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RANGES OF POSTERIOR MEASURES FOR PRIORS WITH
UNIMODAL CONTAMINATIONS!

BY S. SIVAGANESAN AND JAMES O. BERGER
University of Cincinnati and Purdue University

We consider the problem of robustness or sensitivity of given Bayesian
posterior criteria to specification of the prior distribution. Criteria considered
include the posterior mean, variance and probability of a set (for credible
regions and hypothesis testing). Uncertainty in an elicited prior, =, is
modelled by an e-contamination class T = {7 = (1 — ¢)m, + ¢q, g € Q},
where ¢ reflects the amount of probabilistic uncertainty in =, and @ is a class
of allowable contaminations. For @ = {all unimodal distributions} and @ =
{all symmetric unimodal distributions}, we determine_the ranges of the
various posterior criteria as 7 varies over T'.

1. Introduction.

1.1. The problem and motivation. We observe X having density f(x|), and
desire to perform a Bayesian analysis concerning the unknown real parameter 6.
This requires specification of the prior distribution. Whether or not it is even
conceptually possible to quantify exactly prior information in terms of a single
distribution, time and other constraints introduce a degree of arbitrariness in the
elicitation process. Thus, after an elicitation process which has led to a prior =,
it is plausible that any prior “close” to m, would also be a reasonable representa-
tion of prior beliefs, and, that one should be “robust” with respect to such
reasonable changes in 7. [See Berger (1984, 1985) and Berger and Berliner (1986)
for further motivation.] In this article we model “close” through the e-con-
tamination class
(1.1) T={r=0-¢)m+eq: g€ Q};
here ¢ determines the amount of probabilistic deviation from =, that is allowed,
and @ is the class of allowed contaminations (see Section 1.3). In Section 1.2 we
briefly indicate reasons for considering this class.

A natural goal of a robustness investigation is to find the range of the
posterior quantity, p(x, 7), that is of interest, as = varies over I'. Thus we will
seek
(1.2) p(x,7) = inii'ﬂp(x, 7) and p(x,7) = supp(x, 7).

- mE 7el
Quantities that will be considered include the posterior mean, the posterior
variance and the posterior probability of a set (allowing for credible sets or tests).
If the range of the posterior quantity is small, then one can be assured of
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robustness with respect to the elicitation process, providing T is large enough to
reflect the possible uncertainty in =,. If the range is large, one does not have
robustness with respect to I, but our results provide indications as to which
features of # € T are causing the nonrobustness, allowing for further elicitation
or refinement of these features.

We make no attempt here to define what is a “small” or a “large” posterior
range, that is, to define when one does or does not have posterior robustness.
This is a problem-specific judgement. The idea, however, is simple: If the range
is clearly so small that the differences between the various priors in IT' are
irrelevant, then one can use m, with assurance, while if the range is not clearly
small enough then further investigation is needed. It is not our purpose here to
discuss how “further investigations” should be performed.

Bayesian robustness (or sensitivity) studies with respect to the prior have
generally been carried out on an ad hoc basis (try a few different priors) because
of the perceived technical difficulties in carrying out the minimization and
maximization in (1.2) over realistically large classes of priors; DeRobertis and
Hartigan (1981) is an important exception. We show that for the e-contamina-
tion class the problem is often tractable and yields relatively simple answers. We
hope that these techniques can lead to automatic checks for robustness with
respect to the prior. Note, of course, that robustness with respect to the model is
typically at least as important a concern. Thus our results provide at best one
component of the overall study of robustness.

1.2. History. The “robust Bayesian” view alluded to above has been es-
poused (in various versions) by many statisticians; cf. Good (1983), Dempster
(1975), Rubin (1977), Kadane and Chuang (1978), Hill (1980), Manski (1981),
Wolfenson and Fine (1982), Berger (1984, 1985) (which contain general review
and discussion) and Walley (1986). We discuss here only some of the articles
directly related to our work.

Previous work on finding ranges of posterior measures has mainly considered
classes of conjugate priors having parameters in certain ranges. Recent examples
include Leamer (1978, 1982) and Polasek (1985), who call the endeavor “global
sensitivity.” While interesting, classes of conjugate priors are quite small and
leave out many priors which are reasonable (such as priors with different tails
than m,), and against which it would be desirable to ensure robustness. [Similar
comments can be made about classes based on moments, together with linear
estimates, cf. Hartigan (1969) and Goldstein (1980).]

Several articles which do deal with large classes of priors are especially
noteworthy. Huber (1973) determines the range of the posterior probability of a
set for the class in (1.1) with @ = {all distributions}. DeRobertis and Hartigan
(1981), in a breakthrough article, consider a class of priors specified by a type of
upper and lower envelope on the prior density, aisd find ranges of general
posterior quantities. DeRobertis (1978), Berliner and Goel (1986), Berger and
O’Hagan (1988) and O’Hagan and Berger (1988) find the range of the posterior
probability of certain sets over classes of priors with specified quantiles. West
(1977) and Lambert and Duncan (1986) also have related analyses.



870 S. SIVAGANESAN AND J. O. BERGER

The main motivation for considering the e-contamination class in (1.1) is that
it easily lends itself to automatic checks for robustness with respect to the prior
of standard Bayesian analysis. In other words, after specification of #, and the
model and performance of a standard Bayesian analysis, one could automatically
carry out a check of robustness with respect to = by, say, presenting the range of
the desired posterior quantity as a function of ¢ in (1.1). (@ could be chosen in
any of several automatic ways.) Note that other classes of priors require addi-
tional subjective specification; for instance, the DeRobertis and Hartigan (1981)
class requires specification of “density bands” about #,, and to ensure a rich
enough range of tail behavior some thought must be given to the choice of the
bands. Of course, additional thought is not a bad thing, but automatic checks
have a certain pragmatic attractiveness.

The e-contamination class of priors has also been utilized in other types of
Bayesian robustness studies, including Schneeweiss (1964), Blum and Rosenblatt
(1967), Bickel (1984), Marazzi (1985), Berger (1982) and Berger and Berliner
(1986). This last article is primarily concerned with maximizing the marginal
density, over 7 in T, and thus determining the “ML-II” prior. The mathematics
used there is a simple version of that needed here. Also related is Edwards,
Lindman and Savage (1963), Berger and Sellke (1987), Casella and Berger (1987),
Berger and Delampady (1987) and Delampady (1986), which carry out the
determination of the range of the posterior probability of a hypothesis when
e = 1in (1.2) (i.e., when there is no specified subjective prior =,). Because of the
drastic differences that can arise in testing between Bayesian and classical
measures, and because of the frequent lack of “objective” priors in such testing
problems, they provide a particularly attractive domain for the application of
robust Bayesian methodology.

1.3. The choice of @. We alluded earlier to the choice = {all distributions}
made in Huber (1973). This choice is particularly easy to work with, and
Sivaganesan (1988) extends Huber’s results to deal also with the posterior mean
and variance. The resulting class is attractive in that it certainly contains any
prior “close” to m,, so that if robustness obtains one is done.

Unfortunately, as pointed out in Berger and Berliner (1986), the range of the
posterior quantity of interest will often be excessively large when @ = {all
distributions} is used, because this € contains many unreasonable distributions
(such as point masses which are far from ;). Indeed, it is argued therein that
more reasonable @, when =, is unimodal, are the classes of all unimodal
distributions (with the same mode as =) and the class of all symmetric unimodal
distributions. These classes allow wide variation in the functional form and tails
of 7 € T, while retaining the overall shape features of ,; this overall shape is
often rather confidently known, so that it is not desirable to allow priors into I’
which have a very different shape. The ranges of posterior measures are substan-
tially smaller for these classes, and a lack of robustness is thus much more likely

"to be indicative of a real problem. Section 2 deals with the symmetric unimodal
class, and Section 3 with the unimodal class.



RANGES OF POSTERIOR MEASURES 871

1.4. Formulas and notation. We will be working only with the observed
likelihood function, f(x|8), considered as a function 6, and, to emphasize that it
is a function of 6, we will write it f(8). We also assume that the base prior 7, is
unimodal with mode at 6, and density (with respect to Lebesgue measure) my(4),
and that the contamination ¢ has density q(#) with respect to Lebesgue
measure; thus any # € I has a density of the form

7(8) = (1 — e)m(0) + eq(8).

Using the notation m(x|w) for the marginal distribution of X with respect to the
prior 7, namely

m(x|m) = ffx(a)ﬂ(ﬂ)dﬂ,

and assuming all quantities in question exist, we get by simple computation

(1.3) m(x|7) = (1 — e)m(x|my) + em(x|q).
Also, the posterior density of § with respect to « is
(1.4) 7(Bx) = Mx)7o(6)x) + (1 — A(x))q(0lx),

where 7(f|x) and g(8|x) are the posterior densities with respect to «, and g,
respectively, and A(x) € [0,1] is given by

(A — eym(x|m,)

(1.5) M=) =

[Note that A(x) could be thought of as the posterior probability that , is the
true prior, if a priori it was believed that =, or ¢ were true with probabilities
(1 — &) and ¢, respectively.] Furthermore, the posterior mean 8" and posterior
variance V" with respect to « can be written (when they exist) as

(1.6) 8™(x) = A(x)8™(x) + (1 — A(x))8%x)
and

(1L.7) V7(x) = Mx)V7(x) + (1 - M) V(x)

+A(x)(1 = A(x))(8™(x) — 89(x))".

Finally, if C is a measurable subset of the parameter space 0, then the posterior
probability of C with respect to = is given by

(1.8) P™0(§ & C) = A(x)P™O (g & C) + (1 — A(x))P¥) (g & C).

In most of what follows ©® will be the whole real line R, and Cy(R) will denote
the set of all continuous real-valued functions vanishing at infinity. Cases where
0 is a subset of R can be similarly handled. As a last note, U(a, b) will be used
to denote the uniform distribution on the interval (a, b), and ¢ and @ will stand
for the standard normal density and c.d.f., respectively.
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2. Symmetric unimodal contaminations.

2.1. Introduction. In view of the prior beliefs, it may often be natural to
require that the contaminations be unimodal and symmetric. This would be
particularly desirable when the base prior 7, is also symmetric and unimodal.

Thus, we define
(2.1) Q = {all symmetric unimodal distributions
) with the same mode, 6,, as that of m,},

and consider the class T given in (1.1). In Section 2.3 we find the ranges of
posterior quantities such as the mean and probability of a set; in Section 2.4 we
consider the range of the posterior variance; and in Section 2.5 we consider
hypothesis testing. Applications to the normal distribution are given.

2.2. Preliminaries. The following lemma forms the basis of dealing with
(2.1), and will be repeatedly used. The proof is standard (being based on
representing a symmetric unimodal density as a mixture of symmetric uniforms),
and will be omitted.

LEMMA 2.2.1. For q € @ as in (2.1) and any g such that [|g(8)|f(0)q(8) do
< o0,

J&(®)1.(0)a(0) db = [“H¥(2) dF(2),

where F is some distribution function (the mixing distribution which yields q),
and

1 0+ 2 .
(2.2) H(e) = | 32 Jy L EOEO) 0 ifz 0,

£(0,)1.(6) ifz=0.

The dependence of these quantities on x is suppressed for notational simplic-
ity. Examples of g that will be considered include g,(6) = 1, g,(0) = 0, g0) =
(0 — po)? 8(0) = I5(0); here p, is a constant and I,(9) is the indicator function
on the set C. We always assume that [|g(0)|f(0)7(0)d6 < co. The H¥(z)
corresponding to these functions will be denoted by H(z), Hy(z), Hy(z) and
H(z), for simplicity. Note that Hy(z) = m(x|q).

2.3. Range of the posterior expected value of g(6). Let T be as in (1.1) and
T, € T be given by
(23) I)={r=(Q-¢)m+ eq: qisU(6, — z, 8, + z) for some z > 0}.
In order to find the range of the posterior expected value of g(@) over the large
class T; it is in fact sufficient to do the maximization and minimization over the

much smaller (and simpler) class I} (as shown in the following theorem), thus
reducing the problem to that of finding the extrema of a function of one variable.
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THEOREM 2.3.1. Let p"(x) denote the posterior expected value of g(6) with
respect to the prior . Then, for T and T, as above,

(x) () a, + H&(2)
sup p”(x) = sup p"(x) = sup ——————
vrerl?‘ nel} : at HD(Z)
and

a, + Hé(2)

inf o™(x) = inf o"(x) = inf 0 x \Z)
) = P = )
where a = (1 — e)m(x|my)/e, a,= ap™(x) and H(z), Hé(z) are as in the

previous section.

Proor. For 7w €T, p"(x) can be written as
ooy @0+ [HE(2) dF(2)
¢4 P = ) R e

for some distribution function F(-). Now the result follows by an application of
Lemma A.1 of the Appendix. O

ExaMmpLE 2.3.1 (Range of the posterior mean). For g(#) = 8, and hence
Hé(z) = H|(z), Theorem 2.3.1 gives the range of the posterior mean. As an
example, let X|0 ~ N(0, 6%) and 7,(8) be N(u, 72). Then

(1= 1 1 (x-p)
- (= )m—‘)"{ 2(02“2)}

and
o2 r2
a, = ap™(x) = a(o2 Tkt o sz).
Furthermore,
1 pt+z 1 0 - x)°
Hyz) = E;',;;—z o exp(———————( 532 )dﬂ
and
‘ p e—-(p,—-z—x)2/2a2 e—(p,+z—x)2/202
Hy(z) = 5;( ~an - T ) + xHy(z).
Letting
p+z—x L—z—-x pt+tz—x p—z-x
t=(p( o )+(p( o ),u=(p( 0 )—(p( 0 )
and
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Fic. 1. Graphs of range of the posterior mean (symmetric unimodal contaminations) and 87 (x)
against x.

the values of z which maximize and minimize (a, + Hy(2))/(a + Hyz)) are
given by the solutions of the equation (obtained by differentiating the above)

_ (vx — ou)(t + 20a) — v(2a,0 + tp)
“= 2[auz + t(ap — a,) — vu/2]

This equation may be iteratively solved for z by taking a number larger than
8™(x) as the initial value of z when maximizing, and a number smaller than
8™(x) as the initial value of z when minimizing.

As a specific example, let p =0, 62 =1, 72 =1 and & = 0.1. In Figure 1, the
ranges of 87(x) and the values of §™(x), for various values of x, are displayed. It
can be seen from Figure 1 that the range of 8”(x) is fairly small for small values
of x(|x| < 3) but is larger for large values of x. (Recall that our viewpoint here is



RANGES OF POSTERIOR MEASURES 875

a posterior viewpoint; we are imagining use of the methodology to find the
possible range of the posterior criteria after the data is at hand. We present the
range here as a function of x only because of several technical points we wish to
make in Section 4.)

ExaMpLE 2.3.2 (Range of the posterior probability of a set). When construct-
ing a credible set C for an unknown parameter 6 it is of interest to find the range
of the posterior probability of C as # varies over I'. This can be done using
Theorem 2.3.1 with g(0) = I(8), Hé(z) = Hy(z) and a, = aP™’*)(§ € C).

Defining £,(0) = f(8)Ic(0), A(2) = g6, + 2) + g6, — z) and B(z) =
f(8, + 2) + f(6, — 2), the values of 2, at which the inf and sup of the probabil-
ity of C are obtained, can be shown to be among the positive solutions [of which
there are at most three when C is an interval and B(z) has at most three local
extrema] of the equation (which may be solved iteratively by carefully choosing
the initial values)

22(aA(z) — a,B(z))

Oy + 2

= (2a + B(z))fo £.(0) db ~ (2, + A(2)) [**1(6) as.

O—2
In rare cases, the extrema may occur at boundary points of C.
As a specific example, let X|6 ~ N(0,1), 7,(6) be N(0,2) and & = 0.1. When

x = 0.5, the 95% HPD credible set is C, = (—1.27,1.93). The range of the
posterior probability of C, is given by

infF P75 (g e Cy)) = 0945,  sup P"109(9 € C,) = 0.958,

Te el
and these are attained when the contaminations are, respectively, the
U(—2.98,2.98) distribution, and a point mass at 0. When x = 4.0, the 95% HPD
credible set is C, = (1.07,4.27). The range of the posterior probability of C, is
(0.830, 0.965), the extreme values of which are attained when the contaminations
are, respectively, U(—#6.1,6.1) and U(—4.3,4.3).

-2

2.4. Range of the posterior variance for fixed posterior mean. It is typically
necessary, in estimation problems, to report also an accuracy measure; here we
consider the posterior variance. Since the posterior mean is of primary interest,
and since there will be a different range of the posterior variance for each (fixed)
value of the posterior mean, it is natural to seek the range of the posterior
variance corresponding to each possible value of the posterior mean. Thus, for
ko € [inf, 8"(x), sup, 8"(x)], if we let
(2.5) To={n(8) = (1 - ¢)m(8) + eq(6): g € Q and 87(x) = po},
we want to find sup, ., V"(x) and inf, c r V7(x).

It is shown below that the posterior variance is maximized or minimized,

subject to fixed posterior mean, when the contamination is a mixture of two
symmetric (about 6,) uniform distributions. Let

Ty = {77'(0) =(1—-¢e)m(0) +eq(8) €Ty ge Qz}:
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where
Q={q=aU(b,—2,6,+2) + (1 - a)U(f,— 2*,0, + 2*): 0 < a < 1
and z, z* > 0}.

Note that one of the three quantities a, 2, 2* is determined by the constraint
that 7 have posterior mean p,. Hence maximizations over I, are effectively
two-dimensional maximizations. Note also that z* (say) could be infinite, so that
q would then be a single uniform, possibly with total mass less than 1.

THEOREM 2.4.1.
sup V™(x) = sup V"(x),

7€, L= PN

inf V7(x) = inf V"(x).
L= PN

7€,

Proor. Using (1.6) and (2.4) with g(6) = 6, we have, for 7 € T,

(26) JUE(2) = moHo(2) = alpo ~ 87)] dF(z) = 0,

where F is the mixing distribution function corresponding to g. Furthermore, for
7, € Iy, we have

J(8 = po)*m(8)£(8) db
m(0)£(6) db
aV™(x) + [Hy(z) dF(z) get
- a(+)fH0{z)2(dF)'(z)( ) = V(F),
where H,(z) is as defined in Section 2.2. Thus, defining
¥, = {all probability distributions F satisfying (2.6)},

Vi(x) =
(2.7)

we have
(2.8) sup V7(x) = sup V(F).
Fevy,

nel,

Now, letting ¥, consist of those F € ¥, which are two-point distributions, we
have; from a result of Mulholland and Rogers (1958), page 178, that ¥, is the
convex hull of ¥,,. Note that ¥, can be expressed in the form of ®,, in Lemma
A.l, with I defined by

I={r=(m,1) € R%: support(F) = {7, 7,} for some F € ¥, }.
Hence, using Lemma A.1,

sup V(F) = sup V(F).
Fey, Fevy,

Now, using (2.8) and observing that
sup V(F) = sup V"(x)

FeYy, 7€l

completes the proof for the “sup.” The proof for the “inf” is similar. O
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FI1G.2. Range of posterior variance as posterior mean varies from 0.45 to 0.53: x = 1.0.

EXAMPLE 2.4.1. Suppose X|0 ~ N(08,1), m(8) is N(8,1) and & = 0.1. Then
the range of the posterior variance [calculated by numerical optimization of
V™(x) over I'y,], when the posterior mean is fixed at various levels, is displayed in
Figures 2 and 3 for x = 1.0 and x = 4.0, respectively.

A stronger characterization of the infimum of the posterior variance. We
will show that the infimum of V"(x) over I, can be obtained by minimizing over
the smaller class

Top = {7(0) = (1 — &)my(0) + eq(8) € Ty: g = aU(8, — 2, 0, + 2)

2.9
(2.9) for some 0 < @ < 1 and z > 0}.

Here aU(f, — 2, 6, + z) denotes the subprobability distribution having mass a
uniformly distributed over the interval (8, — z, §, + z). Note that a will be
determined by the constraint that 6" = p (i.e, that = € I}), so that this will be
only a one-dimensional minimization. It is interesting that one must consider the
possibility of mass escaping to infinity (i.e., @ < 1). For use in the following
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F1c.3. Range of posterior variance as posterior mean varies from 1.96 to 3.24: x = 4.0.

theorem, define
Hy(2) — Hyz)[V™ + (87)]
V&) = h@ e —H(z)

THEOREM 24.2. Suppose that f(0) is such that, if a and b are real
constants, then [h(8,+ z) + h(0, — 2)] has at most one local minimum at
which the function is positive; here

h(8) = (0%+ ab + b)f,(0).

"Then

(2.10) inf V'(x) = inf V"(x).
€Ty

LI=3 VY
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When 8™(x) # p,, the infimum is given by

(2.11) Vot (87)" — 2 + (8™ — p)¥(2),

where 2 is that value of z minimizing [sgn(8™ — p)]Y(2) over the region
(2.12) {z: I-‘Ho(z)”: Hy(z) >aq= (1- E)Ln(xlﬂo) }

When 8™(x) = p,, the infimum is the smaller of V™(x) and

[avr+ Hyz) - Hy2)(6m)'
(2.13) lIzlf{ o+ Hz) :H(z)=28 OHO(z)}.

Proor. Using the results and notation of the proof of Theorem 2.4.1, we
want to minimize V(F') over ¥,. For F = al,, + (1 — &), in ¥,,, V(F) and
the condition (2.6), using a (1-1) transformation, can be written [writing V =
V(F)]

V=Bo(z) + (1 - B)o(z;) and M=pm(z)+(1-B)m(z,) =0,
where B = a(a + Hyz,))/(a + aHz,) + (1 — a)Hy(2,)), v(z) = V7(x) and
m(z) = 8"(x) — p, for prior 7 = (1 — )7, + eU(6, — 2, 6, + 2).

Now, using the Lagrange multiplier method, we can show that if z,, z,
minimize V subject to M = 0, then

inf V=G(z) = G(z2,),
and z,, z, are both local minima for G(z),

G(z) =0v(2) + Am(2)
and A is the Lagrange multiplier.

When inf V' > G(o0) = V™(x) + A(§™(x) — p,), one can show that, for F
¥y, With support(F) = {z,, 0} or {z,, 0}, V(F) < inf V leading to a contradic-
tion unless either of 2z, or z, is infinite. When inf V < G(0) it can be shown,
under the condition on A(#) stated in the theorem, that at most one of z, and z,
can be finite unless they are equal. This proves (2.10). For more details of these
steps, see Sivaganesan and Berger (1986).

For ¢ = aU(f, — 2, 8, + 2) to yield = = (1 — &)m, + eq € T, it must be the
case that (when 8™ # p)

_ a(po— &™)
H\(2) — poHy(2) '

Using this expression for a, together with (1.7), yields after simplification the
expression for V7(x) given in (2.12). This expression is then minimized over the
set of all allowable z, namely those for which 0 < a < 1; this set is equivalent to
(2.13). When 8™ = p, [equivalent to the condition H,(z) = §™H(z) in (2.14)], «
ean be arbitrary. Then, however, V” is a linear function of A, and hence a
monotonic function of a, so that only a = 0 (yielding V™) and a = 1 [yielding
the expression in (2.14)] need be considered. This completes the proof. O

o a
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2.5. Testing of hypotheses. To test the hypothesis H,: 6 € ©, vs. H;:
0 € ©\ 0,, suppose it is desired to determine their posterior probabilities. Then,
robustness can be investigated by determining the range of these probabilities as
o ranges over the class of priors I'. These ranges can be directly obtained as in
Example 2.3.2 when 0, and 0 \ 0, both have positive Lebesgue measure.

Also quite interesting is the testing of point null hypotheses, because of the
dramatic discrepancies between classical P-values and posterior probabilities
[see Berger and Sellke (1987)]. Thus, suppose we want to test H,: 6 = 6, vs. H;:
0 # 6,. A typical prior distribution for this problem specifies a point mass, a, to
be assigned to 6, and a continuous density, g(#), to be assigned to {8 + 6,}. We
assume that |a — a,| < 8, and that g is of the form g(0) = (1 — €)g(0) + eq(8);
thus «a is specified as a,, but could be in error by an amount 8, and g is within a
certain e-contamination class of the elicited g,. Specifically, we consider

G ={g(0) =(1—¢)gy(0) + £q(0): g is symmetric unimodal with mode 0, };
here 6, is the (assumed unique) mode of g,, not necessarily equal to 6,. Let T}
denote the implied class of priors #. The range of the posterior probabilities of

H,, as = varies over I, is given in the following theorem, the proof of which is
straightforward and is omitted.

THEOREM 2.5.1.

f(6o)
f.(6,) + ('1_'—-;(;‘}‘_(%2)((1 — e)m(x|g,) + Bﬁ)

inf P"®®(H,) =

LI=3 WY

and
sup P”(""‘)(H ) _ fx(oo)
nel, 0 1- (ao + 8) ’
° f(6,) + (——ao—ra—“)(l — e)m(x|g,)

where H = sup, ., oHy(2), with 0, being replaced by 0, in the definition of H,,.

ExaMPLE 2.5.1. Let X|0 ~ N(0,1), 6, = 0, g(0) be N(8,,1), ag = 3,8 =0.1
and & = 0.1. Then the range of the posterior probability of H,, for various values
of 6, and x, is given in Table 1. When x < 1.5, the uncertainty in P"®¥)(H,) is

TABLE 1
Range of the posterior probability of H,

x 6,=0 6, =10 6, =20
05 (0.46, 0.69) (0.46, 0.68) (0.59, 0.78)
1.0 (0.42, 0.65) (0.35, 0.59) (0.42, 0.65)
1.5 (0.35, 0.57) (0.24, 0.45) (0.24, 0.45)

4.0 (0.004, 0.007) (0.002, 0.007) (0.0008, 0.002)
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almost entirely due to the uncertainty in the prior probability of H,. When
x = 4.0, the uncertainty in g also contributes significantly to that of P"?*)(H,).

3. Unimodal contaminations.

3.1. Introduction. When 7, is not symmetric about its mode 6, (and even in
some situations when it is), it may be desired to drop the symmetry assumption
on g that was made in Section 2. Then, the class of prior distributions is given
by (1.1), where

@ = {all distributions which are unimodal
with the same mode, 6, as that of =,}.

Here we present the analogs of the results in Section 2 for this class. Proofs are
similar and hence are omitted.

3.2. Preliminaries.

LEMMA 3.2.1. As in Lemma 22.1, for g € @ from above, and any g such
that [|8(0)|f(0)q(8) db < oo,

[&@)1(0)a(0)db = [~ Ho(z) dF (=),

where F is some distribution function and
1 0+ 2
- 0)f(0)do ifz+0,
ey by M OLOL R &
g(oo)fx(oo) ifz=0

We will consider the same examples of g as in Section 2. For simplicity, we
therefore adopt the same notation, viz., H,, H,, H, and H,, for the correspond-
ing H#’s as described in Section 2.2.

3.3. Range of the posterior expected value of g(6). Let I' be as in (1.1), and
I, € T be given by
= {7(8) = (1 — &)my(8) + eq(8): q(8) is U(6,, 6, + 2) or U(6, — z, bp)

for some z > 0}.

Then, Theorem 2.3.1 is also valid here, with H%, H,, T and I as defined above.

ExaMpLE 3.3.1 (Range of the posterior mean). We can find the range of the
posterior mean as in Example 2.3.1 with H; and H,, given as in Section 3.2. As an
example, let X|0 ~ N(0, 02) and 7,(8) be N(u, 7%). Then a, a, are as given in
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Example 2.3.1 and

Zp
iy C (p—x) (p+2z-x) -
l(z)_;_\/é_;. exp| — — exp{ — 57 L[] T o(2).
Letting
. n—x z2+p—x z+p—x L—x
_q)(O)q)(o)’_(O)_(o)
and
(z+u—x)
V=EQl s
g

the values of z which maximize and minimize (a, + H(2))/(a + Hyz)) are
given by the solutions of the equation (obtained by differentiating the above)

(ot + ux)(oa + v) — g(oa, + rpn)
B v(za + ap + u — a,) '

As a specific example, let p =0, 62=1, 72=1 and ¢ = 0.1. In Figure 4 the
ranges of 6"(x) and the values of §™(x) for various values of x are displayed.
Note that the ranges are larger than those in Figure 1, as would be expected.

ExAMPLE 3.3.2 (Range of the posterior probability of a set). The range of the
posterior probability of a measurable set C, as = varies over I, can be obtained
as in Example 2.3.2 with H, and H,, given as in Section 3.2. As an example, let
X|0 ~ N(8,1), m(9) be N(0,2) and & = 0.1. When x = 0.5, the 95% HPD credible
set for 4 is C, = (—1.27,1.93), and the range of the posterior probability of C, is

inf P"?109(g € C,)) =094, sup P"?%9(g € C,) = 0.96.

zel 7el
These are attained when the contaminations are, respectively, U(0,3) and
U(0,0.75). When x = 4.0, the 95% HPD credible set for 4 is C, = (1.07,4.27), and
the range of the posterior probability of C, is

inf P"010(g € C,) = 0.77, sup P"°140(9 € C,) = 0.97.

mel ael
These are attained when the respective contaminations are U(0,6.3) and
U(0,0.97).

3.4. Range of the posterior variance for fixed posterior mean. Let Iy and Ty,
be as in Section 2.4, but with @ as in (3.1) and
Q={¢g=aU,+(1-a)U,.:0<a<1landz,z*>0},

with U, representing a uniform distribution of the form U(6,,6, + y) or
U(6, — y, 6,). Then, Theorem 2.4.1 is valid with Iy and I}, as defined above.
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F16. 4. Graphs of range of the posterior mean (unimodal contaminations) and 8™(x) against x.

Furthermore, when 1/f,(8) is convex in § the infimum, as in Section 2.4, can be
expressed as the minimum of a function of one variable over a specified range.

EXaMPLE 34.1. Let X|0 ~ N(6,1), 7,(6) be N(0,1) and e = 0.1. Ranges of
the posterior variance, when the posterior mean is held fixed at different values,
are displayed in Figures 5 and 6 for x = 1.0 and x = 4.0, respectively.

3.5. Testing hypotheses. The discussion in Section 2.5 applies here, though
‘now we will constrain g to be in

G = {g(8) = (1 — €)go(8) + eq(8): g is unimodal with mode 4, }.

Then Theorem 2.5.1 is valid here, with H replaced by sup, Hy(2).
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F1G6.5. Range of posterior variance as posterior mean varies from 0.44 to 0.59: x = 1.0.

ExXAaMPLE 3.5.1. As a specific example, let X|0 ~ N(8,1), 6,= 0, g,0) be
N(8,,1), ay = 3, 8 = 0.1 and & = 0.1. Then the range of the posterior probability
of H,, for various values of 6, and x, is given in Table 2.

4. Discussion. As is clear from the figures given earlier, the degree of
robustness present, in any given situation, can depend heavily on the observed
value of x. The large ranges (of the posterior quantities) that we observed for
large x were due to our choice of 7, as normal; the resulting I' contained priors
with tails ranging from normal to uniform, and robustness is generally lacking
when there is such a wide variety of tails and the likelihood function is located in
the tail of the prior. Had we chosen =, to be, say, Cauchy the ranges for large x
would have been much smaller (and indeed go to 0 as |x| — o0); note that the
tail can, in some sense, never get sharper than that of (1 — &)m(8). Whether or
not one can rule out exponential tails, however, is a subjective decision, although
a large difference between x and 6, does indicate that sharp tails for the overall
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1.7

F1c. 6. Range of posterior variance as posterior mean varies from 1.92 to 3.52: x = 4.0.

T
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TABLE 2
Posterior probabilities of H,
x 6, =0 0, =10 8, = 2.0
0.5 (0.46, 0.69) (0.46, 0.69) (0.57, 0.79)
1.0 (0.41, 0.65) (0.35, 0.59) (0.41, 0.65)
1.5 (0.35, 0.57) (0.24, 0.45) (0.24, 0.45)
4.0 (0.004, 0.04) (0.002, 0.007) (0.0007, 0.002)
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prior may not be very appropriate [see Berger (1985)], although the large
difference could, of course, be due to an “outlying” x.

As mentioned in Section 1.3, an e-contamination class can be “too big,” in the
sense of containing unreasonable priors which artificially inflate the ranges of the
posterior criteria. We mentioned that choosing @ = {all distributions} is gener-
ally “too big.” Further evidence of this comes from noting that, if X,,..., X, are
iid. N(6,1) and @ = {all distributions} is used, then |sup, . 8"(x) — X| con-
verges to 0 as n — oo at the rate of {In(n)/n . For the classes we consider in this
article, the rate of convergence can be shown to be the correct rate \/1/n [see
Sivaganesan (1986)], correct in the sense that this is the usual rate at which
single posterior distributions converge.

A reasonable alternative to the choices considered here is the choice @ = {all
distributions such that the resulting = = (1 — €)m, + ¥q is unimodal}. This was
considered for the ML-II problem in Berger and Berliner (1986), and for the
posterior mean in Sivaganesan (1987). Besides being substantially more difficult
to work with, there is some indication in Berger and Berliner (1986) that this
class might also be too big. The classes we have considered seem to strike a
reasonable compromise between the desire to have I' include all reasonable
priors, and the problems of having a too-large I'. Whether one uses either of
these classes is, of course, dependent on believing that either symmetry and
unimodality, or just unimodality, are reasonable.

Comparison of the numerical results in Sections 2 and 3 indicate that the
effect of the symmetry assumption is relatively modest. The largest effect was in
the situation of Examples 2.3.2 and 3.3.2, for x = 4.0; the nominal 95% credible
set had posterior probability ranging between 0.830 and 0.965 with the symmetry
assumption, and ranging between 0.77 and 0.97 without. The difference is not
great. In contrast, the unimodality assumption can have a dramatic effect;
compare the ranges in this article with those in Berger and Berliner (1986),
where @ = {all priors} was considered.

A slight modification of the Section 3 unimodal class, that might be appealing,
is to impose the additional constraint that 6, be the median of g; this prevents
all the contaminating mass, ¢, from being concentrated on one side. Analysis for
this class can be done similarly.

A second possible modification arises from observing that the key fact driving
much of the mathematics of the article is that unimodal densities are mixtures of
uniforms, and that the relevant extreme points for calculating infimums and
supremums are just one or two point mixtures of uniforms. This suggests the
possibility of replacing @ by the class of mixtures of a family of distributions
other than uniform, for example, the class of normal or maybe Cauchy distribu-
tions. Indeed this will typically work, the only real change being the replacement
of (2.2) or (3.2) by the corresponding mixtures over the new base parametric
family.

Alternative mixture classes might be useful in a variety of situations. First, if
say one feels quite certain that = has a smooth bell shape, then only allowing
smooth bell-shaped contaminations, as would result for example from letting @
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be all mixtures of symmetric (about 6,) normal distributions, can be reasonable
and will reduce the size of the ranges of posterior quantities. A second possibility
would be to consider a mixture class of, say, bimodal distributions, if one desires
to allow the possibility of departures from unimodality. The basic point is that a
great deal of flexibility is possible, without complicating most of the math-
ematics.

A final possible modification that should be mentioned is that of allowing
variation in the prior mode. It is certainly reasonable to assume that there is
some uncertainty in this mode. We did not explicitly incorporate this uncer-
tainty because: (i) we feel that the central part of the prior is easier to elicit than
the tail of the prior, and were hence mainly concerned with including contamina-
tions that allowed very general tail behavior; (ii) small variation in the prior
mode will typically not change the Bayesian answers much; and (iii) allowing
variation in the mode can easily be done utilizing our results, with the appending
of an optimization over the mode. (In a sense, parametric optimizations are easy;
the purpose of the article is partly to show how optimizations over large classes
of distributions can often be reduced to parametric optimizations.)

When robustness fails to obtain for a given ¢, m, and @, one must reconsider
these subjective inputs. [This is, of course, a somewhat controversial statement;
see Berger (1984), Section 2.4, and Berger (1985), Sections 3.7 and 4.12, for
discussion.] In particular, further refinement of ¢, =, or @ may lead to robust-
ness. Note that this refinement need not be simply a reduction in ¢ or . One
might well change =, itself. (Indeed, the old 7, might not even be an element of
the refined T, such as when the data strongly supports a subset of I" which does
not contain m,.) In any case, knowledge of the priors in I, at which the extremes
occur, can be invaluable in suggesting where to concentrate such efforts at
refinement.

APPENDIX

LEMMA A.1l. Let ¥ be the convex hull of a set ®; of probability measures on
the real line given by
<I)I= {”"r: TEI}’
where I C R* is some index set. Suppose that f and g are both real-valued
functions on R such that [|f(x)|dF(x) < oo for any F € ¥, and B + g(x) > 0
for some constant B. Then

oy AN ) A )
rev B+ [g(x) dF(x) ~ 507 B+ [g(x)n,(dv)’
The same result holds with “sup” replaced by “inf.”

IfROOF. Note that
(A1) A+ [1(x) dF(x) = [(A+ () [p(de)r(dr)

for some probability measure y on I.
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Using Fubini’s theorem, we can write (A.1) as
A+ [1(x) dF) = [[ (A +FD.la) i)
1

- f[( ﬁg :;ﬁi;gﬁiixx; )f(B + g(x))u,(dx)}y(dT)

(su J(A + f(x)),(dx)
L 1B+ g(x),(dx)

)(B + jg(x)dF(x)).
Thus,

p A I ) A+ ()

rev B+ [g(x) dF(x) ~ e B+ [g(x)p.(dx)
But, since ¥ D ®,, equality must obtain. The proof for the “inf” is similar. O
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