The Annals of Statistics
1989, Vol. 17, No. 2, 589-605

ON POLYNOMIAL-BASED PROJECTION INDICES FOR
EXPLORATORY PROJECTION PURSUIT

By PETER HALL

Australian National University

We develop asymptotic theory for two polynomial-based methods of
estimating orientation in projection pursuit density approximation. One of
the techniques uses Legendre polynomials and has been proposed and imple-
mented by Friedman [1]. The other employs Hermite functions. Issues of
smoothing parameter choice and robustness are addressed. It is shown that
each method can be used to construct /7 -consistent estimates of the projec-
tion which maximizes distance from normality, although the former can only
be employed in that manner when the underlying distribution has extremely
light tails. The former can be used very generally to measure “low-frequency”
departure from normality.

1. Introduction. Projection pursuit is a tool for finding the most interesting
low-dimensional features of high-dimensional data sets. In exploratory projection
pursuit, the focus of interest is the density. of the population from which the
data were drawn. The present article examines measures of interestingness based
on orthogonal series density estimators. We study the influence of the smoothing
parameter (i.e., number of terms in the series), and show that some interesting-
ness measures are more robust than others against problems that occur with
heavy-tailed densities.

The first step is to estimate that direction in which data are most interesting.
If it is accepted that normal data are the least interesting, then a measure of
departure from normality can be viewed as an index of interestingness. Indeed,
this is the approach which is usually adopted. Sometimes, distance from normal-
ity is measured in terms of entropy [2, 6 and 8]. Among distributions with given
variance, the normal distribution maximizes entropy. Therefore the projection in
which entropy is minimized could be termed the “most interesting.”

An alternative approach has recently been proposed and implemented by
Friedman [1]. See also Jones and Sibson [8]. It is based on transforming the
distribution of a projection to a distribution which would be uniform if
the projection were normal; and measuring L? distance of the density of the
transformed projection from the uniform density. In the present article we give
asymptotic theory for this technique and propose an alternative approach.
Section 2 discusses both Friedman’s method and our own in broad terms,
shedding light on advantages and disadvantages. We argue that as a measure of
overall departure from normality ours is more robust against problems caused by
heavy-tailed distributions. Nevertheless, Friedman'’s index would perform well as
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590 P. HALL

a measure of “low-frequency” departure from normality. It should be stressed
here that Friedman was not interested in finding heavy-tailed departures from
normality—indeed, heavy-tailed departures are essentially a nuisance that frus-
trate the search for other kinds of structure. Friedman was most interested in
clustering, low-dimensional relations and other “low-frequency” features.

Sections 3 and 4 develop theory for Friedman’s index of interestingness and
for our own, respectively. That theory gives concise advice on construction of
those empiric indices of interestingness which yield Vr -consistent orientation
estimates. This amounts to prescribing the “optimal” number of terms in a
certain orthogonal series density estimator. Unlike classical smoothing problems
in density estimation, construction of an empiric index which produces Vn -con-
sistent orientation estimates is relatively insensitive to properties of the un-
known distribution. All that is required is that the smoothing parameter (i.e.,
number of terms in the series) be chosen within a certain band of values. Our
asymptotic theory gives a concise description of the band.

We assume throughout that the data have the distribution of a p-variate
vector, Y, with zero mean and identity covariance matrix. In practical terms, this
means that techniques are applied to data which have been empirically standard-
ized for location and scale, exactly as done by Friedman [1]. Our main conclu-
sions do not change if empiric standardization is used in place of theoretical
standardization. All our results have generalizations to the case where projec-
tions are in q dimensions, for any q < p; we treat ¢ = 1 for simplicity.

We write g for the p-variate density of Y; ¢ and ® for density and
distribution functions, respectively, of the univariate standard normal distribu-
tion; Q for the set of all unit p-vectors; 6 for a generic element of Q; x - y for
the scalar product of p-vectors x and y; g, for the univariate density of
V, = 0 - Y; Djg for the rth derivative of g in direction ; and ||x|| = (x - x)/2.

2. Indices of “interestingness.” We begin by describing Friedman’s [1]
index I(f). With V;, = 6 - Y, put

Uy=29(V) - 1,

and let f, denote the density of U,. Then V; is normal N(0,1) if and only if Uj is
uniform on (—1,1). Hence, the L, distance of f, from the uniform density on
(—1,1) may be used to index the departure of V, from normality. Formally, this
index is

10) = [ {io(w) = $)"du= [ {fo(w)) du = .

The “most interesting” direction § is that which maximizes 1(8).

Let py, py,... be a complete orthonormal basis for the space of square-inte-
grable functions on (—1,1), chosen so that p, is constant. (Orthonormality
dictates that p, = 271/2.) The sequence selected by Friedman, and by ourselves
in Section 3, is the normalized Legendre polynomial sequence, but there are
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many other possibilities. Write
1 .
a(0) = [* p(w(w)du, i0,

for generalized Fourier coefficients of fo- Then by Parseval’s identity,

100) = 3 ay(8)"

i=1

We may easily estimate a;(#). An unbiased estimator is

n
4;(0)=n"' ¥ p{20(6-Y;) -1},
j=1
where Y,,...,Y, is a sample from the distribution of Y. Then, for some (suitably
chosen) m > 1, the empiric index

(0) = ¥ a6)

should be close to the true index I(8). Interest centres on selection of m.

A difficulty with the population-based index in this approach is that it is
unsuitable for all but extremely thin-tailed Y ’s. To appreciate why, let g, denote
the density of 6 - Y, and define v = v(u) by u =2®(v) — 1, for —1 <u < 1.
Then fy(u) = go(v)(dv/du), and du/dv = 2¢(v), so that

106) + 4 = f_ll{go(v)}2(dv/du)2du

=1/ (8(0))*(9(0)) "o

Therefore the tails of the density of § - Y must decrease at least as fast as e=*"/4
if I(6) is not to be infinite. The index I(6) can be infinite even if the tails of § - Y
are exponentially small, like those of a gamma distribution. It will certainly be
infinite if some algebraic moment of # - Y is infinite.

All of this means that for heavy-tailed distributions, I(6) is not very useful as
a measure of departure from normality. When 1(6) is infinite, there is not much
point in thinking of I (0) as an approximation to I(6). There is some virtue in
studying I (0) for certain fixed, low values of m, as an empmc index of
“low-frequency” departure from normality. (Low-frequency p,’s are those with
low index i.) But this approach depends very much on choice of orthonormal
basis. It is conceptually less satisfying than viewing I,(6) as a measure of overall
departure from normality.

Of course, our objections vanish if the distribution of Y is compactly sup-
ported. Section 3 will investigate this case in detail, giving concise information
about our choice of m. It turns out that if the orientation which maximizes I,(6)
is to be Vn -consistent for the orientation which maximizes I(), then m must
increase no more rapidly than the cube root of sample size. Lower bounds to the
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rate at which m should increase depend on smoothness of the unknown density
of Y, and will be discussed in Section 3.

Difficulties which we have with I(8) as a measure of departure from normal-
ity are greatly alleviated if I(0) is replaced by the L? distance J () between the
density of # - Y and the standard normal density. This index is

T0) = [ {8i(w) - 9(u)) a,

and may be expressed in terms of orthogonal functions as follows. Let H,H,.

be Hermite polynomials, orthogonal on (— o0, 00) with respect to the welght
function ¢?, and standardized by the relation [H?p? = ilw~/22i~! and by the
requirement that the term of highest degree in H; have positive coefficient. The
Hermite functions,

(2.1) hi(u) = (i) VPql/ag-G- 1)/2H(u)<1>(u) —00 <u< oo,
are orthonormal: [h;h;=§;;, the Kronecker delta. Fourier coefficients in a
Hermite function expansion of g, are
a;(0) =E{h(6-Y)}, i>0.
If g, is square-integrable, then
2

70) = [* { £ aio)n(u) = 12 h(u)) a

—o\i=p
o0
= ¥ ai(8)” - (2%/74)a(8) + (202) "
i=0
Maximizing J7 is equivalent to maximizing

22)  J(8) =JH(0) - 272) " = X a,(6)" - (2/2/7*)a,(6).
i=0
We might redefine the “most interesting” direction 6, to be that which maxi-

mizes oJ.
Next we construct an empiric version of /. Given a random sample Y,,...,Y,
from the distribution of Y, put

a;(8)=n"? zn: hi(8-7)),
(2.3) L
F(0) = T 4,(8)* - (2/7/n/)é(8), m>1.

i=0
Our estimate of 6, is a value §, which maximizes of (0).
We shall show in Section 4 that if m increases sufficiently quickly, yet more
‘slowly than n?/3, then there exists a §, which gives at least a local maximum of
j and is vn -consistent for 6,. The most important aspect of our result is that
we require only an algebrazc moment condition on Y: E(||Y||*) < oo for some
t > 0. As we pointed out several paragraphs earlier, the latter tail condition is
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considerably weaker than that required for use of the indices I and fm: If
E(||Y]|*) = oo for some # > 0 no matter how large, then I() will be infinite for
a range of values of 6.

The reason for this distinction of the Hermite function index is that Hermite
functions are heavily weighted in the tails, by e~*/2 That has the effect of
alleviating pathological problems associated with the tail behaviour of Y.
Johnstone [7] provides a succinct account of difficulties which can arise with
nonweighted measures of “interestingness.”

Another interesting feature is that the upper bound on the number, m, of
terms appropriate for jm(ﬂ), is roughly the square of the bound on the number
appropriate for I (8) (n%/? vs. n'/3). Likewise, the lower bound in the case of o,
is the square of that for fm. This happens because Hermite functions and
Legendre polynomials are of quite different sizes: h; decreases at rate i~'/* as i
increases, whereas p; does not decrease to 0.

In both Hermite and Legendre cases, Vn -consistent orientation estimates
have limit distributions of the same type. These limits may be expressed in terms
of the unit vector which maximizes the square of a vector-indexed Gaussian
process, as we shall show on each occasion. This type of limit also occurs when
one is using empiric “interestingness” measures based on entropy and kernel
density estimators [3]. It is possible to use kernel rather than orthogonal series
density estimators to construct vn -consistent estimates of orientation, but the
kernel estimators have to be substantially under-smoothed —for example, with
nonnegative kernels we should use a window of size between n~'/3 and n~=1/4,
not n~=1/5; see [3].

3. Legendre polynomials. Let P, P,,... be Legendre polynomials on the
interval (—1,1). They are completely determined by orthogonality, by the fact
that P, is of degree i and by the relation P,(+1) = (+1)". Orthonormal polyno-
mials derived from the P,’s are

p;i(u) = (i + %)1/21’,.(u), -l1<u<1l,
and satisfy
/ Pi(u)pj(u) du = 8ij°
—1l<u<l

Put
q;(u) =p,{2®(u) -1}, ix0.
Fourier coefficients in a Legendre series expansion of the density f; of U, =
20(0-Y) —1are a(0) = E{q;(0-Y)}, i > 0.If f, is square-integrable, then
1 : 2 had
10) = [ {f(w) - 1} du= ¥ a(0)
- i=1

is an index of the extent of departure from normality of the distribution of 6 - Y.
Our aim is to estimate the “most interesting” direction #,, which maximizes I.



594 P. HALL

Let Y),..., Y, be a random sample from the distribution of Y and put
n m
a(6)=n"' Y q(6-Y) and [(0)= ¥ 4,(0)", m=1.
j=1 i=1
Choose él to maximize fm. Assume the following regularity condition on the
p-variate density g of Y:

& is compactly supported; for some r > 2, all rth-order
directional derivatives of g are uniformly bounded; second-

(3.1) order directional derivatives are uniformly continuous in
argument and in orientation; and the distribution associated
with g has zero mean and identity covariance matrix.

THEOREM 3.1. If (3.1) holds; if m = m(n) diverges to infinity sufficiently
slowly for m/n'/® — 0, yet sufficiently rapidly for m/n'/“r=D}  o: and if all
second-order derivatives of I at 8, are negative; then there exists a local
maximum 0, of I,, such that 6, — 6, = O,(n""?) as n > co.

In fact, n'/%(f, — 6,) has a weak limit which may be defined as follows. There
exists a continuous-path, zero-mean Gaussian process £(0), indexed by 6 € Q
with 6 1 6,, and a positive and continuous function c¢(f), such that if 6*
maximizes £(6)%c(8), then

(3.2) n*(6, — 6,) - £(8%)c(6%)6*

in distribution. [Of course, 6* is a random unit p-vector perpendicular to 0,.
Both £(6*) and c(8*) are random scalars.] The process ¢ and function ¢ are given
in our proof of Theorem 3.1. Provided m satisfies the conditions in the theorem,
§ and c do not depend on the manner in which m diverges to infinity.

The Vn -consistency claimed in Theorem 3.1 continues to be true in some, but
not all, circumstances where m ~ const. n'/3, although then the weak limit of
n'/%(f, — 6,) has a different form from that described in the previous paragraph.
The Vn -consistency fails if m diverges more rapidly than n'/3. All this will
become clear from our sketch proof of Theorem 3.1. Qur assumption in Theorem
3.1 that all second-order derivatives of I at 6, are negative does no more than
ensure that the maximum at 6, is attained in the usual quadratic manner. Note
that since 6, does give a maximum then none of the second derivatives can be
positive; our assumption only removes the possibility that one of them is 0.

In the remainder of this section we sketch a proof of Theorem 3.1. The reader
interested in details should consult the proof of Theorem 4.1 in Section 4, which
is very similar and given in detail. Let 6, be any fixed element of Q; we have in
mind 6, = 6,. For @ close to 6, write

3.3 = 1—7' +1 )
6 )20, + 16y,

where 6, (perpendicular to 6,) is in the same plane as 6 and 0,, and where
n=0-0y — 0 as § > 6§, We assume throughout that || < n=/2*¢ for some
fixed £ < 1/6.
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Since second-order directional derivatives of g are bounded and continuous,
then
(3.4) I(8) = 1(6,) + n1,(8, 860) + 31°Lx(65, 650) + o(7),

where the continuous functions I; and I, do not depend on 7. (Section 3 of [4]
discusses results of this type.) Take 8, = 6,. Since § is a turning point of I, then
I(6,,0,) = 0 for all 6§, L 6;; and by hypothesis, Iy(6,,8y) <O0. Thus, for
6= 0(01’ 000’ "7) given by (3'3)9 .

(3.5) 1(6) = 1(6,) — 37| 1(8y, 80) | + o(n?).

Put Aij = q;(b, y})» Bij =q,0- y}) - q;(6, - Yj)’ by(0) = a;(0) — a,(6,),
b:(8) = a(8) — 4,(6,), 4,0) = a.(8) — a,(6), B,(6) = b,(8) — by(6). Then

8,(8) - 6,(6,)* — {ai(6)* - ai(8,)’)
(3.6) = Bi(6)” + 2&,(6,)B.(8) + 2a,(6,)B,(6)
+24,(6,)b,(8) + 2b,(6)5,(9),

whence |
£(0)=1,6,) +I1(8) - 1(6,)
(3.7) -~ i=§+1 {a:i(8)" — a,(6,)°} + élsk,
where
5= LAY, 8= 23 4(A0), = £ a(6)A(0)

(3.8) m m
S, =2 ; a,(6,)b,(6), S;=2 ; bi(a):é\i(a)'

Derivatives of Legendre polynomials admit the following expansion: For
s, t >0,

t .
p{P(cos ¥) = Z cisj(Sin ‘P)_(s+j+l/2)
Jj=0
xcos{(i —j+ 3)¥ — (s +Jj + 3)(7/2)}
+o(i )

as i — oo, uniformly in § <y <« — & for each 8 > 0, where c;;; is a constant
satisfying

1\t 1\ [j+s—1\(1

C e — Jt+s . CCINY A ss—g

Cigj =1 ’F(s + 5) 21/2 1(5)8( j 2)(5 - S)J{l + 0(i 1)} = 0(i*7)
[9, pages 224 and 232]. From this formula, and r integrations by parts in

(3.9)
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expressions for a;(8) and b,(8), we obtain

sup|a;(0)| < Ci™",  sup|b;(8)| < Cyi'~",
(3.10) 0 9
|Aij| = C’ lBijl < C'ﬂl.

Therefore, since n/m*"~Y - 0,
[ee] o0
(8.11) Y Ia,-(ﬂ)2 - ai(ﬂo)zl <C Y #ni'7i"=o(n’+n7h).
i=m+1 i=m+1

It remains to elucidate properties of S,,..., S;, defined at (3.8). First we treat
S, and S,. Write (C;, ¢;) for either (4;;, a (00)) or (B;;, b;), where b; denotes
b,(9). Both S, and 2S2 have the form

m n n *
=n?)Y ¥ X (Bij - b)(Cp—c;) =T, + Ty,
i=1j=1k=1

where

e
|||
M 3

) (Bij )(Cij_ fi):

1j=1

i

=n?)y ) E {(Bij —b,)(Cy—¢;) + (By — b;)(C;; - ci)}'

J<k i=1

Now, T, is a sum of independent random variables with mean

n~' 3 (E(B,C;) — bic;} =n~' ¥ E(B,C,) + o(n7").
i=1

i=1
From this formula and extensive use of (3.9), we obtain
E(S +8,) =cn 'qm{1 + 0(1)} + con '®m3{1 + 0(1)} + o(n7Y),
where ¢, and ¢, > 0 denote continuous functions of 6, and 6.
The term T, — ET; is o,(n* + n™"). The series T, is a zero-mean martingale:
T,=n" EzskSnZk, where
k—1 m
= 2 X {(B” bi)(Cik —¢) + (By - bi)(Cij - Ci)}
J=1:i=1
and E(Zk|Yl; ,Y,_1) = 0. In the case (C;;, ¢;) = (B;}, b;), two applications of
Rosenthal’s 1nequahty [5, page 23] may be used to prove that T, = o (1> + n™").
In the case (C;;, c;) = (4;), a(8,)), judicious use of (3.9) and (3 10) and a
martingale central limit theorem [5, page 58] allow that T, = n~'nm?®2Z,, where
Z, is asymptotically normal N(0, 6%) for some 02(6,,) > 0. Thus,
S, + S, = con”’m3 + n"qm?®%Z
(8.12) ' i 2 -1 -1,2 13 -1,..3/2
+o,(n* + n7t + n7i?m® + n”igm®/2).
Finally we turn our attention to S;, S, and S;. From the results on conver-
gence of Jacobi polynomial series [12, page 244] and Fourier trigonometric series
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[14, page 57], we may prove that the infinite-series analogues of S; and S,
converge. In fact, each of S; and S, is o,( 7% + n~') away from its infinite-series
counterpart. Arguing thus, we obtain

Sy + 8, = nn"?Z(0yy) + o,(n* + n7Y),

where Z is a sum of independent random variables with zero means and
converges weakly to a continuous-path Gaussian process £. Furthermore, S; =
0,( 7% + n~1). From these results and (3.5), (3.7), (3.11) and (3.12), we see that, for
0 =1 — 7n?)"/%0, + n6y, and 6, L 6,,

fm(a) = fm(al) + "In_l/2(n_l/2m3/221 + Z) - %"Izllz(av 000)[

3.13
(3.13) +con~n?m? + op('n2 +n 1+ n_1n2m3 + n"lgm¥?).

If m/n'/? - o0, or if m/n*® - I, where [ is finite and sufficiently large, then
the argument which we shall give in the next paragraph may be reworked to
show that no local maximum of [,(8) is Vn -consistent for 8,. If m ~ In'/? for
sufficiently small /, then vn -consistency is possible, but with a limit distribution
different from that which we shall derive. Only when m/n'/3 - 0 do the terms
in Z; and ¢, make a negligible contribution to the right-hand side of (3.13),
which becomes

(3.14) fm(o) = fm(ol) +nn”?Z(8g0) — 517|101, 000) | + Op(nz +n7t).

Write c(6y,) = 1/|1x0,, 6y)|. For fixed 6, L 6,, the nonremainder part of the
right-hand side of (3.14) is maximized by taking n = n'/?Z(6y,)c(fy,), and then
I(0) = I1,(0,) + 3n"'Z(0y)%(6y) + 0,(n"). This in turn is maximized by
choosing 6,, to maximize Z(6,,)%c(f,,). Arguing thus and remembering that
6 — 6, = 16y, + O(n?), we obtain (3.2).

‘4. Hermite functions. Hermite functions and the “interestingness” indices
J and ejm were defined at (2.1), (2.2) and (2.3), respectively. In the present section
we show that, under smoothness conditions on g and moment conditions on Y,
J,(0) is a practical empiric measure of departure from normality.

Assume the following regularity conditions on the density g of Y:

for some r > 2, all rth-order directional derivatives of g are
uniformly bounded; second-order directional derivatives are
uniformly continuous in argument and in orientation; |g,|,
|g¢| and |g4’| are bounded uniformly in § and argument; for
some ¢, t, > 0, chosen sufficiently large, E(]|Y||%) < o0 and

(4.1)
sup [(1 +11y11%)| Djg ()| dy < oo;
0eQ

and the distribution associated with g has zero mean and
identity covariance matrix.

THEOREM 4.1. If (4.1) holds; if m = m(n) diverges to infinity sufficiently
slowly for m/n?/® > 0, yet sufficiently rapidly for m/n*/{*"=D} - o and if all
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second-order derivatives of J at 0, are negative; then there exists a local
maximum 0, of J,, such that 6, — 8, = O,(n"?) as n - .

Formula (3.2) again describes the weak limit of n'/%(f, — 0,). Our proof of
Theorem 4.1 gives expressions for the Gaussian process £ and the function ¢
appearing in (3.2). Provided m satisfies the conditions in the theorem, ¢ and ¢ do
not depend on the manner in which m diverges to infinity.

The Vn -consistency in Theorem 4.1 continues to hold true if m/n?*? con-
verges to a nonzero constant /, provided [ is sufficiently small. But it fails if [ is
large, as our proof will show.

In the proof we follow a route which yields the theorem expediently. We do
not attempt to determine economical values of ¢, and ¢,. Our proof would follow
a different, much more lengthy route if we sought the “best” ¢, and ¢,; we do not

know what those values are.
The remainder of this section is devoted to a proof of Theorem 4.1.

PrROOF OF THEOREM 4.1. Let 6, denote any fixed element of @, such as 6,,
and for 6 close to 6, express § as in (3.3), where 6, L 6, and n = 6 - 6,,. The
index J(6) admits expansion (3.4), which may be simplified to (3.5) when 6, = 6,,

(4.2) J(0) = J(6,) — 30| (61, 6) | + 0(n?)

as 1 — 0, where J,(0,, -) is a continuous, strictly negative function. We assume
throughout that m < Cn?/3, and 0 < n < Cn'/%*¢ for a small ¢ > 0.
Put Aij = hy(6, - Y})’ Bij = h,0- Y}) — h(6- Y}), bi(0) = a,(0) — a,(6,),

b:(0) = 6,(0) — G,(8,), &:(0) = 4,(0) — a,(0), B(6) = b,(8) — b,(8). Result (3.6)
continues to hold, and, in addition,

ao(8) — ao(8)) — {ao(8) — ag(by)} = By(8) = —n(7'/4/2"/2)Sy(64) + o,(n?),
uniformly in 6y, L 6,, where
S5(600) = = (2/%/m/4)n ! JZ [(800 - ¥,)Ri(6 - X;) = E{ (B0 - Y)Ri(6 - Y)}]-
Define of,(0) as in (2.3). Then we have the following analogue of (3.7):

. (0) = (8, + J(8) — J(6,)
(4.3) = Y {a0) - ay(8)?) + i

i=m+1 k

S;, + 1S
1

+op('n2),

uniformly in 6y, L 6,, where S,,...,S; are as at (3.8) but with the range of
summation changed to 0 < i < m.



POLYNOMIAL PROJECTION PURSUIT 599

The following lemma provides basic analytic properties of Hermite functions.

LEMMA 4.1.
(i) H{(u) = 2iH;_\(u);
(i) Ai(u) = (2i)%h;_((u) — uh(u);
(iid) RY(u) = uh(u) — 2%(i + 1)?h;, (u);
(iv) hY(u) = (u? - 2i — Dh(u);
) for I = 0, sup,|RP(u)| < CG + D)%
i) hi(u) = 2/7%)* cos(N}*u — in/2) + Ry(u), where |R(u)| <
C(Gi + 1)"Y2(1 + |u|%?) and (here and below) N; = 2i + 1;
(vii) for each integer s > 1,

hi(u) = ¢{cos( N}"*u — im/2) + (u®/6)N;7 /2 sin( N}M2u — in/2)}
+Ni‘5/4{qil(u)cos(1\7}/2u) + g,,(u)sin( Nil/zu)}
+R2i(u)’

where the constant c; satisfies ¢; = (2/m%)/41 + O(i™ ")} as i = o, g and g
are polynomials of degree 3s + 3 with coefficients bounded uniformly in i, and
|R2t(u)| < C(l + 1)—(2s+7)/4(1 + |u|(63+11)/2).

Results (i)—(iv) follow from [9], page 252, results (v)—(vii) from [11], pages 324
and 332-333. ‘
Taking W = (0 — 6,) - Y, applying successively results (ii) and (vii) and inte-
grating r times by parts to simplify trigonometric terms, we obtain
|6:(6)| =‘E[Wf1{(2i)”2h,~_l(ao- Y + (W)
0

— (8- Y+ EW)h(8, Y + tW)} dt”

< Cyi~@—V/4,

Likewise,

(4.4) la,(8)| < Ci~@r—b/A4,

Therefore, since n/m*™~b - 0,

(4.5) Y a6 -al8)’|<C ¥ ni=o(n’+n").

i=m+1 i=m+1

Next we examine the terms S; and S, in (4.3). Let (C;,, c;) denote either

(Alj’ al(oo)) or (Bij’ bi)’ Where Blj = Bll(a) and bi = bt(o). BOth Sl and S2 haVe
the form T, + T,, where

T(0)=n"? Y ¥ (B~ b)(C;;—ci),
(4 6) j-l i=0

Ty0)=n2YL Y ¥ (Bij— b;)(Cy — c;)-

Jj*k i=0
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We begin by treating T,. Let sup®) denote the supremum over 6 = (6, 1) [see
(3.3)] with 6y, L 6,, 0 <n < n~2%¢ and ¢ sufficiently small.

LEMMA 4.2. sup®P(n? + n™ 1)1 Ty(0)| — 0 in probability.
PROOF. Since B;(8) = hy(0 - Y;) — hy(6, - Y)), then if w, o’ € Q,
|B,j(w) = Bij(«)] < Cllo = &lI(i + 1)(1 + 1%177?)

[Lemma 4.1(ii) and (vi)], whence, since |B;;| + |C;;| < C [Lemma 4.1(v)],

(4.7) |Ty(@) — Ty(«)| < Cllw — ||m¥*n~" Y (1 +1¥}17/2).

s j=1

Let {w,,..., wy} be a collection of unit vectors such that, for each 6 € Q, there
exists j = j(#) with 1 <j < N and |0 — w;4)|| < ™% We may choose N < Cn®?.
By (4.7) and since m < Cn?/3,

sup |Ty(0) — Ty(wjqy)| = O(n~7/%) almost surely.
feQ '

Therefore, to prove Lemma 4.2, it suffices to show that, with® = {w: 1 <j < N
and ||w; — || < n~'/2*¢}, we have for sufficiently small ¢,

(4.8) sup (7% + n'l)_l|T2(0)| = 0,(1).
[2=12)

We illustrate the technique by treating the case where C;; = A, ; and ¢; = a,(,).
Observe from Lemma 4.1(v) that, with W, = (6 - 6,) - Y},

4
(4-9) Bij = IZ (1/“)“’}[’151)(00‘ Y}) + Rij’
=1

where |R; | < Cn’(i + 1)°?|Y}|° Put a; = a,(6)),

4
d;= ¥ (I/IE{WRP(6,- Y;)},

=1
10) = n* £ £ { £ a/mwa(n- ¥) - df(an - o),
(410) - :ék i=0\l=1
Z,= ; ;0{(Rij - ERij)(Aik —a;)+ (R - ERik)(Aij - ai)}’
T(0)=n"2Y ) ’Zn‘, (Rij - ERij)(Aik -a;)=n"? f Zy.
Jj*k i=0 k=2

Notice that T, =T, + T, and E(Z,|Y,,...,Y,_;) = 0. By Holder’s and
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Rosenthal’s inequalities [5, page 23],

n 8§

B(0)") < on- | 3 (E22)"}

Conditional on Y,, Z, is a sum of independent random variables, and so

E(Zp) < ClnsE(l:i {(Ry, - ER,)(Ay — ;)

+(Ry, — ERy) (A, — at)}]zs)

< Cyn*(nPmi/2)™.
Conversely, since m < Cn?® and 7 < n='/2*¢ then
E{T4(0)28} < Cl(n—1n5m7/2)25 < C2('I12n_(1/6)+38)2s-

Choosing € < 1/18 and s large and using Markov’s inequality, we deduce that
for each ¢ > 0,

P{ sup 0 2|T,(0)| > g} < C(£)n21’(n‘(1/6)+3‘)2s -0,
6O’
from which it follows that
(4.11) sup (0% + n71) |T,(8)| = 0,(1).

=14

Next we prove a similar result for Ty(#), defined at (4.10),
(412) sup (1 + 1) " |T(8)] = 0,(1).
e ’

Observe that W}’ equals a bounded linear combination of I-products of compo-
nents of Y}, in which the coefficient of each product is dominated by Cn'. There
is only a bounded number of these products. Let U; = Uy(l) denote any one of
them. Result (4.12) will follow if we show that for 1 < I < 4, the random variable

m
T,=n"1'Y Y ¥ {Ujh?)(% ) y;) - Elfjh§’)(00 ) Y})}(Aik - a)
j*k i=0
_satisfies

(4.13) T, = o,(n* +n71).
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Put e; = E{U,h{"(8, - Y,)}. Then

E(T3) =0

n_2n2lE[£ {Ulh(il)(oo - Y) - ei}(AiZ - ai)] )

=0i,=0

[-2 2’2 5 {EUZRD(8, - Y)RD(6, - Y,) — ee; )

X {E(Ai,zAizz) - ailaiz}}‘

Use Lemma 4.1(ii) to express h{" in terms of A, , for 0 < & < [; use Lemma
4.1(vii) to expand A, ,; use trigonometric formulae such as
QCos(N&/Qu)cos(Ni;/ﬁu) = cos{(l\/',-f/2 + Ni;ﬂ)u} + cos{(Ni}/2 - N,;/Z)u}

to simplify products such as A, (u)h,(u); and finally, integrate by parts r times,
to deduce that

|BE{UZRD(0, - V)RD(8, - V) — egey,

< Ci£21—1)/4i521—1)/4(1 + |i1 _ i2|1/2) r

Similarly,
lE(Ai12Ai22) - l <C(1+1i) S ETAN l/4(1 + i, — 1 |1/2) g
Therefore, noting that m < Cn?/® and 7 < n~1/2*¢,
B(1) = ofw ' £ (i) - i) )
§=01=

= O(n*'n"?m') = O(w’n"m) = O{(n* + n"2)n"'m} = o(n* + n71),

from which follows (4.13). This completes the proof of (4.12).
Result (4.8) follows from (4.11) and (4.12). This completes the proof of Lemma
42. 0

‘1‘2

Next we examine T}(8), defined at (4.6). It may be proved from Lemma 4.1(ii)
and (vii) that, with W= (§ — §,) - Y,

Bi=E{h(0-Y) ~ hy(6,- Y)}* ~ E{W?H\(6," Y)’)
~ n2(2/n%) *2UE{(8y - Y) cos® (N}, - Y — im/2) )
~ 222V % E (6, - Y) .
Similarly, a; = E[{h(8 - Y) — h(8, - Y)}h (6, - Y)] satisfies

o; = —n2(i/272) 2 E(Gyy - Y)? + O(mi 72 + 24 + n%i1/2).

13
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Put y; = «; if in the definition of T), (C;;, c;) = (4,;, a,(6,)), and v, = B; if
(Cijy ) = (Bu,b) Then

E(T)=n"'Y (v,— b)) =n" E ;+o(nh),
i=0

i=

and so the sum of E(T,) from both cases equals yn™9’m3?(1 + o(1)} + o(n™?),
where y = (2/37)(2/2 — 271/2) > 0. In both cases, T, — E(T}) is a sum of
independent random variables with zero means, and a modification of the
argument leading to Lemma 4.2 gives

supP(n? + n~1) | Ty(6)| = 0

in probability. Combining Lemma 4.2 with the results in this paragraph, we
conclude that

(4.14) S, + 8, = yn'’m¥2{1 + o(1)} + o,(n* + n71).
Next we analyse the terms S;, S, and S; in (4.3). Put x(u|b,, 0y) =
E(6y - Y0, - Y = u), K(ul|by, 0y) = —(d/du){x(ul|by, 0p)8s x)} and
k(80 000) = [K(ulfo, 600)hi(u) du = E{ (8- Y)Ri(fy - Y)}.

By judicious use of Lemma 4.1(ii) and (iii) (both parts are needed), of Uspensky’s
theorem [11, page 381, and 13], and of a standard argument for estimating
Hermite Fourier coefficients [11, page 369], we may prove that with

Gm(u) = E ai(oo)hz{(“) and Km(u) = Z ki(oo! ooo)hi(u),

i=0 -

we have

(4.15) sup  sup (1 + [ul*?) | gi(u) — Ga(u)| 0,
6,€Q —co<u<oo

(4.16) sup sup (1 + [u*?) '|K(u) — K, (u)| — 0

0,€Q; 0y L, —o0o<u<oo )
as m — 0.

To treat S; = 2%, . ; - ,@:(0,)B:(8), observe that f; = n~ 'Y . . B;;— EB,)).
Expand B;; as in (4.9) and adapt the argument succeeding (4.9) to prove that for
fixed 6,,

sup®(q? + n~1)7'|S; — 2n7? Z a;(6,) Z {W;ni(6, - Y;) — EW;R((6,- Y;)}

= 9,(1),

where sup® denotes the supremum over 6 = 6(8,,, n) [see (2.3)] with 6,, L 6§, and
0 < n < n'/2%e Put p(,, 0y) = E{(0y - Y)g4 (0, - Y)}. Using the bound (4.4) on
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lai(8,)| and the fact that W, = nfy, - Y; + {(1 — n2)/2 — 1}6, - Y;, we obtain
w7t T a(t) T (Wil ) - EWpi(4, %))

i= j=

=11t 5 (o %)Gu(l %) — Bl )Co(0, - 1))} + 0y(n + 01

j=1
n
=nnt ) {(000' Y;)&8;(6, - Y;) - .“'(00’000)} +o,(n’ +n7Y),

J=1
the last identity coming from (4.15). Thus for fixed o,

sup®(n? + n71) !

Sy — 2qn71 f‘. {(000 "Y})géo(oo : Y}) = 1(6,, 000)}
(4.17) =
= 0,(1).

A similar argument, using (4.16) in place of (4.15), gives

sup®D(n? + 1) 7"

S;—2nnt Y {K(oo RAE)
j=1

(4.18)
—EK(6, - Y|6,, 000)} = Op(1)1
and also
(4.19) sup®(n” + n~1) ISyl = o,(1).
Put
Ai( 510, b) = 2( 6y, - y)go'o(ao -y) +2K(6, - Y16, 60)
_(21/2 77'1/4)(000 “¥)hi(8, - y)
and

A(y|00, 00) = Al Y10, b0) — EAI(Y|00: 00)-

Take 6, = 6, and let Z(6y,) = n"'/?L, _ ; _,A(Y}|8,, 6,,). Combining results (4.2),
(4.3), (4.5), (4.14) and (4.17)~(4.19), we obtain

To(8) = Jn(B0) + mn™*2(000) — 40*{| (61, 600) | — 2yn~'m2)

4.20
(4.20) +o,(n* +n7Y),

uniformly in 6, L 6, and 0 < 5 < n~1/2+¢,

The function A(y|0,, 6,,) is linear in each component of 0y, and so it is trivial
that this function satisfies a Lipschitz condition in those components. This is
sufficient to ensure that the Gaussian process £(-), which is the weak limit of
Z(-), has continuous sample paths [10, pages 148, 150 and 157].
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Put c(8y,) = 1/|Jy(8;, 00)|- If m = o(n?/?), then the term 2yn~'m3/? appear-
ing in (4.20) is negligibly small. Then for fixed 6, the right-hand side of (4.20) is
asymptotically maximized by taking n = n='/?Z(f)c(fy), and with that sub-
stitution, o (0) is asymptotically maximized by choosing 000 to maximize
Z(0y)%c(0yp)- This gives (3.2). If it should be the case that n~!m*? - I(< o0),
then the above argument will continue to hold, provided [ is so small that
c(bp0) = |J5(8y, Op0)| — 2yL > O for all fy, L 6,. But if I is so large that this
function takes negative values, then it is clear from (4.20) that o, (0) does not
have a local maximum distant order n~/2 from 6,. In this circumstance, result
(3.2) fails.

This completes the proof of Theorem 4.1 O
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