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I am grateful to be granted the opportunity to comment on this interesting
paper. It represents a synthesis of several smoothing techniques under one
characterisation, it proposes a useful way of carrying out multiple regression
that lies somewhere between multiple linear regression and the general additive
models that underline ACE, and it investigates the properties of a practicable
algorithm for obtaining the fit of the models to a set of data. There is much to
discuss in the paper but, apart from a few brief comments and questions near the
end, I should like to concentrate my remarks on a particular aspect, namely, the
concept of degrees of freedom associated with the fitted models and the relation-
ship with the choice of smoothing parameter.

I shall lead into my specific points by observing that, at first sight, the
structure under consideration offers a variety of immediately applicable smooth-
ing techniques, as indicated early on in Figure 2. However, a closer reading
reveals that, if one is confronted with a particular set of data, the situation is not
quite so straightforward. The authors remark that all their generic, linear
techniques are characterised, in some guise, by a smoothing parameter. If,
however, the choice of smoothing parameter is to be data-driven, then the
linearity is lost. They are quite correct, of course, but unfortunately one finds
repeatedly, in the literature, that the choice of a good smoothing parameter
is considered to be a rather sensitive issue and that automatic, data-driven
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methods of choice are strongly favoured. For the authors’ results -to have
widespread practical application, therefore, extension to the case of data-driven
choice of smoothing parameter is crucial.

At the end of Section 2.2 the authors promise “a linear method for fixing the
degree of smoothing.” However, the method, described in Section 2.7.3, involves
adjusting the “degrees of freedom” associated with the fit to be equal to some
prescribed number. The value “4” was used for degrees of freedom in their
example. One then asks, “why 4?” Would one use the same value with other data -
sets? Surely not. In other words, if this method is adopted, I should expect that
any sensible method of deciding on the value for “degrees of freedom” would
have to be data-driven. For the case of the example in the paper, it would be
interesting to know what happens if, say, cubic spline smoothing is used with A
chosen by generalized cross-validation, providing A = A and S-matrix S, say.
What values are then assumed by the three measures of “degrees of freedom”?

One of those measures, tr(S), has emerged from the literature on spline
smoothing and on ridge regression as founded on the penalized least-squares
formulation. For instance, Wahba (1983) suggests that tr(I — S)—note that
generalized cross-validatory choice is involved—be interpreted as equivalent
degrees of freedom for error, and that

(1) RSS(A)/tr(I — §) = 62

might be a reasonable estimator for the residual variance, ¢ This is sup-
ported by an empirical study that forms part of Thompson, Brown, Kay and
Titterington (1988). Under the guise of a one-dimensional image-restoration
problem, a particular ridge regression problem was investigated in depth and ¢ 2
was examined as an estimator for o2, Apart from the occasional “bad” X, leading
to gross undersmoothing of the data, 62 was very satisfactory in this respect.
One can also turn (1) round. If o2 is known, or can be estimated consistently by
&2, say, then solution of (1) provides a A, say, that can be used as a data-driven
choice of A that should be comparable with cross-validatory choice but might
not be so liable to producing “bad” values. (Such a A is called the equivalent
degrees of freedom (EDF) choice for A.) This is borne out by the empirical work
of Thompson, Brown, Kay and Titterington (1988) and by Hall and Titterington
(1987) who showed that, in a very simple regression problem and in the case of
periodic spline smoothing, this latter method produces a A that is the same order
of magnitude as an optimal A to which the cross-validatory A is asymptotically
equivalent.

Hall and Titterington (1987) also report a simulation study based on an
example of periodic spline smoothing. Of relevance to the present discussion are
the summary statistics (sample means and standard deviations) of the cross-
validatory degrees of freedom tr(S). For each of six combinations of (n, o),
where n is the sample size, 100 replications were generated and the following
results were obtained (standard deviations in brackets):

(n,0) (21,01) (21,15)  (4,01) (41,15) (8L,01)  (81,15)
tr(§) 20.21(0.05) 14.71(2.45) 28.69(365) 15.39(4.2) 30.31(3.58) 16.58(5.17)
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In general, the three measures for degrees of freedom will be similar when S is
close to being orthogonal. If “optimal” smoothing is used, then this happens
when the signal-to-noise ratio is large. Possibly the most trivial example, again
taken from Hall and Titterington (1987), is that in which

y=1f+e,
E(e) = 0, cov e = 0’ and the penalised least-squares function is
mfin{lly — £117 + NN}
Suppose an optimal A is defined to be that for which

Elly — 3I1* )

is minimised where E refers to the distribution of e. Since § = (1 + A)~ 1y, it
turns out that S = (1 + A)" and A = r}, where r = £7f/(no?), a signal-to-
noise ratio. In this case

trS=n/(1+2) = n{l—X+o(A)},
tr(SST) = n/(1 + A)* = n{1 — 2A + o(N))

tr(28 — S7S) = n{1 - X + o(X%)}.

These are all equal, to order O(1) if A is small.
As promised, I conclude my comments with a few brief remarks.

(i) I am a little concerned that the analysis of the data in Figure 2 ignored
what appears to be a marked nonconstancy of variance, and I wonder whether or
not the ozone-concentration variable should have been transformed before fitting
any curve.

(ii) A circulant approximation to the running-mean smoother matrix in
Figure 1 would presumably lead to a theoretically more amenable method.

(iii) A version of the SOR method has been investigated by Peters and
Walker (1978a, b), based on the EM algorithm for estimating parameters within
models for finite mixtures. The range 1 < w < 2 was crucial there in the context
of convergence, and w near 2 was best if the components of the mixture were not
well separated.
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We thank the discussants for their interesting comments and contributions,
and the editors and referees for considerable efforts that led to many improve-
ments in this work. We must also thank the intrepid reader, if he or she is still
with us, for weathering his or her way through this long article. The many
questions given at the end of the paper and the ideas and issues raised by the
discussants, indicate (happily) that this is an active area of research.

The discussants address a wide variety of issues in considerable detail. We try
to address their comments and questions below. Before addressing each discus-
sant in turn, we would like to present our views on several topics raised
collectively by some.

1. The Bayesian paradigm. It seems that our silence about the Bayesian
side of smoothing was so loud that it called for equally loud corrective measures
from several discussants. Cox, Kohn and Ansley, Chen, Gu and Wahba and
Eubank and Speckman remind us how useful the Bayesian paradigm can be for
developing inferential procedures and algorithms. However, in the absence of a
repeated sampling or subjective probability justification for the prior, the
Bayesian framework is just a heuristic. In such cases, inferences derived from the
Bayesian model must be justified through their sampling properties.

There are of course examples where the assumption of a random function has
ample justification and where the prior represents a useful frequentist modeling
assumption. This is usually called the stochastic process interpretation of the
underlying function. For example, the Yates (1939) random effects model for
incomplete block designs (we thank Dr. Peter Green for bringing our attention to
this area) can be cast as a semiparametric regression model [Green (1985) and
Green, Jennison and Seheult (1985)]. Here the “smoother” for fitting the random
incomplete block effects is generated by a natural (noninformative) prior. More
informative priors allow for spatial trends of various complexity. Wilkinson,
Eckhert, Hancock and Mayo (1983) and the many discussants give a useful
overview of this important area. If the assumption of an underlying random



