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IRREVERSIBLE ADAPTIVE ALLOCATION RULES!

By IncHI Hu AND C. Z. WEI

University of Pennsylvania and University of Maryland

Motivated by a scheduling problem arising from serial sacrifice experi-
ments, the asymptotic efficiency of irreversible adaptive allocation rules is
studied. The asymptotic lower bound for the regret of an adaptive allocation
rule is characterized by the minimum of a linear program. Based on a class of
one-sided sequential tests, asymptotically efficient rules which achieve the
lower bound are constructed. The conditions necessary for this construction
are verified in the serial sacrifice scheduling problem.

1. Introduction. Let IT;, i = 1,..., k, denote statistical populations speci-
fied, respectively, by univariate densities f;(x|0) with respect to some measure »,
where f;(+| - ) is known and 6 is an unknown parameter belonging to some set ©.
Let g,(x, 0) be the reward when population i is sampled and x is observed. An
adaptive allocation rule is defined to be a sequence of random variables ¢ = {¢,}
taking value in the set {1,..., k} such that the event {¢, = i} (“take nth sample
from II,”) belongs to the o-field &#,_, ='o(¢,, X},..., $,_1, X,_,), Where X;
denotes the jth sample. Let N be the sample size. In the following we shall
study the problem of designing an adaptive allocation rule which achieves the
greatest possible expected reward

N
(1.1) Jn(0) = glEa[g,sn(Xn, 0)]

under the constraint
(1.2) ¢, < ¢, forl<n<N-1.

Constraint (1.2) indicates that once a sample has been taken from II;, no further
sampling is allowed from II,,..., II,_;. An adaptive allocation rule which satis-
fies (1.2) is said to be irreversible. When the irreversibility constraint is removed
and I, is specified by f(x|6;), instead of f,(x|6), our allocation problem becomes
the celebrated multi-armed bandit problem. Starting with Robbins (1952), there
has been a considerable amount of literature on this subject. A substantial

contribution has been made recently by Lai and Robbins (1984, 1985) and Lai -

(1987).

Our formulation is motivated by the following experimental design problem
[Bergman and Turnbull (1983)]. In rodent bioassay experiments where N ro-
dents are simultaneously put on test, it is desired to estimate the onset time
distribution G, of a tumor. Due to the nature of the tumor, its presence
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802 I.HU AND C. Z. WEI

({X = 1}) or absence ({X = 0}) can only be detected through sacrifices. Consider
a sequence of fixed times or “stages” ¢, < --- < ¢,, at which sacrifices of one or
more rodents could be made. Then at stage ¢;, instead of observing the onset
time, a binary random variable X is observed after each sacrifice. X can be
viewed as a random sample from the population II; which is specified by

(1.3) [:(%10) = [1 = Go(£)]" *[Go(2))]", x=0o0r1,

and » is the counting measure on {0,1}. For estimation purposes, we would like
to allocate as many as possible sacrifices at time t*(6) at which the Fisher
information (“the expected reward”)

a 2
B[ 550n 1310))| = Eulgi(%,0)]
is maximized over the set {1,..., k}. Without a priori knowledge of 6, the
information of £*(6) can only come from the observed data. Thus an adaptive
rule, which utilizes previous observations, is desirable. Furthermore, since a
sacrifice can only be made at a time greater than or equal to the current age of
the rodent, the rule must be irreversible.

Now, let us go back to the general formulation (1.1) and (1.2). Assume that
/18i(x, 0)|fi(x|0) dv < oo and let

(14) h(0) = fgi(x»o)fi(xW) dv

be the expected reward if a sample is taken from II;. Also, let
N

(1.5) Ty(i) = X L=i)
n=1

be the number of all samples taken from II,. Since

N k
> ZEo{Eo[gi(Xm0)1(¢n=i}%;—1]}

n=1i=1

k
Y h(0)E,Ty(i),

i=1

Jn(8)
(1.6)

the problem of maximizing Jy(#) is therefore equivalent to that of minimizing
the regret

k
(1.7) Ry(0) = 2[”‘(0) — hi(8)] EoTn(i),
where ‘
h*(0) = max{h;(0):1 <i<k}.

Let ©,= {6 € ©: hy(0) = h*(6), hy(0) > hy(0),i=1,...,1— 1} (“II, is the first
best”), ©F = {6 € ©: hy(0) > hy(0),i # I} (“II, is the unique best”). Denote
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Kullback-Leibler numbers by

I(0,)) = [log( f(x16)/f.(xI\)) f(x18) d.
In this article we shall always assume that for all i,
(1.8) 0<I(0,\) <o forf +A.

Furthermore, in later sections we shall also assume that ® = (L, U), an open
interval and {©;} has a monotone structure, that is, there exist 6, 0 <i < k&,
such that either
L=6,<0, ,< - <6,<6,=1U,
(1.9) Gi* = (0,:, 0i—1)’ ®i = [0i’ 0i—1)’ fOl‘ 1 < i < k - 1,
0F =0, = (L’ak—l) )

or
L=6,<6,< -+ <0,_,<86,=1U,

(1.10) @i* = (0i—1’ 0,:), ®i = (0i—1’ 0,;], fOl‘ 1< i < k - 1,
0F =0, =(0,_,U).

Since (1.10) can be transformed into (1.9) by the reparametrization § —» —60, we
shall restrict our discussion below to the assumption (1.9) only. We shall also
assume that for 6 € ©,,, and 1 <j <,

I(6,\) is a continuous and increasing function in
Ae[6,U).

In Sections 3 and 4 we construct a sequence of adaptive allocation rules ¢, such
that for § € ©,,,

(1.11)

k
(1.12) Y, E,Ty(j)=0Q), ifm<ek,
Jj=m+1
(1.13a) Ry(8) ~r(6,m —1)log N, iftm>1,

where r(6, 1) is the minimum of the following linear programming problem.

PROBLEM A. Minimize !_,(h*(6) — h;(6))z; subject to conditions
I(0,6,)z, > 1,
1,(8,65)2, + I(6,6,) 2, > 1,

(1.14)
11(0, ol)zl + ¢ +Il(0,0l)z, 2 1

and

(1.15) 2,20 fori=1,2,...,1

The result (1.12) implies that
(1.13b) R, (0) =0(Q1) ife®,.
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This specifies the order of the regret when the best population is the first one
while (1.13a) gives the order when it is in a later stage. The result (1.12) together
with (1.13a) also imply that for all § € ©,,

Ey(N - Ty(j)) = O(log N).

Therefore, if more than one population gives the greatest reward (this is the case
when 6 = 6, for some ), our rules would tend to choose the first best one. This is
a desirable property for our experimental design problem since these rules would
terminate the experiment as soon as possible. In Section 2 we shall show that

these rules are optimal in the sense of the following theorem.

THEOREM 1. Assume that (1.8), (1.9) and (1.11) hold. Let ¢ be a sequence
of irreversible rules such that for all § € O, :

(1.16) Ry(6) = o(N?*) foreverya > 0.
Then for every 6 € O, ,,
(1.17) lihrlninfRN(o)/log N=>r(0,1).

Condition (1.16) of Theorem 1 implies that for all 8,
(1.18) Nlim N-Jy(0) = h*(0).

The rules that satisfy (1.18) are said to be consistent. Under the assumptions of
Theorem 1, the rules that satisfy (1.13a, b) are said to be asymptotically efficient.
The lower bound r(0, 1) of asymptotically efficient rules depends on when the
best population is available. This effect of “time arrow” does not appear in the
multi-armed bandit problem [Lai and Robbins (1985), (1.11)], where the rules are
allowed to be reversible.

Bergman and Turnbull (1983) and Louis (1984) have studied the serial sacri-
fice experiments mentioned at the beginning of this article. Under the assump-
tion that Gy(t) = 1 — e~ % [see (1.3)), they proposed rules which are consistent.
The efficiency issue (in our setting) had not been discussed. Furthermore, the
consistency result of Bergman and Turnbull (1983) is obtained when the sacrifice
times become dense and Louis’ problem is formulated under a continuous time
framework. As noted by Bergman and Turnbull (1983), in the carcinogen bioas-
say problem the sacrifice times could be at convenient weekly or monthly
intervals. In this case, our formulation should be more realistic than the others,
especially when there are only a few allowed sacrifice times. For some other
related work, see Louis and Orav (1985), Turnbull and Hayter (1985) and Morris
(1987).

In Section 3, based on a collection of one-sided sequential tests, a general
method for constructing asymptotically efficient rules is described. In Section 4,
an application to the serial sacrifice problem is discussed. In Section 5, a
simulation study is reported for the finite sample case.
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2. A lower bound for the expected regret. In this section, it is convenient
to assume (and we shall assume) that there exist independent random variables
{X;.,1 <i <k, n > 1} such that for each i, {X;,, n > 1} is i.i.d. with common

wn?

density f;(x|0) (“a random sample from II,”). For each irreversible rule ¢, the
associated Ty(i) defined in (1.4) can then be viewed as an %, (i)-stopping time,
where

Z(1)=0o(X,:1<j< _n) and for i > 1,
(2.1) F(i) = o(ij, Ty(m):1 <m <i,1<j< Ty(m))
ve(X,

pl<j<n).

The following lemma provides a constraint for the expected sample size.

LEMMA 2.1. Let ¢ be a sequence of irreversible rules which satisfies (1.16).
Then for every § € U _,, 0, and every A € 0},

(2.2) liminf i I,(0, A)EO(TN(i))J/log N>1.

REMARK. Our proof below follows closely that of Theorem 2 of Lai and
Robbins (1985).

ProoF. Since A € ©F, hy(A) > hy(A) for i # j. By (1.16)
(2.3) N — E(Ty(J)) = X Ex(Ty(i)) = o(N®) fora > 0.

i*j
In view of (2.3) and the Markov inequality, for any § < 1,
P)\[ ZJ: L(0,\)Ty(i) < (1 — 8)log N
e |
< L;(6, \)[N — E\(Ty(/))]/[1(8, \)N — (1 - 8)log N|
=o(N*') fora>0.
Now for n = (n,,...,n;) and 6, A € 0, define

LOAm) = 5 3 logl £ Xnl®) /£ XaM)].

i=1n=1

Let Ty = (Ty(1),..., Ty(J)) and for § > a, set

J
Ay=1{ X I,(8,\)Ty(i) < (1 - 8)log N,
i=1

(2.5)
L(8,\,Ty) < (1 —a)log N}.
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Then by (2.4), (2.5) and Wald’s likelihood ratio identity [Siegmund (1985)],

BlAN] = /:4 exp[L(6, A, Ty)] dP,
(2.6) < [4 exp[(1 — a)log N] dP,

= N'"%P|(Ay) = o(1).

In view of the strong law of large numbers and (1.8), as ¥/_,n; — o,

= o( -élni)

J
L(6,\,n) — Y I(6,\)n;
i=1

= o( Xj‘, L(9, A)ni), as.[B].

i=1

Since 1 — a > 1 — §, it follows that as N — oo,

P,{L(O, A,n) > (1 — a)log N for some n such that

J
Y I(0,\)n; < (1 — 8)log N} - 0.

i=1

This in turn implies that as N — oo,

P‘,{L(a, A,Ty) > (1 — a)log N,
(2.7) ’
f) L(6, M) Ty(i) < (1 — 8)log N} - 0.

i=1
By (2.5), (2.6) and (2.7)
J
Nlim Pa{ Y L(6,\)Ty(i) < (1 — 8)log N} =0,
—® i=1
from which (2.2) follows. O

Applying Lemma 2.1 successively for j=1,...,I, we obtain the following
corollary.

COROLLARY 2.2. Assume that (1.8) holds. Let ¢y be a sequence of irre-
versible rules which satisfies (1.16). Then for every § € ©,,, and A, € 0},
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lilsninf I(8,\)E,[Ty(1)] /log N > 1,

l
h;\tlninf Y. I,(0,\,)Es[Tyn(i)] /log N > 1.
7o =1

Since our goal is to minimize Y!_,[2*(8) — h(8)]E¢(Tn(i)), (2.8) leads us to
consider the following linear programming problem. For the background knowl-
edge of the linear programming and the terminology used in this article, the
reader is referred to Duffin, Peterson and Zener (1967).

PROBLEM B. Minimize ¥_,b,z,, subject to the conditions

a;;2, =1,
29) a2, + ag929 21,
apz, + - +auz, >1,
and
(2.10) ZiZO, i=1,...,l.

LEMMA 2.3. Assume that for1 <i <,
(2.11) b;>0 and a;>0 forl<j<i.

Then Problem B has a solution.

The proof of this lemma is easy and we omit it.

From now on we assume that A, = @} X -.- X0/ is nonempty. For each
N=(,...;, ) €A, and 6 € O,,,, set b;=h*(0) — h(0) and a;; = I,(6,)))
in Problem B. Assume that (1.8) holds; then (2.11) holds as well. By Lemma 2.3,
Problem B has a solution. We denote its minimum by r(4, [, \).

THEOREM 2. Assume that (1.8) holds and A, is nonempty. Let ¢, be a
sequence of irreversible rules which satisfies (1.16). Then for every § € O, ,,

(2.12) liminf Ry(60)/log N > sup r(8,1,\).
N—-oo NEA,

Proor. If liminfy_, Ry(0)/log N = oo, then (2.12) is automatically
satisfied. Assume that liminfy_ R, (6)/log N = ¢ < oo. Since h*(6) —
hi(0) >0 for 1 <i<! and Rpy(0) = I'_(h*(0) — hi(0))Ey«(Tx(i)),
liminfy ,  Ey(Tn(i))/log N < oo for 1 < i < I. We can choose a subsequence N,
such that

lim Ry(8)/log N, = ¢
n—oo
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and
(2.13) lim Ey(Ty(i))/logN, =2, 1<is<lL
It is clear that
(2.14) 2,20 forl<i<l
and
l

(2.15) c> Y (h*(0) — h;(0))z,.

i=1

For each N\ € A}, by Corollary 2.2, we have that
I(0,\)z, =1,

(2.16)

L(6,A\)z, + --- +L(0,\)z; > 1.

By (2.14) and (2.16), Xi_(h*(8) — hy(0))z; = r(6, I, \). Hence
l
Y (h*(8) - hi(o))?i > sup r(6,1,\).

i=1 NEA,

This and (2.15) complete our proof. O

REMARK. In Theorem 2, the monotone structure (1.9) was not necessary and
® could have been any set.

The following lemma provides a link between the lower bound of (2.12) and
that of Theorem 1.

LEMMA 24. Assume that (1.8), (1.9) and (1.11) hold. Then the minimum of
Problem A is

(2.17) r(0,1) = sup r(0,1,\).
NeA,;

Proor. By our assumptions, we have that ©,,, = [0,,,,0,), A, = (6,,U) X
<o X(0,6,_,) and 6,,, < ,< --- <8, < U. Hence for each N\ € A;, A; > 6,
for 1 <i < l. By (1.11), for any 6 € O,, ,, we have

(2.18) 1(0,6,) <I(0,)\;), 1<i<l1<j<l
Now let z be a solution of Problem A. In view of (1.14) and (2.18), z also satisfies
(2.16). Consequently,
l
r(6,1) = Y (r*(6) — hy(0))z; = r(6,1,\).
i=1

Hence

(2.19) r(0,1) > sup r(6,1,\).
NeA,;
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Choose N\, = (A{(n),..., A)(n)) € A, such that
(2.20) lim N, = (6,,...,0,).

Fix 0 € 0,,,. Let z, = (2(n),...,2(n)) be a solution of Problem B with
b; = h*(0) — h(0) and a,; = I(0, A,(n)). Set

(2.21) ¢;(n) = max{I,(8,A;(n))/I,(6, 0) o I(0,7,(n))/1,(0,6,)}.

In view of (2.20) and (1.11),

(2.22) lim ¢(n) =1, 1<i<l

By (2.21), (¢(n)z(n),..., c(n)z,(n)) satisfies (1.14) and (1.15). Hence
[ max ¢,(n)]r(0, 1, \,) > 2 bic)(n)z,(n) > r(8, I).

Applying (2.22), we obtain
sup r(0,1,\) > r(0,1).
NEA,

Now (2.17) follows from this and (2.19). O

Proor or THEOREM 1. Since all conditions of Theorem 2 and Lemma 2.4 are
satisfied, (1.17) is a direct consequence of (2.12) and (2.17). O

To understand the lower bound (1.17) of Theorem 1, it is natural to ask if we
replace all inequalities in (1.14) by identities whether the solution of the result-
ing equations is a solution of Problem A. To answer this question, let us consider
Problem B. Let 0 = (0,...,0),1 = (1,...,1) and C be the / X [ triangular matrix
with components

i/ by l>i>},
(2.23) ¢ = {gu/ j i>]

otherwise.

We shall use the conventions that x > y iff x; >y, for 1 <i </ and x > y iff
x; > y; for 1 < i < I. We shall also use “’” to denote the transpose of a vector or
a matrix.

LEMMA 2.5. In Problem B, assume that (2.11) holds and the solution z, of
the equations

a2, =1,
(2.24) az.lz1 + a2, =1,
all.z1 + - tayz, =1
satisfies (2.10). Then z, is a solution of Problem B if
(2.25) 1C'>0
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and z is the unique solution if (2.25) is strengthened to be

(2.26) 1C'>0.
Proor. By changing the variables a = (b,2,,..., b;2;), Problem B is trans-
formed into the problem to minimize X:_,a; subject to conditions
(2.27) aC’ >1
and .
(2.28) a>0.

The solution z, of (2.24) is also transformed into a vector y which satisfies
YC’ =1 and y > 0. Now let a be a solution of the new problem. Clearly,

l l
(2.29) Ya—- Yy,<0.
i=1 i=1

By (2.25) and (2.27), there exist s >0 and y > 0 such that 1 =sC and
aC’ — 1 = y. Hence

ol’ — ys/ = acrs/ _ ysr =1g = .YCISI — ,Yll
or
1 1 1
(2.30) Z ai - E Yi = Z yisi > 0.
i=1 i=1 i=1
In view of (2.29) and (2.30), v is a solution of the new problem and

l
(2.31) E yisi = 0.

i=1
Furthermore, if (2.26) holds, then s > 0. The fact y > 0 and (2.31) imply that
y = 0. Consequently, aC’ = 1. Since C is invertible, y = a. O

LEMMA 2.6. In (2.24), assume that a;; > 0 forl > i > j > 1. If for each j,
(2.32) a;; (strictly) | asi 1 forl>iz=>},
then the solution z > 0 (z > 0).

Proor. The proof follows easily from the identities

(2.33) (ain = @ip)zn + oo (@ — aip,0)20 = a2
l1<i<l-1
Since (2.25) is equivalent to
(2.34) 1=yC forsomey >0,

with the same proof as in Lemma 2.6 we have the following result.
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LEmMA 2.7. Assume that b;> 0 and a;; > 0 for l > i > j > 1. If for each i,
(2.35) c;; (strictly) 1 asj 1 fori>j>1,
then (2.25) [(2.26)] holds.

As a summary, we state the following theorem which provides a necessary and
sufficient condition for a sequence of rules to be asymptotically efficient.

THEOREM 3. Assume that (1.8), (1.9) and (1.11) hold. Let ¢, be a sequence
of irreversible rules. Suppose that for any 0 € ©,,,, anyi < [,

(2.36) 1(0,6,)/(h*(6) — hy(0)) 1 asj t forl<j<i.
Then ¢y is asymptotically efficient if (1.13b) holds and
(2.37) Nli_r}noo E,(Ty(i))/logN=2, V0e0,,,

where z; solve

1(0,0,)z, = 1,
(2.38)
I1(0,0,)z, + --- +1,(0,0,)z,= 1.

Furthermore, if (2.36) is strengthened to be
(2.39)  I,6,6,)/(R*(6) — hj(0)) strictly 1 asj 1 forl<j<i,

then (1.13b), (2.37) and (2.38) are also necessary for ¢, to be asymptotically
efficient.

Proor. Fix 0 € ©,,,. Let a;; = I(0, ;) and b; = h*(6) — h (). Then Prob-
lem A is equivalent to Problem B. Define c;; as in (2.23). Then (2.36) is
equivalent to (2.34). Hence (2.25) holds by Lemma 2.7. From (2.37), (2.38) and
z > 0, (2.24) follows. By Lemma 2.5, z is a solution of Problem A, that is,

1
Nlim Ry(68)/logN= Y bz, =r(0,1).

i=1
Thus (1.13a) is satisfied and ¢, is therefore asymptotically efficient. On the
other hand, if (2.39) holds, then by Lemmas 2.7 and 2.5, Problem A has a unique
solution, say, z,. Let ¢, be asymptotically efficient. Then (1.13b) holds by
definition and, in view of (1.13a), any limit point z of

{(Eo[Tn(V)],-.., E4[Tn(1)]) /log N: N = 2}
satisfies (2.24). By Lemma 2.5, z = z,. Consequently, (2.37) and (2.38) hold. O
3. Construction of efficient rules. In this section we describe a general

method of constructing asymptotically efficient rules under the assumptions of
Theorem 3. First, note that the monotonicity assumption (1.9) suggests that we
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consider a class of one-sided tests. More precisely, in order to ensure R (8) = O(1)
when the first population is the best one, we always start sampling from II,.
Since ©, = [0, U), we then perform a one-sided test to see whether 4 < 6,. In
view of Theorem 3, if ¢, is asymptotically efficient and 6 < @,, then we need
about log N/I,(9, 6,) observations from II, to be reasonably confident that the
best one is ahead. We then sample from II, and perform the one-sided test to see
whether 6 < 6,. Since the observations from II, carry some information about 6,
they should be incorporated into the new test. As a result, instead of taking
log N/I,(6,86,) observations from II,, Theorem 3 informs us that about
[1 - 16, 0,)/1,6, 6,)]log N/I8, 6,) observations would be sufficient to be rea-
sonably sure that the best one is still ahead if 6 < 6,. This procedure goes on
until all N samples have been taken.

To fix the ideas, for each 1 < i < &, let {X;,} be'a random sample from II,.
For any sequence of integer-valued random variables Ty(1),..., Ty(k), define
Z,(1) as in (2.1). From Section 2, for any irreversible rule ¢ the associated Ty (i)
defined in (1.5) is an % (i)-stopping time. Conversely, if for each i, T(i) is an
Z,(i)-stopping time, then ¢ = {¢,} is an irreversible rule where

(3.1) 4= 1 if TTy(i) <j< Y Ty(i) and Ty(0) = 0.
i=0 i=0

Our goal is therefore to construct Z,(i)-stopping times Ty (i) that satisfy (1.13b),
(2.37) and (2.38). To this end, for each [, let F, be a probability distribution with
support (L, §,). For nonnegative integers n,,..., n,, define

I n I n,
©2) Mnseeim) = [T [ 1500 a5 )| 11 T 15000 |

Now define Ty (i), 1 < i < k&, inductively by
Ty(0) =0
(1) = inf{n: M)(Ty(1),..., Ty(I - 1), n) > N},

(3.3) Ty(l) = min{'rN(l), N- If TN(i)}, forl <l<k,
Ty(k) = N '3 Ty(0).

Clearly, Ty (i) is an Z(i)- stoppmg time and X*_ Ty (i) = N. It is also clear from
(3.3) that 7,(7) is the sample size of a sequential one-sided test for testing
H,: § < 6,. The idea of using the mixture of likelihood ratios such as (3.2) in the
sequential testing problem is due to Robbins (1970).

- In the following we shall assume that for 1 < i < &,

(34) fi(x10) = eXP(“i(a)x - ‘Pi(o))

where «; is a continuous and strictly increasing function. If we set 7 = a,(9),



IRREVERSIBLE ALLOCATION RULES 813

®,(n) = ¥;(a; (1)) and V, = a;((L, U)), then V, is an open interval and
(3.5) f{(xn) = exp(nx — @(n))

a canonical exponential family with parameter space V.. Under this setting, the
asymptotic behavior of E4(7y(1)) had been studied thoroughly by Pollak and
Siegmund (1975). In fact, the proof of the following lemma follows closely that of
Theorem 1 of Pollak and Siegmund (1975). Since we only have to obtain the
first-order approximation, our proof is simpler.

LEMMA 3.1. Assume that (3.4) holds,

(3.6) L<6,_,<---<6,<U
and
(8.7) 0 <02(0) =vary(X,;) <o forl<ic<k.

Let {Ty(i)} be defined as in (3.3). Then for 6 > 6, (1.12) holds and for
ISlSk— 1and0€[01+1,0l),

!
(3.8) limsup | Y I,(6, 6,)E,Ty(i) |/log N < 1.

N-oow |i=1
Before we give the proof of Lemma 3.1, we need another lemma.

LEMMA 3.2. Assume that (3.4) and (3.7) hold. Then (1.8) holds,

I,(0, M), as a function of A, is continuous and increasing

(39) for A\ >0
and
(3.10) Eg( fi(X110)/f(XalA)) <1 forB=X=4.

Proor. Fix i. Let us use (3.5). By (3.7),
(3.11) 0 < o?(a7Y(n)) = ®/(n) forallye V..

Thus @, is strictly convex and ®/ is strictly increasing. Now, for v, n € V;, let I

be the Kullback—Leibler number of f,(x|y) with respect to ﬁ(x|11). Then
(3.12) L(v,m) = (v = n)E(Xy) — [®:(v) — @,(n)]
= (v = m)®/(y) — ®:(v) + ().

Hence
(v, m)
an

Since Ii(y,y) =0 and I(0, A) = I)(a;y(8), a,(\)), this implies (1.8) as well as
(3.9). For (3.10), let n > y > ¢. Then '

(3.13) n=2n—y+¢=¢.

®/(n) — ®/(y) >0 forn>y.
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Hence n — v + ¢ € V.. This implies the finiteness of

E,({(Xalt) /( Xaly)) = &0 00000 [o0-r+0% dy ()
(3.14) — e~ O HEM -V +O(1-T+) < g0 = ]
by (8.13) and the convexity of ®,.
Now, (3.10) follows directly from (3.14). O

ProoF or LEMMA 3.1. Given § > 9m, let us first show that (1.12) holds. For
this, it is sufficient to show that

(3.15) P)[ry(m) < ] < 1/N.
This is because (3.15) implies that
P)[Ty() + --- +Ty(m) = N] > By[1y(m) = ] =1 - 1/N.

Consequently,

k
(316) X Ey(Ty(J) < (k- M)NPo[ f Tn(J) > 0] <k-m.

j=m+1 Jj=m+1

For (3.15), it follows from a similar argument as that given in (15) of Robbins
(1970).

Now given 8 < 6, let us show (3.8). In the remaining part of this proof, to
simplify the notation, we shall use T, instead of Ty(i). Let p,(0) = E4(Xy),
Sy, = X1, X,,, T = min{ry() — 1, T}}, Sy = 7., X,, and

-1
1 y) = { T [a(d) - a(0)] S5, — TI%) - m)]}

i=1

+[ay(A) — a,(v)18r = T[¢:(A) — u(v)]-
By the definition of T,
log N > log M)(Ty,...,T,_,,T)

= log [ exp(1I(A, 6,)) dF(A)

(3.17)

(3.18) _ 11(6,,) + log fL" 'oxp(II(, 8)) dF,(A)

> 11(8,6,) +log [ exp(II(X,0)) dF\(),
|A—0|<8
forany 8 suchthat L <6 -8 <80 + 8 <6,.
By Jensen’s inequality,

exp(II(X, 8)) dF,/F,((6 — 8,6 + 8))
A—0]<8

(3.19) :
Zexp/ II(X, 8) dF,/F,((6 — 8,8 + 8)).
n-o|
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In view of (3.18) and (3.19),

log N > II(6, 6,) + log F,((6 — 8,0 + 8))

(3.20) +/A_0H(>\, 0) dF,/F,((8 — 8,6 + 8)).

Applying the identity I(A,v) = [e; (>\) — a;(MpA) — [¥i(A) = $i(v)] to
(3.17), we obtain

-1
1, y) = { £ [a/0) = aitr)][8n - m(A)Ti]}

(3.21) +[ay(A) - o (v)]{Sr - Mz(}‘)T]
+ T LOLNT+ LD,

Since T+ 1 < N + 1 is a stopping time and all stopping times T; involved in
(3.21) are bounded by N, Wald’s ldentlty [Chow and Teicher (1978), page 137]
implies that

-1
E,II(A,v) = { a0 - a()][1(0) = w0)] Ea(m}

+{a(A) = (V)] [1:(8) — p(N)] Ey(T + 1)

(3.22)
-1
+ E Ii(x’ ‘Y)EoTz + Il(>" Y)EOT
i=1
- [01(7\) - al(Y)]EO[Xl,T+1 - Hz()\)]~
Hence
-1
E,11(6,6,) = Y I,(6,6,)E,T; + I,(0,6,)E,(T + 1)
(3.23) i-1

- [“1(9) - al(ol)]Eo[Xl,T+l - Mz(o)]-

Since «; and p; are continuous, given & > 0, we can choose § so small that for all
1<i<l, |\ — 0| <?d implies

(3.24) lai(A) — a;(8)] 11 (8) — p(M)] <.
Now by Wald’s identity and Hélder’s inequality,

T+1 ) 1/2 .
1
Eg\ X 1741 — p(0) < Eo[ Y (X, — 1i(0)) ] < 05| Eo(T + 1)] / ,

n=1

where o} = Vary(X,,). In view of this, (3.22), (3.24) and the fact that I,(A, 8) > 0,
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we have

E,[  I(A,6)dF(})
A-0|<8

(3.25) > { _8[’5 E,T, + E,(T +1)| - K [E(T + 1)]‘/2}

i=1
X'FI((o - 8’ 0+ 8)),

where K = oy sup{|e;(0) — a;(A)|: |0 — A] < 8 or § = 6,}. Apply (3.23) and (3.25)
to (3.20). We obtain

-1
(3.26) log N > El [1.(6,68,) — ] EgT, + [1,(6,0,) — e] E/(T + 1)

—2K{E)(T +1)}"/* + log F,((8 - 8,6 + §)).

By the definition of T and T,, T > T, — 1. Note also that 8 < §,, by Lemma 3.2,
I,(0,8,) > 0 for all i. Using these facts and the fact that ¢ can be arbitrarily
small, (3.8) follows from (3.26). O

THEOREM 4. With the same assumptions as in Lemma 3.1, we have that
@) for 8 = 6, (1.12) holds, and (ii) for 1 <l <k —1 and 0 < 6,, (2.37) and
(2.38) hold.

ProOF. The result (i) had been shown in Lemma 3.1. We only have to show
(ii). First, we claim that if § < 6,, then

!

(3.27) h;\xlninf Y 1.0,6,)E,Ty(i)/log N > 1.
T =1

For this, we shall apply Lemma 2.1. In order to apply Lemma 2.1, let ¢,(8) be a
continuous function such that ¢,(6) >0 for 6 € (4,,0,_,) and <O for 6 ¢
[8;, 6,_,]. Define the reward function g,(x, ) = ¢;(8). Hence h;(8) = q;(8) and
Ox =(0,,0,_,), ©,=[0,6,_,) for 1 <i<k—1 and OFf =0, =(6,,U). By
Lemma 3.2, (1.8) holds. Furthermore, {Ty (i)} satisfies (1.12) and (3.8) by Lemma
3.1. This in turn implies that (1.16) holds. Therefore by Lemma 2.1, for 8 < §,,
A€ (6,0, ),

1
(3.28) lim inf Y I(0,\)Eg(Ty(i))/log N > 1.
0 =1

Using the continuity of I,(6, A), (3.27) follows from (3.28).
Now by (3.8) of Lemma 3.1 and (3.27), we have that

l
—® =1

This implies that any limit point of (Ty(1)/log N,...,Ty(l)/log N) should
satisfy (2.38). But (2.38) has a unique solution. Hence (2.37) and (2.38) follow. O
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As a summary, we state the following theorem.

THEOREM 5. Assume (3.4), (3.7), (1.9) and (2.36) hold. Define {Ty(i)} as in
(8.3). Then the associated ¢, defined by (3.1) is asymptotically efficient.

ProoF. By Lemma 3.2, (1.8) holds and (1.11) is a consequence of (3.9). By (i)
of Theorem 4, (1.12) is satisfied. This in turn implies (1.13b). By (ii) of Theorem
4, (2.37) and (2.38) hold. Thus all conditions of Theorem 3 are met. Therefore ¢
is asymptotically efficient. O

4. An application. In this section we shall apply Theorem 5 to the serial
sacrifice problem stated in Section 1. More precisely, for 6, ¢ > 0, let
(4.1) f(x)t,0) = (1—e ) (e7®)' ™", x=0,1
Alsolet0 < ¢, < -+ < ¢t,.Then II, is specified by the density f;(x|0) = f(x|¢;, §)
with respect to », the counting measure on {0,1}. Note that
(4.2) f(x|t,8) = exp[a(t, 0)x — ¥(t,0)]
where

a(t,0) =In(e’ — 1) and ¢(¢,0) = 6t.

It is easy to see that (3.4) and (3.7) hold with ® = (0, ). By (4.10) for § <A,

aI.(6,A
—L——) =t(e ¥’ —e ) /(1 - e ) >0.

aA 4
Hence (1.11) holds. Now, it only remains to verify (1.9) and (2.36) to obtain
asymptotically efficient rules via Theorem 5. For this, the following lemma
provides a convenient sufficient condition to prove (1.9).

LEMMA 4.1. Assume that all h; are continuous and that there exists
(6,1 <i<kFk), suchthat L=10,<6, ,< - <0, <6,=U,

(4.3) {6: hi(8) > hy1i(0)} = (6, V)
and
(4.4) © {0: hy(0) <hi4(0)) =(L,6;) forl<i<k.
Then (1.9) holds.
PrROOF. By the assumptions, (), 8,) C (05, 0,) C -+ C (8x_y, 6) and

(8,,0,) D (8,0,) D -+ D (0,,0,_,). Hence if h,(8) > h;.(0), then hy(8) >
hy(8) for j > i. Similarly, if A;_,(6) < h(6), then h(8) < hy(0) for j <i. By
the, continuity of h;, hi(6;) = h;,,(0;). These facts clearly imply that ©F =
(8,, 6,) and ©, = [8,, 8,). Replace the roles of 6, and 6, by 6, and 6,. It follows
that ©} = (6,,0,) and O, = [6,, 6;). Applying this argument inductively, we
obtain (1.9). O
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Now let us return to our special case and define
(4.5) h(t,0) =t2/(e? —1).
Then

hy(8) Eo(a—‘l%i)z — h(t, 6).

LEMMA 4.2. The function h has the following three properties:

For each 0 > 0, there is t(8) > 0 such that h, as a function of
(4.6) t, is strictly increasing in (0, t(6)) and strictly decreasing in
(#(0), ). Consequently, h(t(0),8) = sup,h(t, ).
Let t;> ty>t, > 0. Then for 6 >0, h(t,,0) > h(t,,0) =
h(ty, ) > h(ts, 0). Similarly, for 6 >0, h(t;, 0) > h(t,,0)
= h(ty, 0) > h(t,,0). Furthermore, there is no 6 > 0 such
that h(t,,0) = h(t,, 0) = h(¢;, 0).
Let t,> 1t > 0. Then there is o > \X>0 such that
(4.8) {0: h(t,,0) > h(ty,0)} = (A, 0)and {0: h(t,, 0) < h(t,, 0)} =
0, A). :

(4.7)

Proor. Consider the function d(x) = 2e* — 2 — xe®. Since d'(x) =
e*(1 — x), d is strictly increasing from d(0) = 0 up to d(1) = e — 2 and then
strictly decreasing to d(e0) = —o0. Thus d has a unique root p such that
d(x) > O0or < 0accordingto0 <x < p orx > p. Now, for > 0, dh(t,0)/dt =
td(t0)/(e® — 1)% Set

(4.9) t(0) =p/9.
Then dh/dt > 0 or < 0 according to #8) > ¢ > 0 or ¢ > #(0). Hence (4.6) is
proved.

Since (4.7) is an immediate consequence of (4.6), let us prove (4.8).
Let t, >t > 0. First, note that Ah(t,0) — h(t,,0) >0, =0 or <0
iff w(d)=t¥e®—1)—tHe"®-1)>0, =0 or <O0. Note that u”(§) =
(t,t)%(e® — e®) > 0. Thus u'(0) = t,t,(t,e™® — t,et’) is strictly increasing.
Since u'(0) = t,t,(t, — t,) <0, u is strictly decreasing from u(0) = 0 to u(Z,)
where u'(t,) =0 and then strictly increasing to u(c0) = co. Hence there is
A € (0, 0) such that u(A) =0, u(d) <0if 0 <8 <A and u(f) > 0 if 0 > A.
This completes our proof of (4.8). O

LEMMA 4.3. For the serial sacrifice problem stated above, (1.9) holds.

ProoF. Note that (4.8) implies that there exists {f;,1 < i < &} such that
(4.3) and (4.4) hold with U = « and L = 0. By (4.7), we know that (6, U) C
. (0;4,U). Thus 6,>9,,, Since h; are continuous, A,(6;) = h;,,(§;) and
h; (0,41 = h;,4(0,,,). Hence 8, = 0, , is impossible for it is against (4.7). Thus
0, > 0,,,. Thus all conditions of Lemma 4.1 are satisfied and therefore (1.9) is
proved. O
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LEMMA 4.4. For the serial sacrifice problem stated above, (2.39) holds.
Consequently, (2.36) is also true.

Note that I,(6,A) = I(¢;,0, ) where
I(t,8,\) = Egln( f(xl¢,8)/f(xIz,\))

(410) =(A-0)t+ (1 -e?)n{(e”-1)/(e? - 1)}.

PROOF OF LEMMA 4.4. Let 0 € [0,,,,6,). Then h*(8) = h,, (8) > hy (). By
(4.7) of Lemma 4.2, h(0) > h;_y(0) > --- > hy(0). Hence h*(0) — h;(0), as a
function of j, is strictly decreasing. Hence in order to show (2.39), it is sufficient
to show that for any i <[, I(6, 6;), as a function of j, is increasing for j < i.
Since 148, 6;) = I(¢;, 0, 6,), it is sufficient to show that
(4.11) I(t,0,0;), as a function of ¢, is increasing for ¢ < ¢;.

But (4.6) and (4.9) of Lemma 4.2 imply that ¢, < p/8,, for h;, (0;,) = h;(8;) =
h*(6;). Also note that 6 < 6,. Thus (4.11) follows from the lemma stated below.

LEMMA 4.5. Let A > 6 > 0. Then I(t, 0, \), as a function of t, is increasing
for 0 < t < p/A\, where p > 0 and satisfies

(4.12) 2ef — 2 — pe® = 0.

ProoF. Let u = At and a = 6/A. Then by (4.10), the problem is equivalent
to showing that for each 0 < a < 1,
Iu)=(01—-a)u+ (1 — e “)In{(e** — 1)/(e* — 1)}
is increasing for 0 < u < p.
Hence it is sufficient to show that I'(z) > 0 for 0 < u < p. After calculation, we
find that
(4.14) I'(u) = e7*{V(u) + aln[1 — V(u)]},
where

(4.13)

V(u) = (e* — e**)/(e* - 1).

Now,

V'(u) = {(1 — a)ed+ou — o¥ 4 ae“"}/(e“ -1)>0,
by the strict convexity of the exponential function e*. Hence V strictly increases
from lim,_, (V(z) = 1 — a to V(o) = 1. Note that on the range 1 — a <s <1,
the function f(s)=s+ aln(l —s) has a zero s, > 0 such that f(s)>0
or < 0 according to s < s, or s > s,. Therefore if f(V(p)) > 0, then I'(u)e** =
f(V(u)) = 0 for all au < p. Hence we only have to show that for 0 < a < 1,
(4.15) o(a) =(e? —e*)/(e? — 1) + aln[(e* — 1)/(e* — 1)] > 0.
After calculation we have

0"(a) = (—p%*)/(e? = 1) + p/(1 - e™*)

(419 +{(p+ ap’)(1 — &™) — o} /(1 — e7*)".
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Applying (4.12) to the first term of (4.16), we obtain
v”(a) = — 2pe@~Dr
(4.17) +{p(1—e*) + (p+ ap®)(1 — ) — ap?} /(1 - e )’
= p{2[1 - e« (1 = )] = [ap/(1 = )]} /(1 — e ).
Using the fact that x/(1 — e™*) is an increasing function and (ap)/(1 — e™*) <
/(L —e ") =2,
e it Lty

by the convexity of the function e* and the fact that —ap and p(a — 1) lie
between —p and 0. Observe that

v(a) = (—pe®)/(e* = 1) + In{(e® = 1)/(e* = 1)} + ape®/(e ~ 1).

Hence
(4.19) lim v'(a) = 0.
a—1

In view of (4.18) and (4.19), v'(a) < -0 for 0 < a < 1. Since v(1) =0, (4.15) is
proved. O

REMARK. Lemmas 4.3 and 4.4 show that the rules constructed in Section 3
are asymptotically efficient and their asymptotic sample size satisfies (2.37) and
(2.38). Furthermore, (2.39) holds by Lemma 4.4. Therefore, by Theorem 3, any
asymptotically efficient rule should also satisfy (2.37) and (2.38).

5. Simulation and comparison. In this section we report some simulation
results on two classes of allocation rules, which are the asymptotically efficient
rules discussed in Section 3 and the ratio rules proposed by Bergman and
Turnbull (1983). The simulation results are conducted under the benchmark
situation studied by Bergman and Turnbull.

More precisely, we take sample size N = 200, population size k& = 18, stages
{1,...,18} and the density of II; to be

(5.1) fi(x10) = (1 - e™*) (™))",
where x € {0,1} and i € {1,...,18}. Recall that under these assumptions, the
allocation rules constructed in Section 3 are shown to be asymptotically efficient
in Section 4.

Also recall that {X,,} is defined to be a random sample from the population
ITI, and S, = X% X,,. For any b > 0 and 2* > 0, the ratio rule (b, 2*) =

n=1

Wpeeor ¥ ,,3 is then defined inductively by
¥ =0,
J, = inf{n,: bS, - (n, - 8,) > 2*},

-1

i=0
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and

k—1
¥y, = 200 — E ;.

i=0
First notice that the data from previous stages are not used in defining ,. The
only information used in specifying the next sample size y, is the remaining
sample size 200 — XiZ1y;. Second, in practice the constants b and 2* can be
adjusted so that a reasonable rule can be achieved. When b is fixed, larger 2*
would prevent the switch of populations too soon and smaller z* would leave the
inferior population earlier. Following Bergman and Turnbull, we take b = 4 and
2* = 4,8 for our simulation study.

We can also introduce an adjustment factor into our rules (3.3). For any

constant ¢ > 0, redefine :

(1) = inf{n: M)(Ty(1),..., Ty(I - 1),n) > cN}.
With minor changes, it can be shown easily that Theorem 5 still holds. In our

study below we choose c¢ = 0.01. We also choose F,(f) to be the uniform
distribution over (0, 6;). Hence for 1 < I < k&,

0, ! éw -1 S .
M/(n,,...,n;) = 0[{/(1 l—[l ( o ) e l=0m: gg
i=

and the asymptotically efficient rule ¢ = (T(1),..., T(k)) is then defined induc-
tively by

7(0) = 0,
(1) = inf{n: M,(T(Q),...,T(I - 1),n) > 2},
-1

T(1) =min{'r(l),200— ZT(i)}, 1<l<k-1,
i=0
and
k-1
T(k) =200 — Y T(i).
i=0
Note that {6} is determined by (4.3) and (4.5). Under the assumption (5.1), we
have Table 1.
Following Bergman and Turnbull (1983), for a given rule R = (R,,..., R}),
define its efficiency to be

en(R,0) = Ey(Jy(0))/J(8) = dy(8)/J(6),

where
k
In(0) = L R[i%/(e” ~1)]
i=1
and

J(8) =N sup [t*/(e? - 1)].

0<t<oo
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TABLE 1
Values of {6;}
i 0 1 2 3 4 5 6 7 8 9
0; © 1.099 0.645 0458 0355 0.290 0.246 0.212 0.188 0.168
i 10 11 12 13 14 15 16 17 18
[ 0152 0139 0127 0118 0116 0.103 0.00966 0.00911  0.0000

When 6 € O, = (6,_,, §,), the ith population is the best one.

TABLE 2
Estimated efficiencies and standard deviations for (4, 4), (4, 8) and ¢

0 (best

population) 1.0(2) 0.5(3) 0.25(6) 0.167(9) 0.125(13) 0.1(16)
v(4,4) 0.888 + 0.011 0.936 + 0.005 0.952 + 0.002 0.945 + 0.001 0.937 + 0.001 0.923 + 0.001
Vv(4,8) 0.925 + 0.008 0.950 + 0.003 0.938 + 0.001 0.928 + 0.001 0.905 + 0.001 0.882 + 0.002
s 0.924 + 0004 0.943 + 0.004 0.946 + 0.003 0.930 + 0.004 0.931 + 0.004 0.938 + 0.003

[See (1.6) and (4.5) for statistical interpretations.] Given a sample of R and the
value of 6, one can use the sample mean of Jy(8)/J(0) to estimate ey(R, 8).
Based on 100 simulations, Table 2 gives the estimated efficiencies and their
standard deviations for the rules y(4,4), ¥(4,8) and ¢. For comparison, we take
the same # from Bergman and Turnbull (1983). It is interesting to note that for
Y(4,4) and ¥ (4,8), the estimated efficiencies are very close to the efficiencies
listed in their article. :

Although the ratio rules (4, 4) and (4, 8) do not use the data from previous
stages, Table 2 shows that these rules perform reasonably well for various 6.
However, as expected, y(4,4) favors smaller 8 and (4, 8) bigger §. When the
range of 6 is not known a priori, it may be difficult to choose between (4, 4) and
Y¥(4, 8). On the contrary, our rule ¢ which performs uniformly well, does not have
this disadvantage. Furthermore, this uniformity over a wide range of parameter
values seems to indicate that our rules may be asymptotically optimal for a
broad class of prior distributions in the Bayesian setting. Further research along
this line is of interest. For the related multi-armed bandit problem, see Lai
(1987).
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