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measure of the success of any article is provided not only by the number of
important problems that it solves but also by the number of new questions that
it opens for investigation. On the basis of both these criteria we must judge the
present article to be a solid success.
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The solution of linear algebraic equations arises in many situations in statisti-
cal computing. Most often the matrices are symmetric and positive definite and
they may have some structure that can be taken advantage of; viz., Toeplitz
matrices arise in time series and special algorithms are available for such
problems (cf. [3]). It is unusual for matrices to be structured and nonsymmetric
but this is the situation that arises in the paper by Buja, Hastie and Tibshirani.
In addition, the system (19) the authors describe is singular though the nullspace
can be determined without difficulty.

Very often for large structured systems, iterative methods are used. (We set
aside the fact that P is singular at this time.) Thus one might split P and write

b=M-N
and iterate as follows:

Given f,
For k£ =0,1,...,

Mf**1 = Nf* + Qy (solve for f #+1).
It is important that solving the system

Mf**t = 2% (say)
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be “easy,” and, of course, one desires that
IM~IN|| <1

for some || - - - ||. If the spectral radius of ||M~!N||is close to 1, then the method
will converge slowly and a method of acceleration will be required. Numerical
analysts have studied such techniques extensively, mainly in connection with the
numerical solution of partial differential equations. Note that assuming that

Mf = Nf + @y,
fr=f+ (M N) (0 -f).

We will see that (1) is the basis for accelerating the convergence of the process.
The choice of M obviously affects the convergence properties of the algorithm.
Let

1)

P=D+L+U,
where D consists of the diagonal elements of P; L is a lower triangular matrix
(zeros on the diagonal and above the diagonal) and U is an upper triangular
matrix. (The matrices D, L and U may consist of block elements.) Here are some
splittings that have been extensively studied:

1. M = D, Jacobi method;

2. M = D + L, Gauss-Seidel method;

3. M = (D + wL), successive over-relaxation for v > 1 (successive under-relaxa-
tion for w < 1).

The conditions under which each of these methods converge have been exten-
sively studied and are fairly technical. One condition that is easy to verify for
methods 1 and 2 is that the matrix be diagonally dominant (cf. [4]).

Successive over-relaxation has been thoroughly analyzed for symmetric posi-
tive-definite matrices which have property A: that is, any matrix which can be
permuted to the form (cf. [6])

A I S
2 P= .
The optimal choice of w is given by
2

b= ——.
1+ y1—|8|3

It is easy to see that 1 < & < 2; the method converges, however, for all 0 < & < 2.
The effect of this choice of w can be very dramatic. If r is the number of
iterations required for a certain accuracy when the Gauss—Seidel method is used,
then for w = & the number of iterations would be roughly const. Vr.
Now, we wish to study the situation when p = 2 so that

s_ (I S
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with ||S)||, < 1 and ||S,||, < 1. This situation has been recently studied in [2],
and conditions are given for choosing the optimal w. The choice of optimal
parameter will depend upon eigenvalues of S,S,. For p > 2, we know of no
classical theory for choosing the optimal parameter w.

The situation which arises in the paper under review is that the matrix P is
singular. That complication can be most easily handled by forcing the iterates to
lie in the kernel of P. Some adjustment must be made to the relaxation
parameter when p = 2 but that does not present any great technical difficulties
[5]. A device which is often used for eliminating vectors in the nullspace is to
take differences between successive iterates. For best numerical results, however,
it is probably best to project successive iterates in the kernel of P.

As we indicated above,

. k X
fr=f+(MN)(f°~f).
Let us assume that M N is diagonalizable, and we write
M™IN = QAQ!

where A is the diagonal matrix of eigenvalues and @ is the matrix of eigenvec-
tors. Hence ’

(3 fE=f+ Eldi}\,ﬁqz‘sf*' Xllk’iwi,
i=1 i=1
where {g;} are the eigenvectors and
d=Q'(f°-f).

A particularly attractive algorithm for accelerating the convergence of the
sequence f* is the e-algorithm of Wynn [1]. From successive iterates f, one
constructs the table

fo = €go»

fi=¢o &

fa= 80 € &,

fs=¢€0 €35 &3 &g

fa=¢en €n € €3 €y

using the relation
+
£, =8 4, j-2t (ei,j—l - ei—l,j—l) ’
where the pseudoinverse of a vector v is defined as

+ 1 4

= ——9p

lloll
Only the columns with even index in the ¢ table are meaningful and converge to
the limit. The error expansion of every of these columns contains one term less of
the sum (3) so that in theory then, from the 2/ vectors f,..., f % and [, oneis
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able to determine precisely /. (When I = 1, the method is essentially the Aitken
acceleration procedure.) Of course, one stops far short of 2/ iterations to obtain a
good approximation to f.

Therefore the extrapolation procedure consists of the following two steps:

1. Co;rslpute Gauss—Seidel iterations, f1,..., f 27, forcing f* to lie in the kernel
of

2. Extrapolate the iterates using the e-algorithm to get an improved approxima-
tion to f.

We have used the above algorithm on various problems with relatively good
success. A first data set which was given to us by the authors turned out to be
incompatible and as a result of our calculations an error in a spline fitting
program was detected! A second set of data was provided where Gauss—Seidel
converged slowly and the application of the above algorithm yielded very
satisfactory results.

Conclusion. Using the e-algorithm to accelerate convergence of a basic
iteration for linear systems with nonsymmetnc matrices seems to be a very
promising approach.
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We would like to congratulate the authors for a stimulating paper. Additive
models for approximating high-dimensional regression problems have been around
for quite some time, but a number of important problems have remained



