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EDGEWORTH EXPANSIONS FOR LINEAR RANK STATISTICS

BY WALTER SCHNELLER

Technische Universitdt Berlin

An Edgeworth expansion of first order is established for general linear
rank statistics under the null hypothesis with a remainder term that is
usually of order n~!. Furthermore, corresponding results for the second order
are formulated, but not proved here. The proof for the first order is based on
Stein’s method and on an extension of a combinatorial method of Bolthausen.
It is also shown that conditions of van Zwet imply up to a small factor our
conditions for the validity of Edgeworth expansions. Moreover, our proof for
the first order also provides us with a result about Edgeworth expansions for
smooth functions. .

1. Introduction. Let A = (ai ;) be an n X n-matrix of real numbers. Let

A= Eaij/n’ E z,/(n dij= dij/oA7
i)j

where

avij = aij - n--1 Ea“ - n_1 %aki + n—2 Eakl.
l k

Furthermore, let
= EaA?J and 8A = EaAfJ
i, J i J

If 7 is uniformly distributed on the set &, of permutations of {1,..., n}, then
asymptotic normality of the linear rank statistic

Ta = (Zaiw(i) - #A)/UA = Zdiw(i)
13 13

has been proved under various conditions by Hoeffding (1951), Motoo (1957) and
others [see also Schneller (1988)]. Results on the rate of convergence have been
obtained, e.g., by Does (1982) (for the case a;; = e;d;), Ho and Chen (1978) and
most successfully by Bolthausen (1984). He proved the existence of an absolute
constant K >0 such that
(1.1) sup |#,(2) — ®(2)| < KB, /n,

zeR
where %, is the distribution function of Z, and ® is the standard normal
distribution function.
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The purpose of this paper is to establish Edgeworth expansions of first order
for #, and E(q(Z7,)) where ¢: R — R is sufficiently smooth. To be more
precise, let us consider for a moment E(q(7,)) with q only bounded. In order to
establish Edgeworth expansions for this term we have to assume some smooth-
ness of the function g or of the distribution of 7.

In Theorem 2.1 we assume that ¢ has in addition a bounded first and second
derivative. But we impose no smoothness condition on the distribution of 7.

In Theorem 2.4 we consider %, (i.e., the functions g = 1 o, 2. 2 €R)and
assume in principle that the second differences of %, fulfill a boundedness
condition. In both theorems the remainder term is of order 8, /n. We note that
in very many cases 8, /n is of order n™1.

Unfortunately the condition (2.5) of Theorem 2.4 is not very practicable
though it is very natural and almost necessary [see Remark 2.11(a)]. But for the
case a;; = e;d; we are able to verify this condition under the practicable
conditions of van Zwet (1982) [see Theorem 2.12(a)].

Furthermore, for the case of the distribution function %, we formulate
corresponding results for Edgeworth expansions of second order [see Theorem 2.7
and Theorem 2.12(b)]. But we do not prove these results and refer the reader
for complete proofs to the thesis of the author [Schneller (1987)]. In addition,
some remarks on these proofs may be found at the end of this paper (see
Section 7). We note that the result of Theorem 2.12(b) contains the result of
Does (1983) [see Remark 2.18(c)] and in the two-sample case (i.e., a; j=ed;
withe, = --- =e¢,=0,¢,,,= -+ =e, = 1) this theorem is comparable (up
to a factor n°) to the results of Bickel and van Zwet (1978) and Robinson (1978).

Section 2 contains our results. In Section 3 we introduce our two main
methods, namely the method of Stein (1972) and an extension of the combinato-
rial method of Bolthausen (1984). Using these two methods we prove the basic
equation (3.12). This equation gives a kind of Edgeworth expansion for E( q(7L))
where g is differentiable and bounded. From this equation we deduce Theorem
2.1 in Section 4 and Theorem 2.4 in Section 5. In Section 5 we have to substitute
the functions 1__ ., by convenient smooth functions (see Lemma 5.2). We
note that the main difference between these two sections is, roughly speak-
ing, the different treatment of the two terms |x||g(x + y) — g(x)| and
lg’(x +¥) — q@’(x)|. In Section 4 we simply apply the mean value theorem to
both terms [see (4.8)], while in Section 5 we need a result like (1.1) (see
Proposition 5.7) for the first and condition (2.5) for the second of these two terms
(cf. Proof of Lemma 5.3).

The straightforward use of the mean value theorem in (4.8) reveals that the
result of Theorem 2.1 is surely not optimal. We have not tried to improve it,
since the emphasis of this paper lies more on Edgeworth expansions for .%,.

In Section 6 we establish the condition (2.5) of Theorem 2.4 using a result of
van Zwet (1982). Under the conditions (2.13)—(2.15), this result gives an estima-
tion of the characteristic function of 7, for arguments ¢ with ¢, logn < |¢| <
c,n%? [cf. also (6.6)]. From this estimation we deduce (2.5) essentially with the
help of Lemma 6.3.
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2. The results. First, we need some notation. Given F: R - R and y € R,
we define

|F|| = sup{|F(z)|:z € R}
and the second difference of F related to y by
N F(z)=[F(z+2y) - F(z+y)] - [F(z+y) - F(z)], z € R.
The interpolating polynomial to F of degree 2 at the points z, z + y and z + 2y
is
P}(x;2,F) =F(z) + [F(z + y) - F(2)](x — 2)y™!
+AF(z)j(x—z—-y)(x—2)y™?,  x,z€R.
For the matrix A and ! € N we define A = (d;;) and
F, = distribution function of T, = X,a,,

N 1/3
D, = (SA/n)l/Z, E, = (Zi,jlaijl5/n)

M(1l, A) = setofall (n — ) X (n — l) matrices, which can
be obtained from A by cancelling / rows and !/
columns,

N(l,A) =U{M(r,A):0<r<iIA(n-1)}.
Finally, the expansions are
ey, a(x) = ®(x) — Y(x)§A; a(x* - 1),
ey a(x) = ®(x) - ¢(x){%A1,A(x2 = 1) + 5A, 4(x® - 3x)
+ 5N (2 - 102° + 15x) },

b

where
— &’ _ -1 A3
y=7, Aa=n Zaij
i, J
and
— =1 % 24 -1 _ q,-2 £2 A2 52 A2
Apa=n Zaij+3n 3n~2 ) (aijaik+aijakj).
L, J i, J, k

Here is our first result:

2.1. THEOREM. There exist positive numbers K,, K, and K, such that for
all A satisfying 6, > 0 and all
(2.2) g€ 2= {g:R - R: gis twice differentiable and g, g’, 8" are bounded },
we have
(23)  |E(a(F) — [l adxl < (Killgll + Kyllq'll + Kollg"|) D3

The next result deals with Edgeworth expansions of first order for the
distribution function %,.
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2.4. THEOREM. There exist positive numbers K, and K such that for all A
satisfying o, > 0 and the condition
there exists a positive constant C, such that
(2.5) 'AzyFB(z)' < CI(D} + yz)
forallze R,0 <y < D, and B € N(8, A),
we have
(2.6) |Fa — ey all < (K, + K;)Dj.

The corresponding result of this theorem for the second order is

2.7. THEOREM. There exist positive numbers K4, K, and K, such that for
all A satisfying o, > 0 and the conditions

there exists a positive constant C, such that
(2.8) |Fp(x) = PE(x; 2, Fp)| < Cy B3 + (x — 2)°)
forallze R, z < x < z + 3E, and B € N(16, A),

there exists a positive constant C; such that
(2.9) (121 + )&% Fy(2)| < C( E} + 5)
forallze R,0 <y < E, and B € N(16, A),

we have
(2.10) |Fa — ez 4ll < (KeCy + K,C3 + Kg)E3.

2.11. REMARKS. (a) The conditions (2.5), (2.8) and (2.9) are analogous to
those necessary and sufficient conditions which Bickel and Robinson (1982) used
to establish Edgeworth expansions for the i.i.d. case. Following their arguments
on page 502, one can easily deduce from (2.10) the condition (2.8) for B = A and
from (2.6) the condition (2.5) for B = A (with new C, Cy).

However, note that these arguments do not show (2.8) [(2.5)] for general
B € N(16, A) [B € N(8, A)].

(b) It seems likely, at least to the present author, that Theorems 2.4 and 2.7
remain correct, if we assume (2.5), (2.8) and (2.9) only for A instead of B €
N8, A) [B € N(16, A)). However, a proof eludes me.

In the special case where a;; = e;d;, we can replace (2.5), (2.8) and (2.9) by the
conditions of van Zwet (1982). If we define

é=Ye/n, d=Yd;/n, x*=xV0 forxeR
i J

and write A for the Lebesgue measure, we have
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2.12. THEOREM. Suppose that there exist positive numbers e, E, d, D and §
such that
Yle,— & > en, Yle,—é*<En
(2.13) i i
forsomek > 2 and 0 <r <k,
Yld;—d™>dn, Y|d,—d°<Dn
(2.14) Jj o
for somes > 2 and 0 <m < s,
)\({x: |x — d)| <¢ forsomel <j < n}) >én¢

(2.15)
for some ¢ > n=%2log n.

(a) Then there exist positive numbers X, and ‘.%’2 depending only on
e,E,d,D,6 and r, k, m, s such that

2
|F4 — ey, ll < Xy(log n) D}
< H(log n)*n~1+HWR =D +@/9)-D",
(b) Let ¢ > 0. Then there exists positive numbers X3 and X, depending only
one,E,d,D,8,r, k, m s and e such that
| Fa — €y, ll < H3n°E}
< Hyn~@/D+er(B/H=D* +(6/5)-D",

(2.16)

(2.17)

2.18. REMARKS. (a) For [((5/k) — 1)*—((4/k) — 1)*] + [((5/s) — 1)* —
((4/8) — 1)™] < § we can deduce the second estimation of || #, — e, 4| in (2.16)
from (2.17). In this case the factor (log n)? is superfluous.

(b) Let

dj=E(J(Ujm)), j=1,..., n (exact scores),

where JJ: (0,1) = R is an integrable function and U;,, denotes the jth order
statistic in a random sample of size n from the uniform distribution on (0, 1).

If J is nonconstant, continuously differentiable and satisfies [J|J(¢)|° dt < oo
for some s> 2, then n(J)=sup{m € N: L"|d; — d| = 0} < o0, and (2.14)
(with this s!) and (2.15) are fulfilled for all n > n (J) with constants d, D and §
depending only on J and s. For a proof see Schneller (1987), proof of Theorem
4.4.23(a), (b).

(c) Let

J . :
dj=J(n+ 1), J =1,..., n (approximate scores),

where J: (0,1) — R is a function.
If J is nonconstant, continuously differentiable and satisfies
|J(8) < T(¢(1 = ¢)) """ V** forall t € (0,1),

(2.19) 1
forsome I' > 0,s>2and 0 < 8 < P
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then n(J) = sup{m € N: IP"|d, — d| = 0} < oo, and (2.14) (with this s!) and
(2.15) are fulfilled for all n > n,(J) with constants d, D and § depending only
on J, s and B. For a proof see Schneller (1987), proof of Theorem 4.4.13(a), (b).

Part (d) of this theorem of Schneller (1987) contains an extension of Does
[(1983), Theorem 2.1]. Does uses expansions which are slightly different from
ours. Roughly speaking, he uses in his expansions integrals of J whereas we use
the corresponding Riemann-sums. It is shown in Schneller (1987), proof of
Theorem 4.4.13(d) that, if we assume in addition £ > 4 in (2.13) and s > 4 in
(2.19), then the difference between these two expansions is O(n~¢/2+30/9-8)),
Combining this with the rate of (2.17), we obtain a result with a better
convergence rate and with weaker assumptions for J and e; than Does. He
obtained the rate o(n~!) and assumed especially for J that

limsup ¢(1 — t)|J”(t)/J'(t)] <2 and |J"(¢) < T(¢(1 - ) I
0,1
with T, ¢ and B as in (2.19). But from the last inequality (2.19) follows with
s = 14.

Finally, we remark that the constants introduced in this section remain fixed
throughout the paper. In contrast c, ¢, c,,... denote positive constants which
depend only on the formula where they appear.

3. Proof of the basic equation. In this and the next (the next but one)
section we prove Theorem 2.1 (Theorem 2.4). For that we fix an n X n matrix A
with g4 > 0. Of course, we may assume a,; = d,,. Furthermore, let ¢: R = R be
a function which is assumed to be bounded and differentiable throughout this
section.

The essence of Stein’s method is that if we define

(1) 1) = (0)(x) =) [ (a(2) - (@)¥(z)dy

[®(g) denotes the standard normal expectation of g], then we obtain the
differential equation

(3:2) f'(x) — xf(x) = q(x) — ®(q), x€R,
and thus for any random variable ¢ we have
(3.3) E(q(8)) — ®(q) = E(f'(¢)) — E(§/(¢)).

Therefore, in order to estimate E(q(£¢)) — ®(q), we can estimate the expression

E(f'(£)) — E(§{(£))-
Assume for a moment that £ =S, =n V%X, + --- +X,) where X,,..., X,

are i.i.d. with E(X;) = 0, V(X;) = 1. Then we have
(3.4) E(1(S,)) = E(5,1(8,) = E(£(8,)) = Vn E(X,{(8,))-
Define S* , = n" V%X, + - -+ +X,_,). Now, in order to prove the classical CLT
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or Berry-Esseen theorem, we have to carry out a Taylor expansion of first order
of f about S” , in E(X,f(S"_, + n"'/2X,)) and then apply the independence
of S}, and X, [for more details see, e.g., Bolthausen (1984), Section 2]. For
Edgeworth expansions we have to use Taylor expansions of higher order of f and
f’ [for more details see, e.g., Schneller (1987), Chapter 1, especially Section 3 or
the related paper of Barbour (1986)].

However, in our case we have { = T, and therefore there is a priori no
comparable independence. For that reason we use an extension of Bolthausen’s
combinatorial method. This method yields a “bit,” but for us enough indepen-
dence.

For an intuitive understanding of this method it is best to inspect Table 2
from right to left and consider the results of Lemma 3.5 (a)-(d) as well as
(3.6)—(3.8). In order to prove our analogue of (3.4), we nieed the independence of
7, and I,. This is done in (3.14) where we obtain E(T, f(T,)) = nE(a,, f(T})).
For the next step we need the independence of a,; and a part of T}. (I, J;) and
@, are not independent, but (I;, J;) and =; are, which is achieved through an
“exchange” of J; and o,. Thus a;; and the part T, of T, = T; + (T, — T3) are
independent. For the next step we need the independence of T, — T3 = a;; +
a4, ~ @y, — @,y and a part of Ty. (I, I, J;, J,) and 73 are not independent,
but (I, I,, J,, JJ,) and =, are, which is achieved through an “exchange” of the
blocks (¢}, o) and (<3, JJ,). Now it is clear that we find our last independence
statement through an “exchange” of the blocks (/,..., J;) and (J,..., J3).

After these considerations we give the explicit construction which starts with
the last step of the above considerations and ends with the first step of these
considerations. Let

N={1,...,n},
M = {i= (iy,..., ig) € N® i satisfies the equivalences:
()i, =iy & iy =iy
(wl)i, =iy, © i, = ig;
(u2)is =i, & iy = ig
(ud)iy =i = i g=1ip.oforl=1,2; k=34}.

For each i € M we fix once for all permutations u(i), (i) and s(i) of N with
properties as described in Table 1.

We remark that the map i — u(i) is well defined because of (ul), (u2), (u3)
and that the map ¢ — #(i) is well defined because of (£1).

As the reader will see, we have not defined all values of u(i) and #(i)
explicitly. The reason for that is that we do not need an explicit definition and
that we would have to consider a lot of cases for the explicit definition of these
values (e.g., i, = i, then [u(i)I(i5) = i but i, # iy, then [u(i)I(is) # is).

Furthermore, we define a random element I = (I},..., Iy) that is uniformly
distributed on M and a random permutation =, that is uniformly distributed on
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TABLE 1
Definition of the permutations u(i), t(i) and s(i)
u(i) t(@) s(i)
i i iy iy
iy ig iy i
, . Values
. " in
L Y {iyeery iy}
is
i6 Values
in .
i . . Remain
’:7 {ll,..., "8} fixed
ig .
N\ {i},..., g}

#, and independent of I. Finally, we define
my = mou(l), Ty =mot(l), 7y = myos(I),

Jy = 7’1(15)7 o= '”1(I6)» Jy = m(1I;), Jy = m(I),

J5 = m(1), Jg = m(1L), J; = m(1), Jg = m(1,).
Using the definition of u, ¢ and s, we see in Table 2 how m,...,m, map I,,..., I,.
As usual we define that ¢(X) is the o-field generated by the random vector X

and f € o(X) means that f is measurable relative to o(X).
Further results are:

3.5. LEMMA. (a) m, my, w3 and w, have the same law and are independent
of I

(b) m, and (I,...,1,, J,,..., J,) are independent.

(¢) my and (1, I, J,, J,) are independent.

(d) m3 and (1., J,) are independent.

(e) (I, m(1))) is uniformly distributed on N2 forall1 <1< 8,1 <k < 4.

PROOF. (a) For all 7 € 2, and i € M we have
; -1 . 1 )
P(my=m,I=i)=P(m=mou(i), I=i) = —P(I=1).

Thus summation over all i € M gives first the law of m, and then the indepen-
dence of 7, and I. The assertion for #; and =, follows analogously.
(b) For all # € #, and i € M we have

P((L,...,1,, Jl,..., J)=i,m=m)
(iyyenerigy 7 Y(is),nes 'ﬂ'l(ig)))P(wl =)

- P(I-
P(I=i)P(m =m).
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TABLE 2
Values of 1,,..., Iy under m, my, m3, m4

it T 3 Ty
I J5 o b J
I Jg Jy J Ja

Random
I J; gy : variables Same
I s Jy co(lyen, Ly oy
eIl) * <]4 )

I 4 Random
I Ja variables Same Same
17 J3 € G(Il,..., 18, as, m, as m,
I A ~ Jiyeney &)

Now summation over all # € &, gives that (I,,..., J,) and I have the same law,
from which the assertion follows.

(c), (d) Cf. proof of (b) and Table 2.

(e) From ie M « i+ (1,1,...,1) € M (mod n) we conclude that I,,..., I
are uniformly distributed over N. Thus (e) follows easily using (a). O

Next, we define
T, = Zam(,‘) fork=1,2,3,4,
J

AT, =T, ,—-T, fork=1,2,3.
From Table 2 and the definition of u(i), #() and s(i) we obtain

8
(3.6) AT, = lzl(alm(m = Appy) €L,y Iy, oy, ..ny ),
4
(3’7) A712 = Z (all'lra(ll) - allqrz(ll)) € O(Il""’ I4’ J19°'°) J4),
=1
(3.8) ATy =a;,; + apy, — a1y, — apy € o(1, I, Jy, ).
Furthermore, a simple calculation gives
(3.9) E(a,,) =0, nE(ap,AT) =1,
(3.10) n{E(asy, AT AT,) + E(a,(AT;)/2)}) = E(T3) /2.

Now we are able to prove the following basic equation.

3.11. LEMMA. Let f and q be connected as in (3.1). Then
(3.12) E(q(Ty) - @(q) + 3E(TJ)E(T,f(T4)) = R(q),
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where
1
R(q) = $E(T)nE|ayy AT, ['(1/(T, + 0T, + £0T) = (T,)) |
—nE(a,lJl AT AT, [ (f(T, + AT, + tAT,) — f(T,)) dt)
0
A
—nE(a,F,‘(AT3)2 [0 = 00T+ AT, + 8T,) - (T dt)-

Proor. The equation (3.3) with £ = T, gives

(3.13) E(‘I(TA)) - ®(q) = E(f(T,)) - E(T,[(Ty))-
Now, using the independence of =, and I, we obtain
(3.14) E(Tyf(T,) = E(T./(T})) = nE(ay,, f(T.)).

A Taylor expansion of f about T, yields further
= nE(aI,Jl f(T3)) + "‘E(C‘I,Jl AT, 'f'(Ta))

#nE{ gy (A1) [0 = )(/(T, + AT, + 14T, = /()

n 2,
+§E(a,lJl(AT3) f(Ty)).

The first summand is zero [cf. Lemma 3.5(d), (3.9)] and the last summand gives
[cf. Lemma 3.5(c), (3.8)]

gE(a,lJ,(ATa)“’f"(Tz)) = gE(a,,J,(ATJ")E( £(T,)).
For the second summand we have
nE(a,, AT, f/(T;))
= nE(a,, AT, f'(Ty)) + nE(a,,; AT, AT, {(T}))

+nE(a,‘J‘ AT, AT, ['((T, + AT, + tAT;) - {*(T,)) dt)
0

=E( f’(T2)) + nE(a,,; AT, AT,)E( f"(T,)) + last summand.

[Cf. Lemma 3.5(b), (c) and (3.7)-(3.9).]
Thus, using (3.10) we conclude

E(Ty{(T,)) = E(f'(Ty)) + $E(TD)E(f"(T,))
+second term of R(q) + third term of R(q).
The degree of differentiation of f in the term E( f”(T,)) will now be reduced by

(3.15)
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the following consideration:
E(TAf/(TA)) = nE(allJlf/(T4))
= nE(ay,, f'(Ty)) + nE(ay,;, AT, {(Ty))

+nE(a,lJl AT3f01( (T, + AT, + tAT,) — f(T)) dt)
= E( f”(Tz))
+nE(a,lJl AT3f01( f(Ty + AT, + tATy) — f(T;)) dt).
Implementing this in (3.15) and using (3.13) we obtain the lemma. O

4. Proof of Theorem 2.1. In addition to the assumptions of the last section
(a;;=4d;;forall i, jand q is bounded, differentiable), we have to make some
further assumptions.

First, we assume that g € 9; see (2.2). Furthermore, we may assume 8, < gon
and n > n, for arbitrary but fixed 0 < gy < 1 and n, > 9. These constants will
be specified later in Lemma 4.1. For B, > gyn or n < n, we obtain (2.3) from

IE(a(72)) — [qel, adxl <qli(2 + Ba/m)

and (8,/n)? < D2,0 < ¢ < B,, if we take K, large enough.

Moreover, we must assume |a,;| < 1 for all i, j. We do not show here how this
truncation is established and refer the reader to Schneller (1987), Chapter 3,
Section 4. For the basic ideas of this truncation one may also consult Bolthausen
(1984), pages 382 and 383. We mention that for this truncation we eventually
have to reduce the above ¢, and increase the above n,,.

We divide the following proof of Theorem 2.1 in two parts. The first part is

4.1. LEMMA. There exist positive numbers c,, ¢, and c; such that
IR(q) < (cillgll + callg’ll + esllg”l) DS

Proor. Let I=(I,..., 1,) and i=(iy,...,i,). Furthermore, let JJ, J, _J,j
be defined analogously to I, I, i, i. We have to show that there exist constants
Cy4s .-+, Cg such that

|E( (T, + AT, + ¢AT,) —f(T)|I=4, d = j)|
(4.2) < (cyllgll + sl + egllg”IVE(ATy) + ATy[|I = i, J =)
forall0<t<1 and i,je€N® withP(I=i, J=j)>

|E(f(Ty + AT, + tATy) — f"(T)|=i, J =)
(4.3) < (esllgll + cgllg’ll + collg"DE(AT,| + AT =2, I =)
forall0<¢<1 and i,j€N* with P(I=i,J=j)>
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Since the proofs of (4.2) and (4.3) are very similar, we only show (4.2). For that
we fix the quantities , j and ¢.

Now we look at the conditional distribution of T, given I =i, J =j. T,
depends only on 7; and the conditional distribution of 7, is easy to describe: ,
takes any permutation ¢ which satisfies ¢(i,) = j,., for1 < k2 < 4 and ¢(i,) =
Jr_4 for 5 < k < 8 with equal probability. Therefore, T) given I =i, J =j has
the same law as )

Y a;+ Ty
(i, ))ES

where
S = {(ips Jasa): 1 <k <4} U ((ig, Ja—y): 5 <k <8}

and B is the (n — 1) X (n — 1) matrix which is obtained from A by cancelling’
the rows i,,..., ig and the columns j,, ..., j;. Using the notation

a= Y a; p=EQT|=id=j),
(i, ))€S

r=E(ATI=i, J =)
[note AT, AT, € o(1, J)!], it remains to show
E(f"(Tz+a+p+tr)—["(Ts+ a))|
< (epollgll + eullg’ll + clig”D(pl + I7).

In order to prove (4.4) we need the estimates

(4.4)

(4.5) 1l <4llgll and ||| < 4llql
[see Erickson (1974), Proposition 2.1]. Moreover, differentiation of (3.2) gives
(4.6) f7(x) = f(x) + xf'(x) + ¢'(x), x€R.

From (4.6) and (4.5) we obtain
If"(x +y) = f"(x) < y8llgll + |x| If'(x +y) — f'(x)]
+1g'(x +y) — q’(x)l.
Using (3.2), (4.5) and |x| <1 + x? we estimate further
< |y1120lgl{1 + 22} + |x| [g(x + ¥) — g(x)| + |g'(x + ) — ¢'(x)|
< yl(22(lqll + ||q}|| +1g”IN{1 + x?}.
Therefore, we have
|E(f"(Tg+a+p+tr)—["(Tg + a))|
< (120l + gl + llg”I)(pl + 1) {1 + E((T + a)®) }.

It remains to estimate E((T + a)?). If we take the 0 < ¢y < 1 in B, < gyn small
enough and the n, in n > n, great enough, we can deduce as in Bolthausen

(4.7)

(4.8)
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(1984), page 385 after (3.11),
(4.9) ngl <1, L1<o2<? and Bz<cB, forBe N(lA).

[The last inequality is needed in (5.4).] Using |a;;| < 1 we find further |a| < 8.
Therefore, we obtain

(4.10) E((TB + a)2) <2E(TZ) + 2a% = 2(o} + p3) + 2a* < c. O
In the second part of this section we prove

4.11. LEMMA. There exist positive numbers c, and c, such that

< (cyllgll + callg’l) D3

SE(T)E(T (1) - (3 ab]o(ar ()
t’ J
We remark that an easy calculation using (3.2) shows

(xf (x)) = § fq(x)(3x = x*)¥(x) dx,

so that on the left-hand side of the basic equation (3.12) we have E(q(T,)) —
Jge{ 4 dx up to a term smaller than a constant times D2.

Proor oF LEMMA 4.11. We have

E(Tf?)E(TAf,(TA)) - (;1,; Z'af’j)(b(xf’(x))

< E(Taf"(Ty) | E(T) ~ %Eha?j + %BAE(TAW(TA)) — @ (xf(x))l

i, J

=A, +A,.
Because E(TJ) = n[(n — 1)(n — 2)]7'L; ;a?, (see Hajek and Sidak (1967),

¥ at?}

Chapter 2, page 82, problem 27) and (4.5) we obtain
A, < cjllqllBa/n? < c4llqllBi/n* < c4llqlID;.

For the estimation of A, we show the inequality
(4.12) |E(T41'(Ty)) = ©(2f (x))] < (csllqll + cellg'INBa/n-

In order to prove (4.12) we define 7(x) = (0¢)(x) where g(x) = xf'(x). Proceed-
ing as in Erickson (1974) and using (4.5) we find || /|| < 3|| f'|| < 12|g||. From this
and (3.2) for # we conclude further |/’(x)| < |x|16]|q|| + 4]lg|| for all x € R.
Thus, using the estimation

I(x + y)f'(x +y) — 2f'(x)] < yI(8llgll + lg'D{1 +x?}), x,yER
[cf. proof of (4.7) and (4.8)], and again (3.2) for #, we have
(413)  |Z(x+y) = 2(2) < yI(ellgl + gD + 2) (1 + [y]).



1116 W. SCHNELLER

Now we obtain (4.12) if we proceed first of all as in Bolthausen (1984), page 383
bottom and page 384 [with (4.13) instead of Bolthausen’s (2.5)] and then argue as
in our proof of Lemma 4.1. Note that Bolthausen’s |AT,| and |AT,| are bounded
since we have |a,;;| < 1 forall i, j.O

5. Proof of Theorem 24. As in the last section we may assume a;; = d,;
and |a;;| < 1forall i, j; By < eyn and-n > n, for fixed 0 < ¢y <1and n, € N.
In order to apply the results of Section 3, we must replace the discontinuous
functions 1 2 €R, in ||F, — e, 4| by functions ¢,, z € R, that are

bounded anél_&oi’égrentiable. We define for z € R,
1, forx < z,
1 - 1((x - 2)/D,)%, forz<x<z+D,,
2{x) = 1((z + 2D, - x)/D,)", forz+ D, <x <z+2D,,
0, forz + 2D, < x.

Note that we have
1 .
(5.1) qix+y)—qix)=y D_,Z‘[) (1(z+DA,z+2DA] - 1(z,z+DA])(x + sy) ds
for all x, y, z € R. In this section (5.1) together with (2.5) will play the role of
[g’(x + ) — q'(x)| < |ylllg”|l of the last section.
The further use of g, instead of 1_,, ., will be justified in the following
lemma. This lemma needs (2.5) (but only for B = A) for the first time.

5.2. LEMMA.

1Fy — ey, all < sup
z€ER

B(4.T) - [a.ef.a | + (€ + 1D}
ProoF. We use the abbreviation D = D,. Then we have

|Fa(2) - E(qz—D(TA))| = /(-Z_D’z ]%(f':_(”%__l))) F,(dx)

x—(z+D)\*
- —| ————| F,(dx)]|.
(z,z+D]2( D ) al )‘
Partial integration of each integral gives
: x-(z2-D)
~|R(o) - [ R ds
(z+ D)

2+DX
+f D—FA(x)dxi

z
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Substitution of y = z — x (y = x — 2) in the first (second) integral leads to

pD -y
T N F,(z—y)dy

pD -y
< fo 5 C\(D? + y?) dy < C,D2.
Similar computations give :
el,A(z) - fqz—uef,Adx

Now, using ||A%e, 4|l < ¥2lle{’ 4ll < y*(1 + B4/n) and B,/n < g, < 1, we obtain
the lemma. O .

pD -y
fo W Ne, a(z-y) dyl-

The rest of the proof of Theorem 2.4 has many parallels to that of Theorem
2.1.
5.3. LEMMA. There exist positive numbers c, and ¢, such that
sup R(q,)| < (e,Cy + ;) Dj.

zER

Proor. We fix z € R. Therefore, for simplicity we drop the index z of g,
and f, and the index A of D,.

We adopt the proof of Lemma 4.1 up to (4.8) (with c.||q|| + c.||¢’|| + c.llg”|l
substituted by c.C, + c¢). From (4.8), (5.1) and |q¢'(x)| < (1/D)1, ,.op; We
conclude

E(f"(Tg+a+p+tr)—f"(Ts+ a))
< 12(p| + |r|){1 + E((Ty + a)?)

1 .
+ —5/; E(ITB + a|1(z’2+2D](TB +a+sp+ str)) ds

1
+ F/;1|E((1(2+D,z+2D] - 1(2,2+D])(TB ta+sp+ St")) |d3>

=12(lp| + |r){1 + A, + A, + A,).

A, is estimated in (4.10),’ so that it remains to estimate A, and A,.
For A, we use (1.1), the following Proposition 5.7, |a| < 8 and (4.9):

E(lTB +all, ,iop)(Tp+a+sp+ str))
= E(|°B~713 +pptall, ,iop(0pgTp+pg+a+sp+ St"))
= ‘33((:33/(” -1)) + D)

<e,D.

(5.4)
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This yields A, < c,. Finally, (2.5) gives
|E((1(2+D,z+2D] 1 +p)(Ta+ @+ sp + str))l < |ADFyll < 2C,D?

and so we have A, < 2C,. This proves the lemma. O
In order to complete the proof of Theorem 2.4 we need

5.5. LEMMA. There exists a positive constant ¢ such that

< cD}.

sup {E(T)E(T, /(1) — (4 L al|e(at (+)

zeR

Proor. If we proceed as in the proof of Lemma 4.11, we see that it remains
to prove the following analogue of (4.12):

(5.6) SlellP;lE(TA (Ty)) — ®(xf,/(x))| < cBy/n.

Using (3.2) and the fact that the functions g (x) and ®(q,) — xf,(x) are mono-
tone decreasing between 0 and 1, we can deduce (5.6) from the following general
result which is interesting in its own right and which was already needed for
proving (5.4).

5.7. PROPOSITION. There exists a positive number ¢ such that for all A with
o, >0,

sup |E( 411 o, 1( 1)) = @(1211 o, .1(%))] < cBy/n.

zeR

SKETCH OF PROOF. Proceed as in Bolthausen (1984) with the quantities
h(x) = h, \(x) = Jx[{((1 + (2 = x)/A) A1) V 0},
f(x) = fz,)\(x) = (Ghz,)\)(x)

and note that Bolthausen’s T, is our 7.

We make two remarks. First, as in the proof of (4.12) we find positive numbers
¢y, €y, €3 With ||f|l < ¢, and [f'(x)| < ¢ylx| + ¢ for all x € R. Instead of
Bolthausen’s (2.5) we, therefore, have to use

1+ ) = 1 < it + 223+ bl + 5 [ 1o + ) ds.

Our second remark concerns Bolthausen’s (3.6). In order to prove our analogue
we define a/; = d;;), @,;=a};and T = {(, j): |4;;| > 3}. We need
the estimation

(5.8) IE(W411 - o, 1(72)) = E(1Tal1(— oo, .1(Ta))| < c5Ba/m.

aijl{lé.,-| < 1/2}(
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From this we obtain the following analogue of Bolthausen’s (3.6):
sup|E(Tal1 - o, :1(74)) — @(1%[1(_ o, :1(x))I
< sup|E(| Tzl oo, o1(Tw)) = @(1I1( o, o1(2))] + 5Ba/n
< sup|E(| Tl oo, o1(Ts)) = @(12]1 (o, o1(2))l
+ sup|<I>(|x|1(_w‘(z_“,)/%](x)) - (I>(|x|1(_°°,z](x))| + ¢csBy/n.
Clearly, the second summand is of order 8,/n [cf. Bolthausen’s (3.2) and (3.3)]
and therefore our analogue is established with the exception of (5.8):
IE(1Fa11 (w0, 21(72)) = E(ITal 1o, 1(Ta)))
< IE(I‘g;lI]'(—oo,z](g;l)) - E(ITZII(—oo,z](g;{))I
HE(T5lL w0, 1(7)) = E( Tl o, 1(Ta))
<E(7, - Tzl) + E(ITZII{fA#TA,)) =B, + B,.
Furthermore, we have |
B, < E(Fy — Tyl) + E(lo4 Tz + pa — Tdl)
= ZE(ldiﬂ(i) - afﬂ(i)l) + ceBa/n
=(1/n) ¥ |d;, + ceBa/n < c:B4/n,

@, nHer

< LE(Txl1c(i, 7(2)))

15

¥ (1/m)1e(i, HE(T5l | 7(i) = J).

zY j

If we argue as in Bolthausen (1984), page 385, lines 3-14 (cf. also our proof of

Lemma 4.1), we find a constant c¢g with E(|Ty||7(i) =j) < ¢g for all i, j.
Therefore, we have B, < ¢4|T'|/n < 8¢cgB4/n. 0

R
A

5.9. REMARK TO PROPOSITION 5.7. In Schneller (1987), Chapter 3, Section 6,
a complete, but a bit different proof of Proposition 5.7 may be found for the case
ld;;l < 1.

6. Proof of Theorem 2.12(a). In order to prove Theorem 2.12(a) we use a
result of van Zwet [(1982), Theorem 2.1], which gives an estimation of the
characteristic function of .7, under the conditions (2.13)—(2.15). From this we will
deduce (2.5) with C, = (log n)®

We need some preliminaries. Let U be a distribution function on R which has
a density u that is infinitely differentiable and has a support which is contained
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in [—1,1]. It follows [cf. Feller (1971), Chapter 15, Section 4, Lemma 4] that
(6.1) |U(¢)| = o(1¢)") for |¢| = oo and all n € N,
where we denote by G the characteristic function of a distribution with distribu-

tion function G.
From (6.1) we conclude

(6.2) /|t|"|0(t)| dt < oo, f[U(t)l"dt <o forallneN.
R R

Using this we can prove

6.3. LEMMA. Let F be a distribution function on R and
Uy(x) = U(x/8) forx €R and 8> 0.
Then
(6.4) F(2) < (5 +6) [ (1L+ IDIF()Ty(0)1 de
forallze R, y> 0 and 6 > 0.

ProorF. We use a technique introduced by von Bahr (1967), Section 3. Let Fj
be the convolution of F and U,. Then F; has a density f, and

Fy(x —0) < F(x) < Fy(x + ) forallx € R, 6> 0.
Using this and the Plancherel identity we obtain for y > 26,
F(z+2y) —2F(z+y) + F(z2)
<F(z+2y+0)—-2F(z+y—-0)+ Fy(z+89)

/';(1(2+y—0,z+2y+0](t) - 1(z+0,z+y—0](t))f0(t) dtl

o

27

1 1 . ) . A

< ______j' _le——tt(z+2y) — 2e—zt(z+y) + e—Ltzl I'FO(t)I dt
27 Jr |t

+0fn|ﬁ},(t)| dt

<

[ e s f“y””e—i“ds)ﬁb(t)dt

z+y—0 z+0

<y fR It] |By(¢)| dt + 6 j; \Fy(2)) dt

suwwLuﬂmﬁmme=R

For the last inequality we used K, = FU, In the case y <20 we proceed
similarly. Furthermore, we obtain —(F(z + 2y) — 2F(z + y) + F(2)) < R by
completely analogous arguments. O
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The assumption (2.5) contains conditions for B € N(8, A). For this reason we
need the estimation of van Zwet not only for #, but also for F, B € N(8, A).

6.5. LEMMA. Let A = (e;d;) be an n X n matrix fulfilling the conditions
(2.13)-(2.15) and n > n, = max{n.,10,32/8}, B4 < g,n, where n, and ¢, are
chosen such that 1 < o2 < & holds for B € N(8, A) [cf. (4.9)].

Then there exist positive numbers b,, b,, b; and b, depending only on
e,E,d,D,8 and r, k, m, s such that -

(6.6) |Fy(t)| < byn~b2l8" forb.logn < |t| < bn*? and B € N(8, A).

Proor. Use Theorem 2.1 of van Zwet (1982) and proceed as in the proof of
Schneller (1987), Proposition 4.3.9, pages 148-151. We remark that Bolthausen
(1984) uses, in the proof of our (4.9), essentially |d,,| <'1. If one uses £,d,; = 0 =
Y4 and |d;| <1+ |4, instead of |G;;| <1, one can show our (4.9) as well

[for more details see Schneller (1987), Chapter 3, Section 3]. O

Our last lemma uses the estimation of (6.6) in order to estimate the right-hand
side of (6.4).

6.7. LEMMA. Let A = (e;d;) be as in Lemma 6.5. Then there exists a
positive number c depending only on e, E,d, D, 8 and r, k, m, s such that

(6.8) fﬂ (1 + [t])|F(t)Ups(2)l dt < c(logn)® for all B € N(8, A).

Proor. It suffices to prove (6.8) with |¢| instead of 1 + |¢|. Using the
abbreviation § = D} and the constants b,,..., b, from Lemma 6.5 we have

fﬂ It |Fa(£)Uy(2)| dt

<of [P+ [ b+ [ 001

bylogn
=1+ 1+ I,
From Lemma 6.5 we obtain I, » 0 as n — oo so that I, + I, < ¢,(log n)%
Furthermore, using 6 > 1/(4n) and (6.2) yields

1 ;o o
I, = Fv/;‘ni*ﬂole(v)l do (v=10)

A b,
< 16n2f 1/21)|U(v)|dv (02 = —4—)
6

0 U A
< 16n2f ———|U(v)| dv
c2n1/2 ans/z ' ( )l

< 1602'5n'1/2fve|lj(v)| do—>0 asn - . o
R
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For n X n matrices A with n > n, and B, < g,n the estimation (2.16) now
follows from the Lemmas 6.3 and 6.7, from Theorem 24 and D} <
en~1H@/R)-DT+(4/9)-D" where ¢ depends only on e, E, d, D, and r, k, m, s.
For the other matrices we obtain (2.16), if we choose ] large enough (cf. proof
of Theorem 2.1).

7. Some remarks on the proofs for the second order. The proof of
Theorem 2.7 is completely given in Schneller (1987), Chapter 3, Section 8. This
proof has a structure which is similar to that of Theorem 2.4, but it is much
more extensive than the proof of Theorem 2.4. We mention some essential
differences.

1. The set M has to be defined as a subset of N6 so.that the maps M 2 i — u(i),
t(i) and o(z), with v(Z) as follows, are well defined. The permutation v(Z)
leaves the numbers outside (i, ..., i;;} fixed and maps i,,..., iz according to

b2y gy sy B iy
iyl i bg lg>bg Ig iy
With these definitions we define analogously five random permutations
Ty e ey T
2. In order to obtain the right expansion in the analogue of equation (3.12) and
for the estimation of the corresponding remainder terms R(g,), we need an
analogue of Proposition 5.7 for E(.Z'fl(_w,z]( 7)) and an Edgeworth expan-
sion of first order for E(J,1,_,, .1(Z4))-
3. The condition (2.8) is used mainly to prove the analogue of Lemma 5.2. For
the rest of the proof one needs only the weaker condition [cf. Bickel and
Robinson (1982), Lemma]

|42 Fp(2) < C3(E3 + »°)

(2.8) .
forallz€ R,0 <y < E, and B € N(16, A),

where

Our next remarks concern the proof of Theorem 2.12(b). This proof is also
very similar to that of Theorem 2.12(a) and is completely given in Schneller
(1987), Chapter 4, Sections 1 and 3. The appearance of the factor n® [instead of
e.g., (log n)?] has its reason in establishing an estimation analogous to that of the
term I, in the proof of Lemma 6.7. For that we need b,n3/26 > n* and, therefore,
we have to take § = n°E} > n®/n*? instead of 6 = E}.
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