w,llz* X Cov(S¢2, S*2).

For this we use again (A.1). We leave the details to the reader. O
REMARK A.1. An alternative proof is obtained by observing that the proof of

Theorems 5.6.2 and 5.9.1 by Brillinger (1975) uses only summability of fourth-
order cumulants. This follows from (A.1) and ¥ k%a(k)%/€+® < oo. In general,
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summability of nth order cumulants follows from ¥ "~ 2a(k)%/?"~2*% < o0 and
appropriate moments.

ProOF OF LEMMA 3.2. By the Borel-Cantelli lemma |X, — p| = O(¢t/?)
almost surely. Hence max|XL, (X, — p)| = O(n'/Pl) = o(n'/?).0

ProOF OF THEOREM 3.5. We have to show that the conditional distribution
of /% (T — Ty) given X,..., Xy is asymptotically standard normal. By
(B2) we may replace Ty by E[T¥|X,,..., Xy] By (3.13), Ty is a sum of % i.i.d.
variables U, ; and by (B1) the conditional variance of n'/%o,'Tyf converges to 1.
Hence we only have to check the Lindeberg condition whichis E[Z2 1;; 4] =
o(k~1), where Z, ;= n"'2(U, ;, — E[U, ;]). But '

P[IZn,tI >€]
Jj+l
=(n-1+1)'#{j;0<j<n-1| Y (X,—- E[U,;])]|>en'?},
t=j+1

which is zero for n large enough by (B2) and (B3). O

ProoF oF LEMMA 4.1. A Taylor expansion to the first order shows that

s -3 (;—;(ﬁdm’&) - %(fn,j))f@d(px*” ~ o),

i=1

where ||7, ; — [¢ dpFl|l < ||/ ¢ (% — p%)Il- By the Hahn decomposition

< sup|¢;( ) | dry (P, o).

oo~ e8)

Hence the lemma follows from (4.5) and the assumed Lipschitz continuity of
af/dx;.0

Proor oF LEMMA 4.2. We have

Sy’ = iz(lz?)f¢(x1’~--,xk) d(p%? — pR) (1) -+

xd(op? — o) (x;) dpf(xi41) -+ AR (%4)-

The lemma follows, therefore, directly from the Hahn decomposition of pJv() —
py- 0

. PrOOF OF LEMMA 4.3. By (Al), the ergodic theorem and the assumptions of
the lemma [y(y, Ty)dp%(y) # 0 for N large enough. Hence by a standard
argument [compare Lemma 7.2.1.B of Serfling (1980)], [¥(y, t)do“Y(y) =0
has a solution TJ” such that max |Tj/> — Ty| - 0. A Taylor expansion to the
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first order gives

0= [¥(2.T¥) dofr ()
(A2)

= ﬁp(y, Ty) do P (y) + ftli(y, 7, n) e O(Y) (T — Ty ),

where |1, y — Tn| < |T — Ty|. By the assumptions of the lemma
J, N N N

[503,7) d8(5) = [3(3.T) doR ()|

s <| [(405 5.0 = 00, T2) g 2(5)|

+|f~ll(y, Ty) d(pR - p’z’é)(y)‘

< C(|T¢’ - Ty| + O(In"Y)) > 0

uniformly in j. But then we can solve (A.2) for T\’ — Ty to obtain

-1
Ty — Ty = (—/¢(y, T,N) dp%’("’(y)) J¥(3.Ty) (oD = o3 )()
(A4)
= O0(In"') uniformly in j.
By the usual formula for the influence function of an M-estimator [see Hampel,
Ronchetti, Rousseeuw and Stahel (1986), (2.3.5)],
1

s - (im0 @) - (fitormm am) )

X [¥(3, Ty) d(pf = o )(9)-
The lemma follows now by combining (A.3) and (A.4). O

REMARK A.2. The essential point in the proof of Lemmas 4.1 and 4.3 is the
straightforward estimate max |/ gd(pf) — pfv)| < sup|g(y)|ln~". However this
is in general not optimal and boundedness of g is not really necessary. If w,
corresponds to simple deletion, then

Jed(ew? — o) =t (n -7 té(g(Yt) - E[g(W)])

J+l
—(n-0)7" ¥ (&(¥) - E[g(Y)]).

t=j+1

Finding a bound for the maximum of the second term is an analogous problem to
checking (B3) and the discussion following (B3) applies also here. But note that
for good results we need small rates in the strong approximation (3.18). For (X,)
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ii.d. this is available [see Csorgd and Révész (1981)] but not for the dependent
case [see Philipp and Stout (1975)]. General weights complicate the situation
further.

Proor oF LEMMA 4.4. We only give the proof for M-estimators, the other
case being straightforward. By (2.3.5) of Hampel, Ronchetti, Rousseeuw and
Stahel (1986) IF(y, F™) = M~ Y(y, T(F™)) and IF(y, p%) = My"Y(y, Ty) where
M= —[§(y, T(F™)dF™ and My = —[y(y, Ty)dp%. Arguing as in (A.3)
shows that My — M = O,(n"'/?) and thus

IF(y, F™) = IF(y, o) = My'(¥(y, Ty) — ¥(y, T(F™)))
+y(y, T(F™))(My' — M)

= M5 (y, T(F™))(Ty — T(F™))
+9(y, T(F™)(My' - M~') + O,(n7!). O

PRroOF oF THEOREM 4.3. By assumption (C),
IF(Y,, o%)IF(Y,, p}) — IF(Y,, F™)IF(Y,, F™)

= ¥ U, (h(YIF(Y,, F) + h(L)IF(Y,, F™)) + O(n”").

Inserting this in (3.9) for the linear jackknife, we obtain n(é% ., (My) —
62.4(Ly)) = LU, ; times an estimate of the cross spectral density of (%,(Y,)) and
(F(Y,, F™)) at zero +O,(In"") = O,(n™'?) + O(In"1).O

Acknowledgments. I wish to thank two referees for their careful reading
and helpful comments on earlier versions of this paper which led to a great
improvement in the presentation of our results. I also thank Ed Carlstein for
discussions.

REFERENCES

BERAN, J. (1986). Estimation, testing and prediction for self-similar and related processes. Ph.D.
thesis, ETH Ziirich.

BICKEL, P. J. and FREEDMAN, D. A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist.
9 1196-1217.

BRILLINGER, D. R. (1975). Time Series, Data Analysis and Theory. Holt, Rinehart and Winston,
New York.

BusTtos, O. (1982). General M-estimates for contaminated p-th order autoregressive processes:
Consistency and asymptotic normality. Z. Wahrsch. verw. Gebiete 59 491-504.

CARLSTEIN, E. (1986). The use of subseries values for estimating the variance of a general statistic
from a stationary sequence. Ann. Statist. 14 1171-1179.

Cs6RG6, M. and REVESz, P. (1981). Strong Approximations in Probability and Statistics. Academic,
New York.

Davis, W. W. (1977). Robust interval estimation of the innovation variance of an ARMA model.
Ann. Statist. 5§ 700-708.

DENKER, M. and KELLER, G. (1983). On U-statistics and von Mises’ statistics for weakly dependent
processes. Z. Wahrsch. verw. Gebiete 64 505-522.



STATIONARY JACKKNIFE AND BOOTSTRAP 1241

EFRoN, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1-26.

EFRoN, B. and TIBSHIRANI, R. J. (1986). Bootstrap methods for standard errors, confidence intervals
and other measures of statistical accuracy (with discussion). Statist. Sci. 1 54-77.

FREEDMAN, D. A. (1984). On bootstrapping two-stage least-squares estimates in stationary linear
models. Ann. Statist. 12 827-842.

GASTWIRTH, J. L. and RUBIN, H. (1975). The behavior of robust estimators on dependent data. Ann.
Statist. 3 1070-1100.

GuYoN, X. (1982). Parameter estimation for a stationary process on a d-dimensional lattice.
Biometrika 69 95-105. .

HaMPEL, F. R., RONCHETTI, E. M., ROUSSEEUW, P. J. and STAHEL, W. A. (1986). Robust Statistics:
The Approach Based on Influence Functions. Wiley, New York.

HUBER, P. J . (1981). Robust Statistics. Wiley, New York.

IBRAGIMOV, 1. A. and LINNIK, Yu. V. (1971). Independent and Stationary Sequences of Random
Variables. Wolters-Noordhoff, Groningen.

KUnscH, H. R. (1984). Infinitesimal robustness for autoregressive processes. Ann. Statist. 12
843-863.

MARTIN, R. D. and YoHaI, V. J. (1986). Influence functionals for time series. Ann. Statist. 14
781-818.

PHiLIPP, W. and Stout, W. (1975). Almost sure invariance principles for partial sums of weakly
dependent random variables. Mem. Amer. Math. Soc. 161.

PRIESTLEY, M. B. (1981). Spectral Analysis and Time Series 1, 2. Academic, New York.

SERFLING, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.

SiNGH, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9 1187-1195.

TJesTHEIM, D. (1986). Estimation in nonlinear time series models. Stochastic Process. Appl. 21
251-273.

TUKEY, J. (1958). Bias and confidence in not quite large samples (abstract). Ann. Math. Statist. 29
614.

SEMINAR FUR STATISTIK
ETH ZENTRUM
CH-8092 ZURICH
SWITZERLAND



