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SPHERICAL REGRESSION WITH ERRORS IN VARIABLES

By TeEp CHANG

University of Kansas and Kansas Geological Survey

Suppose u,,..., u,, vy,..., v, are random points on the sphere such that
for unknown points £,,..., £, and unknown rotation A, the distribution of
u, depends only on ulf, and that of v, on v!Ay¢,. This paper provides
asymptotic tests and confidence regions for A, and for its axis of rotation.
Results are given in arbitrary dimension.

In a previous paper [Chang (1986)], the author studied the asymptotic
properties of the least squares estimator of an unknown rotation A, on the unit
sphere S? in Euclidean p-space. The probabilistic model was that u,, ..., u, are
fixed points on S?,v,,..., v, are random points with each v; symmetrically
distributed around A,u;.

A numerical example was discussed which involved the motion of two rigid
bodies, once coincident, on the surface of the Earth. In that example the u; are
points on one body, the v; corresponding points on the second body and A, is
the unknown rotation which describes the motion of one body relative to the
other. It would seem for that example a preferable model would allow both the
u; and the v; to be random. The author proposes to study “random u” models in
this paper.

More precisely we assume that u,,..., u,, v,,..., v, are points on S? (written
as column vectors) satisfying:

i) uy,...,u,, vy,...,0, are independent.

(ii) For unknown &,,..., £, on SP the density of u; with respect to uniform
measure on S” is of the form g(u!¢,) for some real valued function g satisfying
E[uf,] > 0and 1 > E[(u%,))*] > 1/p.

(iii) For some unknown orthogonal matrix A, (that is A, satisfies A Af = I)
the density of v, is of the form g(v!Ay¢)).

(iv) (1/n)X,¢,£! — = where = is a positive definite symmetric matrix.

The assumption that E[(u%)?] > 1/p always holds for the Fisher distribu-
tion d(k)e*“¢ as long as k > 0. For a uniform distribution E[(u%)?] = 1/p. The
assumption E[(u%;)?] > 1/p attempts to guarantee that the u; really do
cluster around §¢; and excludes distributions which would, for example, cluster
the u; around a small circle that is too far from the pole £,.

If A, is known to have determinant 1, for example, if A, represents a rotation
in 3-space, then = can be positive semidefinite as long as its rank is at least
p — 1. This point is further discussed in the Appendix.

Not surprisingly the random u model is significantly more difficult to analyze
that the fixed u model. For example, the least squares estimate would choose
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294 T. CHANG

A, fl, ceey én to minimize

SSE = ¥ [llu; — £ + llo — A&1°]
= 4n - 2% (ult, + vlAL,).

It follows that £ = (u; + A%;)/|lu; + A'v,|| and that A maximizes

(1/n) Lllu; + Aol = (1/n) X2 + 20{Au; .

Unfortunately, the author is unable to prove any theorems about the statistical
properties of this A.

Rather the author proposes that A be chosen to maximize the vector correla-
tion first defined by Stephens (1979),

1
r(A) = —~ Evaui.

For G a closed subgroup of the orthogonal matrices O( p) write A (G) for the
element of G which maximizes r and write r(G) for r(A(G)). In Section 1 of
this paper the author finds the large sample asymptotic distributions of A,(G),
r(G) and for G’ € G of /fn(G’)‘/fn(G) and r(G) — r(G"). The latter two can be
used to test A, € G’ given A, € G. Using AA,,(G’)‘AA,,(G) leads to a complicated
test statistic with a simple distribution (x*(dim G — dim G")). Using r(G) — r(G")
leads to a simple test statistic with a complicated distribution [weighted sum of
independent x*(1)].

Rivest (1989) studied the asymptotic behavior of the fixed u model with an
underlying Fisher distribution with concentration parameter x —> 00 with n
fixed. In Section 2, we extend his results to the random u model. Roughly
speaking a random u model with large behaves like a fixed u model with «/2.
In a Fisher distribution the mean square distance of a vector from its modal
direction is, for large «, proportional to k™' and it is quite reasonable that for
concentrated error distributions a random u model is indistinguishable from a
fixed u model with twice as much error placed in the points v;.

In Section 3, the Gulf of Aden data set from Chang (1986) is reanalyzed with a
random z model. An Appendix contains many of the details omitted from
Section 1.

1. Large sample asymptotics. For the density g(u%) on SP, define con-
stants c,, ¢; and ¢, by

E(u) = ¢y,
E[(u— cot)(u — cof)'] = e’ + el
We assume ¢, > 0 and that 1 > E[(u%)*] = 1/p.
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LEMMA 1.

1
c2+c+pe,=1, 0<cy<—.

kS

Let X, = (1/n)L,u;v'. Then X, — c3ZAj.

PrROOF. E(uu') = (c + c¢)¢¢' + c,I and the first identity follows by taking
the trace.

E[(u%)?] = ¢ + ¢, + ¢, and the inequality follows from 1/p < E[(u%)?] <
1. 0O

Let G be a closed subgroup of O( p) and assume A, € G. The proof of Chang
(1986) provides a simple and direct proof that A AG) = A, (strong convergence).

A (G) is the quasimaximum likelihood estimator of A using the mistaken
log likelihood nr(A) instead of the true log hkehhood Y, log g(ul¢) +
L, log g(v!A¢)). Kent (1982) has made a general study of the asymptotic proper-
ties of the MLE and the likelihood ratio statistic when a mistaken likelihood is
used. In fact, the presence of the nuisance parameters £, implies that the errors
in variables spherical regression model does not quite fit the hypotheses of his
paper. Nevertheless, the proof of his Theorem 3.1 can easily be modified for the
errors in variables spherical regression model and hence we will content ourselves
here with the calculations needed to use his theorem. Alternatively, the calcula-
tions here are sufficient to adapt the “from basic principles” proofs of Chang
(1986) to the present situation.

The hypotheses of the tests discussed in Kent are phrased in terms of the
parameter value A nearest to the density g. A is chosen to maximize

F(A) = E(ZvﬁAui) = 2 tr(AZ&ingf)).

If n is sufficiently large and 2 is positive definite, then ¥ .£,£! is positive definite
and it then follows that F is maximized at A,. On the other hand if n is
sufficiently large, = has rank p — 1, and A, is known to be in SO( p) (the p X p
orthogonal matrices of determinant +1), then X,£,¢¢ is positive indefinite with
rank at least p — 1 and the maximum of F over SO(p) is A,,.

If H is a p X p skew symmetric matrix (H + H* = 0),

®(H) = Z H/r!
r=0
lies in SO( p). For the closed subgroup G, define L(G) to be the vector subspace
consisting of those skew symmetric H such that ®(tH) is in G for all ¢. The
vector space dimension of L(G) is the dimension of G. Since An(G) - A, we can
write (for large enough n) ALA (G) = ®(H(G)), where H, (G) € L(G) is cho-
sen to have smallest magnitude [this is possible as soon as An(G) is in the same
connected component of G as A,].

By replacing each v; with A%v;, we can assume without loss of generality that
=1
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For each H € L(G) the total score function U(H) is the linear transforma-
tion on L(G) defined by

d
U(H)B =—

% 0nr(<I>(H+ tB)).

t=
We have U(0)B = n tr(BX)).

The expected score derivative matrix is the quadratic form on L(G) defined
by

Q(B, B) = lm ~ ~E(U(0)(B, B,))

= nli_{r:o - E(% & t=0r(¢(sB1 + tB,))
= —c2tr(B,2B,).

The usual Taylor series argument yields

1) n”"2U(0)B = Q(Vn H,(G), B) + o,(|BI).

The expected squared score matrix is the quadratic form on L(G) defined by
Q,(B,, By) = lim Cov(n~'/2U(0)B,, n~/?U(0)B,).

ProposiTION 1.
Q,(B,, By) = —2(1 — pc,y)c, tr(B,EB,) — c? tr(B,B,) forB,, B, € L(G).

Proor.
Cov(n~Y2U(0))(B,, B;) = nE[tr(B,X,)tr( B,X,)]
=E Z(ufBlui)(v}Bzuj)t]/n
i, J
= ZE[tr(Bz‘vjvaluiu})]/n.
i, J
Now if i # J,

E[tr(Bévjvaluiuj)] =c§ tr(Bégjnglgiij) =0,
since ¢!B,&, = 0. Also
E[tr(Bévivalu,uf)] = tr[Bé((c?) + cl)gigf + czI)Bl((cg + cl)glff + czI)]
(2 + c;)cy tr[(B,BE + BLB,)&£!] + 3 tr B{B,
= —2(c2 + ¢,)cy tr( B Byt,tL) — ¢} tr B, B,.

Since ¢ + ¢, = 1 — pc,, we get the desired form of @ ;. Using Lemma 1, we note
that @, is nonsingular. O
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In the fixed u case, the expected score derivative matrix and the expected
squared score matrix are multiples of each other and this leads to the simple
structure of the analysis of the fixed u model. Kent (1982) discusses asymptotics
when @ and @, are different. Following his approach, we will first express the
analysis of the random u model using matrices. Then we will rewrite his results
into basis free form using orthogonal projections under @ and @ ;. This reformu-
lation does not depend upon the spherical regression model and the same
principles can be used to rewrite much of the Kent paper.

Let G’ € G be a closed subgroup with A, € G'. Let g’ = dimG’ and g =
dim G. Pick any basis of L(G’) and extend it to a basis of L(G). In terms of this
basis write the matrices of @ and @ as

M= —Mu Mm}

_M21 M,,
and
J _ -Jll Jl2 :|’
_J21 oo

respectively, where the square g X g matrices M and J have been split after
their g’th rows and columns. Let £,(G) be the g-vector representation of H (G).

THEOREM 1. (a) Vn h,(G) is asymptotically normal with mean 0 and covari-
ance matrix M~ JM™1,

(b) 2n(r(G) — r(G")) is asymptotically the weighted sum of g — g’ indepen-
dent x*(1) variates Tp,x*(1), where p, are the eigenvalues of the matrix
(M,, — M21A{1_11M12)(A{A M)y

(c) Write A (G) = A (G"®(H(G', G)) and let h,(G’, G) be the vector repre-
sentation of H (G’,G). Let L be the g X (g — g') matrix L = [—M,M;;' I
Then

(2) #(H,G) = nh,(G',G)'ML(LYL) 'L'Mh (G’, G)

is asymptotically x*(g — g").
(d) 7(G) is asymptotically normal with mean c2 and variance

(1-2(p—1)¢c; +p(p - 1)} —ct)/n.

Part (a) of Theorem 1 follows from (1) and Proposition 1 [or equivalently
Kent’s equations (3.8) and (3.9)]. Part (b) is Kent’s equation (3.3). We will show
in the Appendix that (c) is asymptotically equivalent to Kent’s equation (4.1).
Part (d) is a reasonably straightforward calculation which is also presented in
the Appendix.

To use Theorem 1 in most cases, we will need consistent estimates of c,, c,
and Z.
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PROPOSITION 2. Suppose A, € G. Let
60 = r(G)1/2y

2= (X,4,(G) + 4,(G)'x2)/r(@),

L1 \/pz(qun<G>u,~)2—n
p

C2=
pn—n

Then &, 2 and &, consistently estimate Co, 2 and c,.

REMARK. Equivalent forms of these estimates are

1-r(G)

1 N

— —A 112

o ;nol A(G)uil?,

A 1 { 4
& =1-r(G) = o= Xlloi = A,(G)u,ll*,

28 2%
é2= 2 1 -+ 1 - 2
p—1 p—1

These forms are more computationally stable for concentrated error distribu-
tions.

The proof of Proposition 2 is deferred until the Appendix.

To avoid always having to work in a basis which extends a basis of L(G’), we
rewrite the results of Theorem 1 into an equivalent basis free form.

Let P, be orthogonal projection under @ ; of L(G) onto L(G’)* [the orthogo-
nal complement under @ of L(G’)] and let p: L(G) - L(G) be the linear
isomorphism defined by p(H) is the unique element of L(G) so that
Q,(p(H), B) = Q(H, B) for all B € L(G). The matrix of p is J M.

THEOREM 2. (a) H(G) is asymptotically normal with mean 0 and density

proportional to exp(—(n/2)Q ,(p(HG)), p(H,(G)))).

(b) Pp has exactly g — g’ nonzero eigenvalues A, ..., A ¢-g Each X, is real
and positive and 2n(r(G) — r(G’)) is' asymptotically a sum of independent
1/X)x%(1) variates.

(0 /(G', G) = nQ,(PpH(G’, G), P,pH,(G', G)) is asymptotically x*(g — &').

Since L(G) is a vector space, a choice of basis of L(G) gives it a Lebesgue
measure. Any two Lebesgue measures defined in this way agree up to a multi-
plicative factor. Theorem 2(a) should be interpreted as a density with respect to
one of these Lebesgue measures. The equivalence of Theorems 1(a) and 2(a) is
then immediate. The equivalence of Theorems 1(b) and 2(b) or 1(c) and 2(c) is
discussed in the Appendix. It is also shown there that p, = 1/A,.
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We conclude with the following lemma which is often useful for calculat-
ing P,.

LEmMA 2. If P, is orthogonal projection under Q; of L(G) onto p(L(G")),
then P, =1— P,.

Proor. If B, € L(G")* and B, € L(G’),
QJ(BU p(B2)) = Q(Bl: Bz) =0,

and the lemma follows. O

ExaMPLE (Rotations in three dimensions). The only connected subgroups of
O(3) are SO(3), the rotations around a fixed axis 50 [which form a group
lsomorphlc to SO(2)] and the identity subgroup. If G’ is any subgroup of O(3)
and G’ is its connected component containing the identity, then G’ is a normal
subgroup and G /G’ is finite. Thus we will only describe large sample asymptotic
tests for the subgroups G’ = {rotations around a fixed axis £,} or G’ = {I}.

Let a: R® > L(O(3)) be the map,

a([t1t2t3]t) = 2 0 -
-t t 0

Then for x € R3 y(x) = ®(a(x)) is right-hand rule rotation of |x| radians
around the axis x/|x|. If 2 is a 3 X 3 symmetric matrix

*((tr 2)I - 3)y = —tr(a(x)Za(y))
and hence the matrices M and J become
M =ci(I-32),
J =2¢,((1 — 2¢,)I — (1 — 3¢,)=).

Hence, using Theorem 1(a), a test for Hy: A = A, can be based upon the test
statistic 7 = nh'Sh, where 3 = MJ"- 1M and \[/(h) AL A(O@3)). 7 has an
asymptotic x2(3) distribution.

Theorem 2(c) can be used to test if the axis of rotation is a fixed unit
vector £,. Let G’ be the group of rotations around §,. Let L = a(§,) and

(1 /n)L;viLu,. Then AG) is a rotation of § radians where sind =
al/(a + a2)1/2 and cos f = —a,/(a? + aZ)'/2. We recall that the matrix of
p is J M and using Lemma 2 we calculate that the matrix of P, is
T — J7'ME(£038,) 745 M. Thus if $(h,) = AO@)¥(—0%y),

7 = nQ,;(Piph,, Piph,) = nQ,(P,phy, ph,) = nQ(h,, P,ph,)
= nhiM|I - cid—'MEo(£638,) 'eiM | T M,

= nh{[$ - (56,)(56,) "/ (£5¢0)| .
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Under H,, 7 has an asymptotic x*(2) distribution. For later use, we note that
r(G’) = ay + a, + (a? + a?)/2

Both of these tests remain asymptotically valid if ¢, ¢, and = are estimated
using Proposition 2.

2. Asymptotic results for Fisher distributions with large k. We study
in this section the asymptotic behavior of spherical regressions when the un-
derlying error distribution is Fisher with concentration parameter k — oo, n
fixed. As in Section 1, it suffices to consider the case where A, = I. Let

X; =U;— (ufgi)gi’
Yi =0 — (Uf&i)gi'

Then the distributions of k'/%x; and k!/%y, approach the normal distribution
N,_0,I) as k > co.
Let

1
S = — &t
n nii:glgl’

f=(p-1(-r@)"
THEOREM 3. Let A(G) = A®(H(G)) and g = dimG. As k — oo:
(a) H(G) is asymptotically normal with a density proportional to
exp(ink tr(HS, H)).

(b) (kn(p — 1)/R) is asymptotically x*(n(p — 1) — g).
(c) & and H(G) are asymptotically independent.

If G’ c G is a subgroup of dimension g’:

d) nk(r(G) — r(G") is asymptotically x*(g — g").
(e (r(G) — r(G))/Q — r(G)(p — Vn — g)/(8 — &) is asymptotically
F(g —g,(p—1n-g).

Proor. Let X, be as in Section 1. Since

1
X, = n > [(”f&)(”f&)éiﬁf + (ufgi)giyit + (vféi)xiéf + xiyi‘]

and since u’¢;, = 1 — ||x;]|2/2 + 0,(k ') the usual Taylor series yields that for all
B € L(G),

tr(k'/?BX,,) = —tr(«"/?H(G)Z,B) + o0,(1).
Defining B(B) to be the left-hand side of this equation, routine calculations show
2
Cov(B(B,), B(B,)) = + ;tr(BfBzzn) +o(1)

and this implies part (a).
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Now if B € L(G) is O(k~1/2),
2nk(1 — r(®(B))) = L|Ix'%y; — "%, — k/°BE|1* + 0,(1),

so usual least squares theory implies that k!/2H(G) and «(1 — r(G)) are asymp-
totically independent. Furthermore since k!/%y, — k!/2x; is asymptotically
N,_(0,21), nk(1 — r(G)) is asymptotically xXn(p — 1) — g). This proves parts
(b) and (c).

Parts (d) and (e) follows similarly. O

REMARK. Rivest (1989) gives an argument that shows the subgroup condi-
tions in Theorem 3 can be replaced by the weaker requirement that G and G’ be
topologically imbedded submanifolds of O(p). Using his notation we define
V(A,, G) to be the tangent plane at O to the submanifold ® (A;'G) of
L(O(p)).If L(G) and L(G’) are always replaced by V(A,, G) and V(A,, G’), the
theorems of Section 1 and Chang (1986) remain valid. Their usefulness, however,
is severely limited by the fact that if G and G’ are not subgroups, V(A,, G) and
V(A,, G’) depend strongly on A,. The only theorems that appear to have useful
extensions on these lines are Theorem 3 of the present paper and Theorem 2 [on
the distribution of 7(G) — r(G’) in the fixed u model] of Chang (1986).

3. A numerical example. We consider in this section the Gulf of Aden data
set previously discussed in Chang (1986) and Rivest (1989). This example arises
from the motion of Arabia relative to Somalia. For this data set, n = 11 and
A(SO(3)) is a rotation of 2.38° around an axis at 25.31°N latitude, 24.29°E
longitude. We note that r(SO(3)) =1 — 5.812 X 10~".

The small sample size and closeness of r(SO(3)) to 1 indicate that large «
approximations are more reasonable. Indeed the errors thought to underlie
tectonic data of this type are miniscule (relative to the circumference of the
Earth) and so one would usually use large « approximations for tectonic data.
Theorem 3(d) for k known as Theorem 3(e) for k unknown can be used to test if
the unknown rotation A is a specific A or if it has a specific axis §,. Numeri-
cally, these tests are identical in the random u and fixed u cases and so the
reader is referred to Rivest (1989) for specific numerical calculations. We also get

k=34 %108

and using Theorem 3(c), a 95% confidence interval for « is

1.4 %X 10% < k < 5.1 X 108,

These values are double the values obtained in a fixed u analysis. Indeed,
comparing Theorem 3 with the corresponding results in Rivest (1989) one
observes that as k = o0 a random u model with concentration parameter «
behaves like a fixed ¥ model with concentration parameter /2.

The original paper by MacKenzie (1957) on estimating a rotation A from data
(u;, v;) which in the absence of error would satisfy v, = Au;, was motivated by a
problem arising in crystallography and Science Citations Index lists several
references to it from the engineering literature. Thus although large sample
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approximations are not as relevant to tectonic data as large « approximations, it
is likely that they will be relevant to applications elsewhere. Thus, for instruc-
tional purposes, we will illustrate an analysis based upon large sample approxi-

mation with the Gulf of Aden data set.

For this data set

_ [o0.3568 0.4531 0.1325
$=]04531 05924 0.1733 ],
0.1325 0.1733  0.0508
8 =1—2906 x 1077,
&, = 2.906 X 1077,
. 1.1065 X 106 —0.7796 x 106 —0.2279 x 10°
2=1]-0.7796 x 10°  0.7013 x 10¢ —0.2982 x 10° |-
—0.2279 x 105 —0.2982 x 105  1.6331 x 10°

Let A, be a rotation of 2.04° around 26.5°N, 21.5°E. In a test of H,: A = A, we
get

h=1[0.004572 0.003749 0.001826]°

and hence 7 = 42.02, which needs to be compared with a x?%(3) distribution
Alternatively, if we desire to use Theorem 2(b), r(A4,) =1 — 1.6915 X 10~°
2n(r(SO@Q)) — r(A,)) = 2.442 X 107°. The estimated eigenvalues of p are 5\
1.72044 X 108, A, = 1.72044 x 10%, A, = 1.72037 x 10°. Thus 2n(r(SO(3)) -
r(A,)) must be compared with

1 1 1
=x41) + =—x%1) + —x%(1).
7\1X() Azx() ?\3X()
In this case A,, A, and A are all approximately equal and A.2n(r(SO@M)) -
r(A,)) = 42.02.
To test that the axis of A is 26.5°N, 21.5°E, we use

h, = [0.002318 0.002860 0.0006159]° and # = 2.903,

which needs to be compared with a x%2) distribution. Alternatively, to use
Theorem 2(b), we note that the matrix of P,p is

_1[2 - (250)(250)t/(£32§0)]-
The eigenvalues of P,p are 0, 1.72038 X 10° and 1.72044 X 10® and 2n(r(G) —
r(H)) = 1.687 X 10~ % Again the two nonzero eigenvalues A, and A, of P,p are
approximately equal and A;2n(r(G) — r(H)) = 2.902.
Using Theorem 1(d), with approximately 95% confidence 1 — cZ = (5.812 +
3.675) X 10~ 7. Assuming a Fisher error distribution, this corresponds to 2.1 X
105 < k < 9.4 X 108, The close agreement between the tests using Theorems 2(b)

and 2(c) and their agreement with the corresponding procedures in the fixed u
analysis is due to this extremely concentrated error distribution.
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Geophysicists generally believe that data of this type have an error of around
20 km which corresponds to k = 2 X 10° This value of k is much below the
lower limits of the 95% confidence interval for k constructed using either large
sample or large k approximation. The plate boundaries are, to good approxima-
tion, piecewise linear (in a spherical sense). The points u; and v; represent the
vertices of the boundaries on opposing plates. Since the boundaries are under-
water the u; and v; are never never measured directly but are “interpreted” on a
map of estimated boundary crossings. The author is now able to analyze a model
of the estimated boundary crossings and hopes to report on this at a later date.
Based upon this analysis the author believes that the geophysicists’ estimates of
their errors are reasonable for the raw data, that is the estimated boundary
crossings, but that the process of interpretation has drastically reduced the
errors in the interpreted u, and v,. There remains the nagging possibility that
the process of interpretation introduces a stochastic dependence among the
estimated vertices on each side.

Theorem 1(a) can be used to produce a large sample asymptotic confidence
region for A of the form

{Ay(R)Inh'ER < x7_,(3))}-
Alternatively, Theorem 3 implies that
2n —3

{A¢(h)|| hY(I — 3, )h < 3F,_,(3,2n — 3)}

is a large k asymptotic confidence region for A. The author suggest that such
regions be displayed using procedures identical with those discussed in Chang
(1986).

Defining

SSE(A) = Lllv; — Auy|* = 2n(1 - r(4)),

a naive approach to spherical regression would be to ignore the nuisance
variables £, and to assume an asymptotic 3F(3,2n — 3) distribution for

SSE(A) — SSE(A)
SSE(A)/(2n—3)

Theorem 3(e) for the random z model and its corresponding fixed u result in
Rivest (1989) imply that as k — co the naive approach is asymptotically correct.

In the fixed u case, as n — oo, x has an asymptotic c,/c(1 — ¢o)x*(3)
distribution. Roughly speaking, no increase in sample size can eliminate the
effect of the sphericity. Nevertheless, for a Fisher distribution with x > 5,
1 < ¢y/cy(1 — ¢,) < 1.0001 and hence the naive approach provides an excellent
approximation to the true asymptotic distribution.

In the random u; case x has a limiting 1/(1 — ¢3)Z;(1/A;)x*(1) distribution
where A, A, and A, are the eigenvalues of p. If 0, 0, and o, are the eigenvalues

x:
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of X,
©72¢, (1-2¢,) — (1= 3¢y)0;

We know that o,>0 and o, + 0, + 0; = 1. Notice that as o, > 0, A, -
ci/2¢)(1 — 2¢,), but as o, > 1, A\; > 0. Thus in the random u case, the
discrepancy between the naive approach and the true large sample asymptotic
distribution depends both on the concentration of the error distribution and the
conditioning of the matrix =. Assuming a Fisher distribution with reason-
ably large k, ¢, ~1—1/k and hence (1 — ¢2)A; ~ (1 + 1/2k)(1 — 8), where
0 <8 < (k1 —0;))"" A o; close to 1 indicates that the ¢, are extremely tightly
clustered around a point. The author believes for tectonic data the naive
approach provides an adequate approximation to the true large sample asymp-
totic distribution unless the data points on each plate are extremely tightly
clustered around a point.

APPENDIX

We prove here Theorems 1(c), 1(d), Proposition 2 and the equivalence of
Theorems 1(b) and 2(b) and Theorems 1(c) and 2(c). Alternatively, one could
prove Theorem 2 without the use of a basis of L(G) using only the definitions of
Q, @, p and P, and the well known properties of the normal distribution.

If G’ is a subgroup of G, let L(G’)* be the orthogonal complement under
of L(G’) in L(G). Let P: L(G) —» L(G) be orthogonal projection under @ of
L(G) onto L(GH*.

PRoOPOSITION 3. Suppose A, € G’ C G.

(2) H(G) — H(G") = P(H(G)) + o1/ Vn).
(b) Let H (G, G) be defined by

A,(G) = 4,(G)0(H,(G",G)).
Then H(G',G) = P(H,(G)) + 0,(1/Vn).
Proor. If B € L(G’), using (1),

Q(VnH,(G), B) = Q(VnH,(G"), B) + o,(||Bl),

from which it follows that H,(G"’) is the projection of H,(G) onto L(G’) modulo
lower order terms. Part (a) follows. Part (b) follows by applying ® to part (a). O

PrOOF OF THEOREM 2(b) [given Theorem 1(b)]. Let @, be the quadratic
form defined on L(G) by

Qz(Bv B2) = QJ(PIP(BI)’ PlP(Bz)) = QJ(p(Bl)’ Plp(B2))
= Q(Bv Plp(BZ))'
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If we choose a basis of L(G) which is orthonormal with respect to @, the matrix
of @, is the matrix of Pp. Furthermore, if B, € L(G"), Q4 B,, B,) = 0 for
all B,. On the other hand if B € L(G)*, Q4B, B) = Q(B, P,p(B)) =
Q(B, p(B)) = @ ,(p(B), p(B)) > 0. It follows that P,p has exactly g — g’ non-
zero eigenvalues, all positive.

Since the columns of the matrix L of Theorem 1(c) form a basis of L(G')*,
the matrix of Pp is L(LYL) 'L‘M. If P,p is restricted to L(G’)* and then
expressed as a matrix in terms of the basis consisting of the columns of L, the
resulting matrix is (LJL)"'(L‘ML). Tedious matrix algebra using Rao [(1973),
Exercise 2.7], yields that the matrix of Theorem 1(b) is (L%L) LML)~
Theorem 2(b) follows. O

ProposiTiON 4. If T, is the statistic defined by Kent [(1982), (4.1)],
F(G',G) =T, + o(1/Vn).

ProoOF. In Kent’s notation, ¢ — Y, is the last g — g’ rows of A, (G). Let
E = My, — My, M;;'M,,. Tedious matrix arithmetic yields E(M~'JM '),,E =
LYJL. Thus

A t -1 A
T, = n(¥ = 4,) E(LYL) E(§ ~ ¥,).

As a g X g matrix, the matrix of Pis[0 L] whereOisa g X g’ matrix of 0’s.

Thus using Proposition 3,

L'Mh,(G',G) = L'M[0 L]h(G) + o,,(

1
Vn

= L'ML(§ — %) + o,

—_——
—

)

A

=E(¢/—¢0) + o0,

1
Vn
and the proposition follows. O

Proposition 4 implies Theorem 1(c). To reconcile the forms of #(G’, G) given
in Theorems 1(c) and 2(c), we note again that P,p has matrix L(LYL) 'LM.

PROOF OF THEOREM 1(d). We assume, as usual, A, = I. Then

HG) = tr(o(H,(G))X,) = tr(X,) + tr(H,(G)X,) + (

s

%‘Vi_‘,vfui + e tr(H,(G)Z) + op(%)

1

1
— 2 vu; + o)l = |,
n;ll p( n)

since H,(G) is skew symmetric and = is symmetric.
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Now E(v'u;) = cZ and
E(vfui)2 = E(tr uulv;of) = tr[((l —pey)€ Ll + 021)2]
=1-2(p—1)ec,+p(p—1)cl. O
PROOF OF PROPOSITION 2. From the proof of Theorem 1(d),
E(vaOui)z =1-2(p—1ec,+p(p—1)ci
Since An(G) = A, + 0y(1),

1 -
—~2(cid,(G)u;)” > 1~ 2(p ~ Ve, + p(p — e}
The proposition follows. O

REMARK. That = hasrank p is used in two places: to ensure the consistency
of H(G) and the nonsingularity of the quadratic form @. For the latter, it
suffices that = have rank p — 1. For the former, using the approach of Chang
(1986), it suffices that F(A) = tr(AZX) be uniquely maximized at A = I over G.
If 2 has rank p — 1 and G is a subgroup of SO( p), this will still be true. Thus
Theorems 1 and 2 of Section 1 will hold if = has rank p orif = hasrank p — 1
and G € SO(p). The same remarks apply to the fixed u theorems of Chang
(1986) and to Theorem 3 of Section 2 if these rank conditions are true for X ,,.
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