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STOCHASTIC REDUCTION OF LOSS IN ESTIMATING
NORMAL MEANS BY ISOTONIC REGRESSION!?

BY RoBERT E. KELLY

Pennsylvania State University

Consider the problem of estimating the ordered means p; < py, < -+ <
. of independent normal random variables, Y;, Y,, ..., Y,. It is shown that
the absolute error of each component ji; of the isotonic regression estimator is
stochastically smaller than that of the usual estimator Y. Thus {; is superior
to Y, under any nonconstant loss which is a nondecreasing function of
absolute error.

.

1. Introduction. Let Y,...,Y, be independent normal random variables
with unknown means satisfying p; < p, < -+ < p, and Var(Y;) = o2 = 0%/w,
w,>0, i=1,...,k The order restricted maximum likelihood estimator j =
(fy,.-, fip) of p=(py..., p) is the value of & which minimizes the weighted
sum of squares

& ,
Z (Yi - 0i)2wi
i=1

subject to the simple order restriction 8, < 8, < --- < 6,. This estimator is
called the isotonic regression of Y = (Y,,..., Y}) on the simple order and is given
by

(1.1) fi; = min max Av(Y; r, s), i=1,...,k,

s=i r<i

where, for z = (2,,..., 2;) € R,

S S
(1.2) Av(z;r,s) = Y wz;[ Y w
J=r J=r

[cf. Barlow, Bartholomew, Bremner and Brunk (1972) page 19]. The estimator fi
has been compared to the unrestricted estimator Y, and several results point to
the superiority of the isotonic regression estimator when the order restriction
holds. It has been shown [cf. Robertson, Wright and Dykstra (1988)] that the
total error of the estimator is reduced through isotonic regression on any order
restriction in the sense that

k k
YA — pdfw < Y |Y; — pl"w; forall p>1.
i=1 i=1
Lee (1981) considered the mean squared error of the components of the estimator
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and showed that for & > 2,
E(j, - m) <E(Y,—p)%, i=1,..,k,

when p satisfies the order restriction. It will be shown here that an even stronger
result holds componentwise, namely that |i; — p,] is strictly stochastically smaller
than |Y; — p;| for i = 1,..., k, k = 2, when p satisfies the order restriction. From
this it follows that, for loss functions £ of the form £(8; n) = p(|6 — p,|) with
p(t) nonconstant and nondecreasing on ¢ > 0, £(fi; ) is stochastically smaller
than Z(Y; p) for i =1,..., %k and as a result, E{Z(fi; p)} < E{ZL(fi; p)} for
i=1,..., k when the order restriction is satisfied. The stochastic ordering is
strict if p is strictly increasing. Here we use the following definitions. The
random variable A is stochastically smaller than the random variable B if

(1.3) P(A<t)>P(B<t) forally,
with strict inequality for some ¢. If strict inequality holds in (1.3) for all ¢ such
that P(B < t) > 0, then we say A is strictly stochastically smaller than B.

2. Stochastic ordering of absolute errors.

THEOREM. For k> 2, let Y,,...,Y, be independent normal random vari-
ables with Y, ~ N(u,,02), i=1,...,k, where o?=0%/w, and p, <p, <

© < py. Let fi=(fiy,...,[i,) be the isotonic regression of Y = (Y,,...,Y},)
on the simple order with weights w,, i =1,..., k. Then P(|i,— p,]| <t) >
P(Y,—p | <t) forallt>0,i=1,..., k.

ProOF. Assume without loss of generality that
k
(2.1) > wip; = 0.
j=1

Define X® = (X{,..., X{"), where XV =Y,-Y, for j=1,...,k i=
1,..., k. Note that X® takes values in

Z={(x,,...,%,) € R*: x, = 0}.
In view of (1.1) and (1.2) we have
(2.2) g; — Y, = min max Av(X®9; r, s),

s>i r<i

so that (fi; — Y;) depends on Y only through X (. Clearly, Av(Y; 1, k) is indepen-
dent of X and has expectation zero by (2.1). Hence, the conditional distribu-
tion of Y; given X is normal with mean

(2.3)  m(XD)=E(YX®) = -Av(XD;1,k) = Y, — Av(Y; 1, &)
and variance
s = Var{Av(Y;1,k)}.
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We now proceed by induction on k. For % = 1, clearly i, = Y;. Assume that
for dimension & — 1,

PO, —pl <t) 2 P(Y,—p) <t) forallt>0,i=1,...,k— 1.
We shall show that this implies strict stochastic inequality
PO, —pl<t)>P(Y,—p)<t) forallt>0,i=1,...,k,

for dimension k. Two cases are considered.

Casel.p;<0and i< k. Let#=(,..., 7, ;) betheisotonic regression of
(Y,...,Y,_,) on the (k — 1)-dimensional simple order with weights w,, ..., w,_;.
By the induction hypothesis,

P(|p; — pil < t) 2 P(|Y; — p;| < t) forallt>0,
and it suffices to show that for all ¢ > 0,
(24) P(fi; — pid < t, i # 9;) > P(p; — pif < ¢, fi; # 5,).
As Lee (1981) pointed out, fi; # #; implies that
fi; = max Av(Y; r, k)

r<i
and hence that
(2.5) Av(Y;1,k) < f; < b,
Define
(X)) =Y, - i, - m(XD) +p,
e(XV) =Y, - 5, - m(XD) +p,

and note that these do indeed depend on X ® only. In view of (2.3) and (2.5) and
the assumption for Case 1, we have

(2.6) c(XW) < e (XP)<0
on the set where fi; # 7,.
Now
P(lp; — pid < t1XD) = P(c)(XP) - t < Y; — m(X®) < ¢,(XP) + ¢)
(2.7) c(XD) + ¢ c(XD) — ¢
Lo AXKHe] o[ aX0) —e]
s

where @ is the standard normal distribution function and m(X®) and s? are
the conditional mean and variance of Y,. Similarly,

- @[*———CZ(X“)) — t].

s

ey(XD) + ¢

s

(28)  P(jp; — pd <X?) = <I>[

For t > 0, ®((c + t)/s) — ®((c — t)/s) is strictly increasing in ¢ for ¢ < 0, and
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hence (2.6)—(2.8) ensure that on the set where fi; # 7,,
Pl - 1 < 6X9) > BB, - ] < 6K0),
which implies (2.4).

CAsSE 2. u;>20and i > 1. ReplaceY,,...,Y, by —Y,,...,—Y, and we are
back in Case 1. Note that u; < 0Oand i = k or p; > 0 and ¢ = 1 are impossible in
view of (2.1). O :
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