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NONPARAMETRIC HYPOTHESES
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In this paper, the asymptotic behavior of some nonparametric tests is
studied in situations where both bootstrap tests and randomization tests are

. applicable. Under fairly general conditions, the tests are asymptotically
equivalent in the sense that the resulting critical values and power functions
are appropriately close. This implies, among other things, that the difference
in the critical functions of the tests, evaluated at the observed data, tends to
0 in probability. Randomization tests may be preferable since an exact
desired level of the test may be obtained for finite samples. Examples
considered are: testing independence, testing for spherical symmetry, testing
for exchangeability, testing for homogeneity, and testing for a change point.

1. Introduction. The main goal of this paper is to study the behavior of
some nonparametric tests having a common structure. In particular, two meth-
ods to simulate a null distribution will be analyzed and compared. The bootstrap
method, formulated by Efron (1979), has been shown to be a widely applicable
method in testing problems; see Beran (1986) and Romano (1988). In this paper,
the problem of testing a nonparametric hypothesis is considered in situations
where randomization ideas apply. The idea of randomization dates back to
Fisher (1935), and then Pitman (1937/38). Both bootstrap and randomization
methods are the same in that rejection of a null hypothesis occurs when a
common test statistic is large. However, the approaches differ in that critical
values are determined by (usually) distinct resampling methods to estimate a
null distribution.

The statistical problem considered here has the following form. Given a
sample X,,..., X, of S-valued random variables, we wish to test the null
hypothesis H,, that the unknown probability distribution P on S generating the
data belongs to a certain class Q, against the alternative class ,. Here, if
represents the class of all probabilities on S, then @, will typically be & — Q.
Moreover, 2, can be characterized as the set of probabilities P satisfying 7P = P
for some mapping 7 from  to Q,. Furthermore, if § is a metric on the space of
probabilities on S, @, is specified by 8( P, 7P) = 0.

Let Pn be the empirical measure of X, ..., X,. Then, the proposed test rejects
for large values of T, = T(X,..., X,,), where T,, is of the form

(1.1) T, = n'/%(B,, 7B,),
so that the test rejects when 7P, is sufficiently far from P,
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142 J. P. ROMANO

A typical choice for 8, in the spirit of Kolmogorov—Smirnov test statistics, is
(1.2) 3v(P,Q) =sup{Ve V:|P(V) - Q(V)|}

for some collection of events V. It has the advantages of being generally
applicable (especially for complex data) and yields tests with good power proper-
ties; see Remark 2.2. Henceforth, we restrict attention to T, given by (1.1) and 6
give by (1.2).

Next, we give a typical example of the testing problem just described.

EXAMPLE 1 (Testing independence). Let X,,..., X, be ii.d. S-valued ran-
dom variables and suppose X; = (X; ,,..., X; ;) is made up of d components.
The problem is to test the joint independence of the components. To get started,
suppose the jth component takes values in a space S; and S is the product space
S = X7 4 ,S;- If P is a probability on S, let P, be the marginal probability on S;
of the ]th component If P is a probability on S with marginals P, let 7P be the
product probability X 1 P Note that 7P = P if and only if P i 1s a product of
its marginals. Then, the proposed test statistic is (1.1), with § = 8y given by
(1.2), where V = X;’ V; and V; is a collection of sets in S, Notice the
generality of the problem and the flexibility of the choice of test statistic.
Specifically, no continuity assumption on the underlying distribution is made.
Also, the component spaces can, in fact, be quite general. Indeed, they can be
different; some variables could be quantitative (continuous or discrete), while
others might be qualitative or categorical. Also, the results allow for a choice in
the collection of sets V; defining 7,. For example, if S, is the plane, several
reasonable choices for V, exist: all lower left-hand quadrants, all half-spaces or
all ellipses, for example. In summary, no assumptions will be made on the
underlying probability law P of the data. However, the class of sets V; chosen
must be a Vapnik-Cervonenkis class.

1.1. Bootstrap test. Let J (P)be thelaw of T,(X,,..., X,) when X|,..., X,
are i.i.d. P. In order to obtain a critical value for a test based on T,,, J,(P) must
be approximated for P € Q; that is, JJ(7P) must be approx1mated The boot-
strap procedure is to estimate J,(7P) by o/, (TP ) and then use the corresponding
critical value from this estimated sampling distribution. We formally define a
bootstrap critical value as follows. Let J (¢, P) = P[T(X,,..., X,) < t]. For
a € (0,1), let

b,(a, P) = inf{t: J,(t, P) > 1 — a}.
Then, the nominal level a bootstrap test rejects when T, > b,(a, Tﬁn). The
random variable b,(«, P > ) is called a bootstrap critical value
In Romano (1988), such a bootstrap procedure is applied to several examples

(testing goodness of fit, testing independence, testing for spherical symmetry,
etc.), and it is established that

(1.3) ' PO[Tn > b,(a, 713,,)] —>a asn— o

for any P, in £, and such tests are consistent against all alternatives.
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In this paper, this general testing problem is specialized to cases where the
distribution of the data H, is invariant under a transformation group, thus
leading to a randomization procedure as a competitor to the bootstrap proce-
dure.

1.2. Randomization test. The following is assumed. As the notation suggests
[borrowed from Hoeffding (1952)] the objects considered are defined for an
infinite sequence of positive integers n in anticipation of some asymptotic
results. The observation x, takes values in a sample space S‘™. Typically, x, is a
vector of n ii.d. S-valued random variables. Let G, be a group of transforma-
tions of S™ onto itself. For now, assume G, is finite with M, elements. We
assume the hypothesis implies that the distribution P of x, is invariant under
G,,; that is, for every g in G,,, gx, and x, have the same distribution. Let T,, be
any real-valued test statistic defined on S™. For every x in S, let

TO(x) < TO(x) < -+ < TH()

be the ordered values of T, (gx) for all g in G,. Given a number « in (0, 1), let
k, = k,(a) be defined by &k, = M, — [ M,a], where [¢] denotes the largest integer
less than or equal to ¢. Let M (x) and M(x) be the number of values T,(/)(x),
j=1,..., M, which are greater than T*»)(x) and equal to 7,{*»), respectively.
Define

Mna - M:(x)

(1.4 a,(x) = =50
Let ¢,(x) be the test function equal to 1 if T,(x) > T.*")(x), 0if T(x) < T,*)(x)
and equal to a(x) if T (x)= T *)(x). Define r(a,x,) = T *)(x,) to be a
randomization critical value. Then, for any P which is invariant under G,,
E pm[9,(X,,)] = @. Such a test will be referred to as a randomization test.

It is a well-known argument why the test ¢, has exact level a. In particular,
let G,x be the G,-orbit of x in S; that is, G,x is the set G,x = {gx|g € G,}.
Now, conditional on x, € G, x, the test statistic is equally likely to be any of the
values TV)(x), 1 <j < M,. Hence, a conditional level a test has been con-
structed for each x, yielding a test with unconditional level « as well.

The randomization distribution of 7, will be denoted by J,(P™|G,x,,). That
is, J(P™|G,x,) is the conditional distribution of T,(y,) under P given that
y, falls in G,x,. Thus, if P™ is invariant under G,, J(P"™|G,x,) is the
random distribution assigning equal mass to each of the M, values T,(gx,). As
a consequence, J,(P™|G,x,) does not depend on P™ if P is invariant
under G,,.

The connection with the bootstrap set-up should be apparent. When x, is a
vector of 7 ii.d. variables with distribution P, then P = P" and J(P"G,x,)
is actually independent of P for P in €, Similar to J (¢, P), define
J(t, P™|G,x,) to be the conditional probability that T,(y,) is less than or
equal to ¢ given that y, falls in G,x, and y, has distribution P®™. Both
bootstrap and randomization tests reject for large values of T),. The difference is
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that critical values are determined by referring to distinct distributions J( 'rﬁn)
and J (P G,x,).

EXAMPLE 1 (Testing independence, continued). The sample space S™ is S*,

where S is as explained in Example 1. An element x, = (x,,...,x,) in S” is
therefore made up of d components, so that x; = (%, ,,..., x; 4) with x; ;in S,
Let m;=x", 1 <j < n!, be the n! permutations of {1,..., n}. Given integers
L, ..., 4, €ach between 1 and n!, let g; ; € G, be defined to transform x,

into y,, where y, has kth component y, (in S) given by y, J= X e Then, for
any g in G, and any P in Q,;, gP" = P"; that is, the distribution of gx, is the
same as x, if x, has distribution P”. In words, under the hypothesis of
independence, we can, for each j, permute the data values in S; with each other
to form a new data set which has the same distribution as the original data set.
For each such data set x},, b=1,...,M,, T(x*,) is computed and the
empirical distribution of these values is the randomization distribution. Notice
that each new data set x* , may be expressed as Xy, = X, for some g in G,.
So, one may choose g’s with or without replacement from G,. The case of
choosing B = M, g’s without replacement from G, corresponds to exact evalua-
tion of the randomization distribution. Unfortunately, in the case of testing
independence, the number of g’s one needs for an exact evaluation is (nh)?"1 so
this approach may not be practical. The results obtained here apply even when
bootstrap and randomization distributions must be approximated by Monte
Carlo; see Section 4.

The following point may help to understand the conceptual distinction be-
tween the bootstrap and randomization procedures. The bootstrap distribution
may be viewed as an unconditional approximation to the null distribution of the
test statistic while the randomization distribution may be viewed as a condi-
tional distribution of the test statistic. In the notation previously defined,
J( Tﬁn) = J(Fy'|S), where P, is any member of §,. It if were the case that
J(Fy'|G,x,) did depend on the actual P in Q,, an alternative or combined
approach might be to approximate the conditional distribution J(P"G,x,) by
a bootstrap procedure, say oJ ( Tﬁn"|Gxn). In this way, the randomization distri-
bution may be considered a conditional bootstrap distribution.

The results obtained in this paper may be summarized as follows. The
bootstrap and randomization distributions are uniformly close in the following
sense. If x, has distribution P} with P, in Q,, then

(1.5) supl,(¢,7B,) — J,(¢, PP|G,x,)| = 0 in probability.
t
Moreover, each distribution, say o/ (¢, Tﬁn) may be approximated by.a strictly

increasing continuous distribution, say J(¢, P,) which is not random and depends
only on P,; that is, we also have

(1.6) supl,(¢, 7B,) — J(t, P,)| = 0 in probability
t
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and
(1.7) sup|J, (¢, B)) — J(t, Py))| = 0
X t

as well. Thus, the difference in corresponding critical values tends to 0 in
probability:

(1.8) d,(a,7B,) — r(a,x,) = 0 in probability.

Moreover, analogous results hold for the power of the tests under alternatives
because critical values are still determined under the null hypothesis. In particu-
lar, (1.8) still holds if P is not in Q,. Moreover, (1.5) is also true if x, has
distribution P". Actually, even more is true. The critical values for both
procedures tend to the common finite value d(a, 7P) in probability, where
d(a, 7P) is the upper a-quantile of the liming distribution J(#, 7P). This implies
that the difference in the critical functions of the tests, evaluated at the observed
data, tends to 0 in probability. Also, the probability that the randomization test
is randomized tends to 0. It also easily follows that both tests are consistent. In
the same way, one can study the power functions of the tests against general
alternatives @, appropriately defined to yield a limiting power value less than 1.
For instance, suppose @, satisfies §y(Q,, P)) = O(n~'/?) for some P, in .
Then, if T, has a limiting continuous distribution under @, and (1.8) holds, then
the power of both tests tends to the same value. The result is that the power
functions of both tests may be said to be asymptotically equivalent. Hence, the
randomization test may be preferable since it has exact level a for finite samples.

In Section 2, these results are made clear and a general methodology for
proving these claims is developed. Several examples are introduced in Section 3
for which the results apply. Details of the proofs are given in Section 5.

It should be pointed out that the program developed here is similar to that
carried out by Hoeffding (1952). He obtained similar results for randomization
tests based on test statistics arising from optimal parametric procedures. For
example, he obtains results for the permutation test of whether a correlation is 0
based on the optimal test statistic in the case of Gaussian data. In contrast, the
problems considered here are tackled from a purely nonparametric point of view.
In addition, comparisons with the bootstrap are made. Moreover, the distribu-
tions of the test statistics considered in this paper cannot be approximated by a
simple asymptotic distribution, such as a Gaussian or chi-squared approxima-
tion, which further shows the power of simulation techniques.

2. Asymptotic results. In this section, we outline the justification for the
claims made in Section 1, followed by several examples in Section 3. Details of
the proofs appear in Section 5.

To summarize the problem, we now focus on the i.i.d. case. Slight extensions
will be presented in Examples 4 and 5. Given a sample X,,..., X, of iid.
S-valued random variables, we wish to test the null hypothesis that 7P = P for
some specified 7. The test statistic 7, is given by (1.1) with § given by (1.2).
Furthermore, we will assume the choice of sets V in the definition of 8§ is a
countable Vapnik-Cervonenkis (V.C.) class of subsets of S. The restriction to
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countable classes of sets is to avoid measurability problems and may be weak-
ened, but there do not appear to be any applications which warrant the need to
do so. Tacit is the assumption that we choose V large enough so that 8y is
indeed a metric. In general, the results may apply to testing 8+ (P, 7P) = 0.

To study the asymptotic behavior of the bootstrap and randomization tests, it
is first helpful to review the bootstrap. All details may be found in Romano
(1988). In order for the bootstrap to succeed, the distribution of the test statistic
J,(P) must be smooth as P varies. But, smoothness in J(P) can be traced to
smoothness of the mapping 7. The following smoothness condition on 7 holds for
the problems considered in this paper. It is assumed that 7 is differentiable in
the following sense: If P € Q,, then there exists a mapping f(-,-, P)on S X V
so that

(21)  Q(V)=rP(V)+ /S f(x,V,P)d(Q — P) + o(|Q — P|y)

as |@ — Py > 0 and |P — Py — 0 for some Py in ,. Here, |- |y is the
supremum norm in L_(V), the metric space of real-valued bounded functions on
V. In order to analyze J,(P,), consider the process S,(-), given by

(22) S(V) = n'/2[B(V) - =B(V)].

Regard S, as a random variable on L_(V). Then the test statistic T, is just the
norm of the process S,. Letting

(2.3) Y(x,V,P)=1(x € V) —f(x,V, P),

show that the test statistic behaves approximately as |Z (-)|y, where

(2'4) Zn(V) = /.;tl/(x,V, PO) d(pn - PO)

Of course, Z, is just the empirical process indexed by the class of functions
Fy(F) = (¥(-,V, F),V € V}. Because of the linear structure here [and as-
sumptions on the functions (-, V, P,)], Z, is approximately a mean 0 Gaussian
process Z indexed by V with covariance function

(25)  Cov[Z,(V),Z,(W)] = /S V(x,V, R)4(x, W, B) dPy(x).

If this approximation is valid as P, varies as well, then the bootstrap will
succeed. In fact, uniformity in P can often be expressed in the following way.
Define the metric (or possibly a pseudometric if V is not large enough) dv(P, @)
between probabilities P and @ to be the supremum of |P(V) — Q(V)| over sets
Vin V and V N V. Then, the following condition typically holds.

ConpITION A. Fix P, in Q, If P, is in Q, with dy(P,, P,) = 0, then
J, (-, P,) converges weakly to a continuous strictly increasing distribution
J( ) P O)' -
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The approach to verifying Condition A then consists in analyzing the process
S,, defined in (2.2). So, let L,(P) be the law of S, [as a r.v. on L_(V)] based on n
observations from P. From the smoothness of 7, Condition A is implied by

ConprITION B. Fix P in Q. If P, is in ©, with dy(P,, P,) — 0, then
p(La(Fy), L(Fy)) =0 asn — oo,

where L(P,) is the distribution of a mean 0 Gaussian process Z with covariance
given by (2.5) and p is any metric metrizing weak convergence of probabilities on
L (V). Moreover, assume Z has its paths in a separable subset of L (V).

Condition B has been verified for several examples in Romano (1988). Of
course, Condition A implies that the bootstrap is valid in the sense (1.3).
Furthermore, if b(a, P) denotes the upper a-quantile of J(-, P), then the
bootstrap critical value b,(a, 7P,) = b(a, P,) in probability if P, (assumed to be
in ) is the true law. To study the consistency of the bootstrap test, assume

ConbpITION C. The map 7 is continuous in the following sense. For any
sequence P, and any P, if dy(P,, P) = 0, then dy(7P,, 7P) — 0.

Condition C is evidently weak and is easy to check. Conditions A and C imply
that if P is the true distribution (whether or not in €,), then the bootstrap
critical value tends to b(a, 7P) in probability, but under an alternative the test
statistic T,, = oo in probability. In summary, we have

ProrosITION 2.1. Condition B implies Condition A, which implies (1.3). If
Condition C holds as well, then for any P satisfying 8y (P, TP) > 0, we have

(2.6) P[T,> b(a,7B,)] 1 asn - .

We now proceed to analyzing the randomization test. Since, in fact, Condition
B holds in all the examples we will consider, the methodology used will depend
on already having verified Condition B. In particular, if we fix Py in Q,, we
already know the unconditional distribution J,(-, P,) has a continuous strictly
increasing weak limit J(-, P,) so that both (1.6) and (1.7) are true. Hence, to
verify (1.5) it suffices to show

(2.7) sup|d,(¢, PJ|G,x,) — J(t, P,)] = 0 in probability.
t

Roughly speaking, this means we must show that the conditional distribution of
T, given the o-field generated by the partition of G, -orbits converges weakly to
the same limit as the unconditional distribution of T),. The following elementary
condition, due to Hoeffding (1952) implies (2.7) is true.

ConpITION D. Let G, and G, be random transformations which are uni-
formly distributed over G, and independent of the observation x . Here, x, has
distribution P” which need not be invariant under G,. Then, T,(G,x,) and
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T(G)x,) are asymptotically independent, each with a continuous increasing
limiting cdf J(-, ).

It follows from Hoeffding (1952), Theorem 3.2, and the assumptions on
J(+, @) that Condition D implies

(2.8) sup|d,(¢, P{|G,x,) — J(t,Q)| = 0 in probability,
t

where P{™ is any distribution invariant under G,. Actually, Hoeffding proves a
pointwise (for fixed ¢) result, but a stronger statement is possible when (as is the
case here) the limit distribution J(-, @) is known to be continuous. Hence, in the
case P = P with Py in ©,, @ necessarily equals P, and (2.7) holds. Moreover,
in the case P™ = P" but P is not in §,, Condition D will be verified to imply
(2.8) with @ = 7P, yielding consistency results about the test.

To obtain the validity of Condition D, consider the process

(2.9) Su(x,, V) = n'2[B(x,, V) = 1B,(x,,, V)],

where P(x,,V) is the empirical measure of an observation x, from S
evaluated at the set V. Regard (S,(G,x,, ‘), S(G,x,,)) as a random vari-
able on the product space of L_(V) with itself. The joint distribution of
(T(G,x,), T,(G.x,)) is just the joint distribution of

(lSn(ann’ ')|V1 |Sn(G,:Xn, )lV)
Hence, Condition D is trivially implied by the following.

ConpITION E. Suppose x, has distribution P™. Then, S(G,x,, ) and
S,(G;x,, -) are asymptotically independent each with law L(Q).

In order to verify Condition E in the case P(™ is invariant under G,, one may
replace G, by the identity transformation.

Now consider the case P = P and suppose P, is in €,. From what we
already know, S (x,, ) and S(G,x,, -) each have weak Gaussian limits L(P,),
so when considered jointly on the product space, the random variable

R, = Rn(xn’Gn) = (Sn(xn’ ')r Sn(ann’ ))

is uniformly tight. Therefore, all we need do is analyze the finite dimensional
distributions of the process R,. Using the differentiability (2.1) will help estab-
lish the joint asymptotic Gaussianity of the limiting finite dimensional dis-
tributions of R,, and a covariance calculation should determine the required
independence. In summary:

ProrosITION 2.2. Condition E implies Condition D. If Condition D holds
when P™ = P" for some P not in Q, with @ = 7P, then the randomization
critical value r,(a,x,) = J(a, 7P) in probability. Hence, if Condition C holds as
well, the randomization test is consistent.
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We are now in a position to more fully compare the two procedures in the i.i.d.
case. Assume Conditions A—C hold and D holds when P = P”, For any fixed
P (in £, or not), the difference between the randomization and bootstrap
distributions tends to 0 uniformly in ¢; that is, Propositions 2.1 and 2.2 yield

(2.10) supl|d,(¢, 7B,) — J,(t, P}|G,x,)| = 0 in P"probability,
t

where P, is any member of €. It follows (using 2.8) that the difference in critical
values tends to 0 in P"-probability. This implies that the probability that the
tests differ (in whether or not to reject the null hypothesis) tends to 0. Further-
more, both tests are consistent against all alternatives. However, such a result is
practically useless in comparing the power of the two tests. In order to obtain a
more useful result, consider a sequence of alternatives @, to 2, and study the
asymptotic power (if it exists) against such a sequence. In order to get an
interesting limit for the asymptotic power, it should be clear that one needs to
get close to Q, and, in fact, @, should satisfy 8§ (Q,, 7@,) = O(n~1/2). The next
proposition gives conditions when the bootstrap and randomization distributions
are uniformly close under general sequences of alternatives @, and when the
limiting power of each test against @, is the same. Note, the proposition includes
the possibility that the function H(-) could be identically 0.

PropoSITION 2.3. Assume Conditions A-C hold. Let Q, be a sequence of
alternatives to Q, satisfying dy(Q,, @.) = 0. Assume Condition E holds with
P™ = Q" and Q = 1Q,,. Then

(2.11) supld,(¢, 7B,) — J(t, P}|G,x,)| = O in Q7-probability,
t

where P, is any member of Q,. Also, the corresponding critical values satisfy
(2.12) b(a,mB,) = r(a,x,) = 0 in Qprobability.
Furthermore, suppose there exists a continuous function H(-) so that

Qu(T, < t) —» H(¢).

Then, the asymptotic power of both tests against the sequence of alternatives @,
is1 — H(b(a, 71Q,,)).

REMARK 2.1. In order to compute the limiting distribution of 7, under @}
(or show its existence), consider the:process S, defined in (2.2). Suppose @,
satisfies an approximation like @, = Py + An~'/%, where A is some element in
L_(V). The differentiability condition (2.1) shows S, is approximately a Gauss-
ian process with covariance (2.5), but this time with mean A. Thus, the limiting
distribution of T, under Q7 is the distribution of the supremum of such a
process.

REMARK 2.2. Why use the tests considered in this paper anyway? The power
properties of Kolmogorov—Smirnov distance type tests have been well studied in
several problems; see Blum, Kiefer and Rosenblatt (1961) and Kiefer (1959), for
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example. It is clear that these properties hold quite generally in problems of the
type considered in this paper. To be more specific, consider a sequence of
alternatives @, to {, satisfying an approximation like @, = P, + Ae,. Then, the
argument in Remark 2.1 shows the power of the bootstrap and randomization
tests against @, — 1 if (¢,/n'/?) > 0. Moreover, in the case ¢, = n'/%, the
power can be made arbitrarily close to 1 if |A| is large. To see why, choose V}, so
A(V,) # 0 and let A, = A(V,). Then, the power of the bootstrap test, for
example, is bounded below by

Qr(nVHB(V,) — B (V)| = b,(a, 7B,)).

The distribution of the random variable on the left side of the inequality tends
to the distribution of the absolute value of a real-valued Gaussian random
variable with mean A, (and variance which only depends on P, and V,, and not
the original choice of A). Also, the right side of the inequality tends to b(a, P,)
in probability. Hence, the limiting power is bounded below by

P(Z + Ay| = ob(a, By)),

for some o = o(V;, Py). Now, increase A,. In summary, the limiting power of
supremum tests against alternatives converging to €, at the n'/? rate is not
degenerate. In typical smooth problems, this is the best obtainable rate.

3. Examples. In this section, the methodology of Section 2 is applied to
some examples.

ExXAMPLE 1 (Testing independence, continued).

PROPOSITION 3.1. Assume V; (in the definition of the test statistic T,) is a
countable V.C. class in S;. Conditions A-E all hold when P™ = P" for any
fixed P (whether P is in Q, or not). Thus, both bootstrap and randomization
tests are consistent and asymptotically equivalent in the sense (2.10). Moreover,
suppose @, is any sequence of alternatives to Q, satisfying dy(Q,, Q) — 0 for
some Q. Then, Condition E holds for P™ = QF and @ = 1Q,, so that (2.11)
and (2.12) follow.

ExaMPLE 2 (Testing for rotational invariance). The problem is to test
whether the underlying probability distribution on S = R” belongs to the class
Q, of rotationally invariant or spherically symmetric distributions. Let S, ¢ S be
the sphere of radius r and center 0. If X = (X|,..., X)) has probability distribu-
tion P on RP”, then P is completely specified by the marginal distribution Py of
R = (£P., X?)"/* and the conditional distribution Py p of X given R. Of course,
if P is spherically symmetric, then Py,p_, is always uniformly distributed on S..
Let 7P be the distribution @ in £, such that P, = Q. Then, the proposed test
statistic becomes
(3.1) T

n

= n'/2 sup |B(V) — rP(V)|.
vev
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To see that a randomization test is applicable, we must identify the appropri-
ate class of transformations G, on S”. If @ is a point on S, and x is a point on S,
let g,x be the new point 0|x|,, where | - |, is the usual Euclidean norm on R”.
Then, G, = {(&,---> &s,) 0, € S,}, so an element (g, ..., &) of G, transforms
a point x,, = (X,,..., X,,) in 8" to the point (g X, ..., 8¢ X,)-

Notice that G, is not finite except in the case p = 1. Thus, the description of
the test given in Section 1 is not quite accurate. In this case, J,(P"|G,x,) is the
distribution of T(G,y,), where y, is any element of G,x, and G, is uniformly
distributed over G,. The methodology described in Section 2 for comparing the
bootstrap and randomization tests is then applicable. The only technicality
involved is showing that Hoeffding’s Condition D implies (2.7), but an easy
generalization of his proof shows the argument carries over as long as
J(P™|G,x,) is the distribution of T,(x,) when x,, is uniform over G,x,. In
general, one needs to be able to put a uniform probability distribution on G,. In
the example here, it is clear how to do this.

To describe the class of sets V allowed in (3.1), embed the sample space S into
S, X R, where R denotes the nonnegative real numbers. A point x in S is
identified with the point (s, s,) in S, X R if it is at distance s, from the origin
and x/|x|, = s,. In the case x is the origin, identify it with (0, 0).

PROPOSITION 3.2. Assume the collection of sets V in (3.1) is of the form
V =V, X V,, where V, is a (countable) V.C. class in S, and V, is a (countable)
V.C. class in R. Conditions A-E all hold when P™ = P" for any fixed P
(whether P is in Q, or not). Thus, both bootstrap and randomization tests are
consistent and asymptotically equivalent in the sense (2.10). Moreover, suppose
Q,, is any sequence of alternatives to Q, satisfying dy(Q,, Q,) = 0 for some
Q... Then, Condition E holds for P = @} and Q = 1Q,,, so that (2.11) and
(2.12) follow.

A slight modification of the previous set-up is needed in some situations.
Suppose &, is now specified as the set of probabilities P satisfying 7;( P) = P for
1 <j <k, where 7, is a mapping from . Then, P lies in @, if and only if
max; _;_, 8(1}" T(P)) =0 and the proposed test rejects for values of

max1<jgk8( n’ j(P ))

ExXaMPLE 3 (Testing whether a probability law is exchangeable). Let
X,,..., X, be iid. S-valued random variables, where X; = (X, ,,..., X, 4) is
made up of d components each living in a space E. Let P be the probability law
generating the data. The problem is to test whether P is exchangeable. That is, if
D={1,.. d} and 7 D - D, 1 <j <d!, are the d' permutations of D, then
the problem is to test whether the law of (Xl pe++» X; 4) is the same as the law
of (X ,qyr-- X; n(d)) for every j. Given any probablhty Pon S, let 7;P denote
the law of (X,,(l), o Xy i (X, ., X;) has law P. Then the proposed test
statistic takes the form
(3.2) T, = n"/? max sup |P,(V) — 7,B,(V)|.

J VeV
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Note that, when d = 2, 7P = P if and only if P € @, and the test statistic is of
the form (1.1). In this case, P is exchangeable if P(V) = P(V?) for all (measur-
able) V, where V! is the set {(y,x):x € E, y € E,(x, y) € V}.

The appropriate group of transformations G, for this problem may be de-
scribed as follows. A transformation g in G, takes an element x,, = (X,,..., X,)
to an element y,=(Y},...,Y,) if Y, is some permutation of X;. That is,
Y, = (X, 1y -+» Xi nay) for some permutation 7 of D. The permutation =
transforming X, may also depend on i so that g may be identified by a vector
7= (7,...,7"™), where 7» is some permutation of D. Then, G, is the
collection of all such g, so G,, has (d!)" elements.

To avoid introducing new notation, we restrict attention to the case d = 2.
Suffice it to say that bootstrap and randomization tests are asymptotically
equivalent procedures in the sense described here even if d > 2. The asymptotics
for the bootstrap for d > 2 are given in Romano (1988).

PRrROPOSITION 3.3. Let V be a countable V.C. class in the definition of the test
statistic T, given by (3.2). Assume V contains elements V with V # V'. Then,
Conditions A-E all hold when P™ = P" for any fixed P (whether P is in Q, or
not). Thus, both bootstrap and randomization tests are consistent and asymptot-
ically equivalent in the sense (2.10). Moreover, suppose Q, is any sequence of
alternatives to Q, satisfying dv(Q,, Q) — 0 for some Q. Then, Condition E
holds for P = Q" and @ = 7Q, so that (2.11) and (2.12) follow.

ExXAMPLE 4 (K-sample test of homogeneity). The structure of the previous
tests can easily be adapted to k independent samples from possibly different
populations. For i=1,...,k, let X;, 1<j<n,; be a sample of S-valued
random variables with probability distribution P,. The problem is to test the
homogeneity hypothesis H: P, = = P,. Let 13 be the empirical measure of
all n=X% n,; observatlons combmed and let P, ; be the empirical measure of
the ith sample Then, one possible test statistic for testing H, takes the form

(3.3) T, = n'/? max |c, ; sup|B(V) — B, (V)I|,
1<i<k " yvev v

where the c, ; are constants depending on the sample sizes n; and, again, V is an
appropriate class of sets. One possible choice for ¢, ; is (n;/ n)l/ 2

Special cases of these tests were proposed by Smirnov (1939) and Kiefer (1959)
in the case S = R,V = {(— o0, ¢]: € R} and the assumption that the underly-
ing probability distribution is continuous. Bickel (1969) considers the two-sample
problem (k = 2) in the case S = R? and V = {(— o0, t): t € R?} and shows that
the randomization test is consistent against (fixed) alternatives. Here, the sample
space S is arbitrary and V is assumed to be any (countable) V.C. class. No
assumptions at all (such as continuity assumptions) are made on the underlying
population.
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For simplicity, assume the sample size n; is a function of n, where n; = n,(n)
is the integer part of A,nif i <kand n,=n—X,_,n;. Let J(P,..., P,) be
the sampling distribution of 7}, when the k£ samples have distributions P,,..., P,
and let J (¢, P,,..., P,) be the copesponging distribution function. The boot-
strap null distribution is then J(P,,..., B,).

To see that a randomization test is applicable, we must identify G,,. Think of
the observed data x, as a vector of length n, ordered so that the first n, data
values of x, are thought of as coming from the first population, the next n, data
values from the second and so on. Let 7 be a permutation of the integers 1 to n
given x, = (X,,..., X,,) isin S” and let gx, = (X,q),---, X,(»))- Then, G, is
the collection of all such g. Under the null hypothesis, gx, and x, have the
same distribution. As before, let J,(P(|G,x,) denote the conditional distribu-
tion of the test statistic 7)(y,) given that y, falls in G,x, and y, has distri-
bution P,

PROPOSITION 3.4. Let V be a (countable) V.C. class in (3.3). Assume the
sample sizes n; satisfy n,/n = \; as n — oo for some \; in (0,1) and c, ; > ¢;
for some ¢; > 0. Let Q™ = X J'.L Qv ; be a sequence of possible distributions of
the data, so that Q, ; represents the distribution of the ith sample. Assume
dy(Q, » Qs ;) > 0 asn - oo, for some probability Q,, ; on S. Then,

sup|J,(t, B,,..., B,) — J,(t, P™|G,x,)| = 0 in Q™-probability,
t

where P™ = P is any distribution made up of n i.i.d. components. Moreover,
the corresponding critical values of the bootstrap and randomization tests tend
to a common finite limit in probability. Also, bootstrap and randomization tests
are consistent against any alternative of the form @™ = X J'.Ll QM, if the Q; are
not all equal.

REMARK 3.1. Similar remarks to those presented after Proposition 2.3 are
applicable in this context as well. In particular, let the hypothesis on @™ in
Proposition 3.4 be satisfied. If the distribution of the test statistic under @™
tends weakly to a continuous distribution, then the power of the randomization
and bootstrap tests tends to a common value.

ExaMPLE 5 (Testing for a change point). Let x, = (X|,..., X,,) be a sample
of n independent random variables taking values in a sample space S. The null
hypothesis asserts that the X;’s have a common (unknown) distribution P. The
alternative hypothesis asserts that, for some J, x, = (X,,..., X;) are i.i.d. with
a distribution P, and y; = (X, 4,..., X,,) are i.i.d. with a different distribution
P,. Let 151 be the empirical of the first j observations and let @ ; be the empirical
of all observations but the first j. In the spirit of the test statistics considered in
this paper, a natural test statistic might be

T,= ma}ncn,jSV(P Qj),

b
1<) J

where 8y, is the metric (1.2) and ¢, ; is some sequence of norming constants. As
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in the other examples, both bootstrap and randomization methods apply. In
particular, the bootstrap method consists in resampling (conditional on the data)
n ii.d. points from the empirical distribution of the data. The randomization
method, on the other hand, consists in generating samples of size n by sampling
the data without replacement, or equivalently, transforming x, into y, =
(Xoays - -+ » Xo(ny) for some permutation = of {1,2,..., n}. The methods applied
in this paper can be extended to analyze and compare the two techniques. The
reader may consult James, James and Siegmund (1987) for references on the
change-point problem.

4. Stochastic approximations. The attractiveness of the testing proce-
dures described in this paper is marred by the burdening amount of computation
involved. Monte Carlo approximations to bootstrap null distributions are de-
scribed in Romano (1988). Here, we focus on the problem of implementation of
the randomization procedure. Also, see Vadiveloo (1983) in this connection. Two
main difficulties are apparent.

(i) The exact value of the observed test statistic 7,(x,) may be difficult to
obtain because the supremum of P - 'rP over the class of sets V may be hard to
compute. Instead, one may have to resort to computing the supremum discrep-
ancy between P and ’TP over a finite number of search sets. One possibility is to
choose these search sets Vl, ., V, iid. (and independent of x,) according to a
probability on V.

(ii) The randomization null distribution, which assigns equal mass to the
values T,(gx,), & € G,, may be hard to compute because the number of
elements in G, is too large. Here, one can sample g,,..., g, from G, with or
without replacement and approximate the randomization distribution by the
distribution assigning equal mass to the values T,(gx,),1 <i<r.

Of course, if problem (i) is present, then T,(g;x,) will have to be approxi-
mated as well. One possibility is to use the same search sets V,,..., V, for all i.
An alternative possibility is to allow the search sets to depend on i; that is, for
each i choose s independent random sets from V.

The important fact is the following. The above stochastic approximations do
not affect the level of the test, so that the resulting test has exact desired level a.
This follows because the random vector (T,(x,), T,(&X,), ..., T,(&,X,)) is still
exchangeable, even if the g;’s are chosen at random with or without replacement
from T, or if T, is computed by replacing the supremum over V by a maximum
over random search sets. In the case the same V’s are used to approximate
T,(8:x,) for each i, an easy way to see that the sets V; chosen do not change this
exact finite sampling result is by conditioning on these chosen sets and then
regard the resulting test statistic as a new test statistic in its own right of the
form described in Section 1.

For the remainder of this section, we focus on the asymptotic behavior of the
randomization test employing such stochastic approximations. A general
methodology to handle such computational difficulties is described in Beran and
Millar (1987), where it is suggested to approximate a supremum over a collection
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of sets by a maximum over randomly chosen sets in the context of constructing a
confidence set for a measure. In general, their arguments presented in this case
extend to cover the approximations described in (i) and (ii) above, where in (ii)
the g,’s are chosen with replacement from G,,. In general, consistency results and
the equivalency of stochastic bootstrap tests and stochastic randomization tests
continue to hold, assuming they hold without the use of stochastic approxima-
tions. In order to handle the more natural case (in the context here) where the
8;’s are chosen without replacement from G,, the following result applies. We
give a more general result than what is needed here, and it may be considered a
Glivenko—-Cantelli theorem for sampling without replacement in the general
setting of Vapnik and Cervonenkis. The proof is analogous to the proof of
Theorem 1, page 828, in Shorack and Wellner (1986); see Romano (1987) for
details.

PRrROPOSITION 4.1. Let P, be a sequence of probabilities on a space S.
Suppose P, represents the distribution of a finite population X, of N, elements,
some of which may be equal. Let x, = (X, 1,..., ».) be a sample of size r,
chosen at random without replacement from X Let P be the empirical
measure corresponding to these r, values; that is,

ﬁn(V) = rn_l Z I(Xn,i = V)
i=1
Let V be a (countable) Vapnik—Cervonenkis class of (measurable) subsets of S.
Then, if r, > oo,

sup |P(V) = P(V)| = 0 in P’»probability.
vVev

REMARK 4.1. The case P, = P, independent of n, is trivial. Note, however,
that no assumptions are made on the sequence P,.

CoROLLARY 4.1. Under the conditions of Proposition 4.1, suppose S = R.
Let F,, be the cdf corresponding to the population X, and let F, be the empirical
cdf based on r, observations chosen without replacement from F,. Then

sup|F(t) — F,(t)] - 0 in probability.
t

Corollary 4.1 can be applied to stochastic null distributions in the following
way. As before, if P{™ is invariant under G,, then the randomization null
distribution J(P{™|G,x,) is the distribution corresponding to the population
X, of M, elements T(gx,), & € G,. A stochastic approximation to
J(x, B{M|G,x,), is J(x, P{”|G,x,) given by the empirical distribution of r,
values, T,(g jxn), l1<j<r, where the g; are sampled without replacement from
G,. Having established (2.8) that the randomization null distribution can be
umformly approximated by a continuous distribution J(, @), it follows (by

applying Corollary 4.1 conditional on x,) that the stochastic approximation J
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has the same property,
sup|d,(¢, P{®|G,x,) — J(¢,Q)| = 0 in probability.
t

Then, for example, a critical value 7, based on jn tends to r(«a, @) in probability,
and consistency of the stochastic randomization test then follows as before.

5. Proofs.

Proor oF PrROPOSITION 3.1. Conditions A-C are verified in Romano (1988).
Let P, be a sequence in §, satisfying dy(P,, P)) — 0 for some P, in Q. Then,
from Romano (1988), J,(P,) converges weakly to a continuous, strictly increas-
ing limit law J(F,) and J(F,) is the distribution of the norm of a certain
Gaussian process L(P,). We now verify Condition E when P = @" and
Q = 7Q_, where @, is a sequence satisfying dy(Q,,Q,) = 0. Let S(x,,V) be

given by (2.9). Here, x,, = (X, PRTRRRY X, ») is a vector of n ii.d. variables with
dlstnbutlon P, and X,, is made up of d independent components
(X iv-r X, i a) Let G and G, be independent of x,, and each other, each

uniformly distributed over G We must show S,(G,x,,, -) S (G, x,, -) are asymp-
totically independent with law L(Q). From Section 2, it sufﬁces to examine the
finite dimensional distributions of the process (S,(G,x,,, -), S,(G/x,,, -)). Using
the differentiability of =,

5,50, V) =07 Y {H (20, - z,,,,-,,~>]} + ope(),

where Z, ;, ;= 1X,,;, ;€A)and V= Xd 1 A,. Thus, Lemma 5.1 is applicable
to yield that (S(G,x,, V), (G x,, W)) converges weakly to a bivariate Gauss-
ian distribution with correlation 0. An argument similar to the proof of Lemma
5.1 shows a finite linear combination of elements S,(G,x,, V;) is asymptotically
independent of a linear combination of elements S,(G;x,, W,). The result fol-
lows. O

LEMMA 5.1. Forl<i<n,let(Y,,,...,Y, ;) beni.id. random vectors
made up of d independent components. Moreover, suppose Y, ; ; has mean 0
and variance o> ; and is bounded in absolute value by 1. Suppose the law of

n,J

Y, ; ; converges weakly (as n — o) to a distribution with variance o so that

ol ;= ol For1<j<d, let G, and G, ; be independent random permuta-
tions of {1,2,..., n}. Define

M=
—a
+~
EQ

z

T,=n"12

..
I
—
r
~
I
—

and

S

[ d
W, = n~'? E l_l Yn,G;U(i),j .
i=1
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Then the law of (T,, W,) converges weakly to the law of a Gaussian random
variable (T, W), where T and W are i.i.d. with mean 0 and variance ¢* =
1%, o

Proor oF LEMMA 5.1. The proof follows by conditioning on all variables
except the Y, ; ,, i =1,..., n. Using the Cramér-Wold device, the conditions for
the Lindeberg central limit theorem [or Theorem A10 of Hettmansperger (1984)]
hold with probability tending to 1. A precise argument is available in Romano
(1987). O - :

PROOF OF PROPOSITION 3.2. Conditions A-C are verified in Romano (1988).
Let P, be a sequence in @, satisfying dy(P,, P,) — 0 for some P, in Q,. Then
J(P,) converges weakly to a continuous strictly increasing limit law J( F;) and
J(P,) is the distribution of the norm of a certain Gaussian process L(F;). We
now verify Condition E when P = P" and @ = P,. Let S,(x,, V) be given by
(2.9). Here, x, = (X, 1,..., X,, ,) is a vector of n ii.d. variables with distribu-
tion P,. Let G, be independent of x, and uniformly distributed over G,. We
must show S,(x,, ) and S(G,x,, -) are asymptotically independent with law
L(®). As in Example 1, it suffices to examine the finite dimensional distributions
of these processes. Now, if V=V, X V, and W = W, X W, then the covariance
between S,(x,,V) and S,(G,x,, W) is

COV[l(Xn,l € V) - I-"(Vl)l(Xn,1 €S, X V2)7
1(Gn,1Xn,1 EW)- I‘(Wl)l(Gn,an,l €8, X VV2)]:

where G, , is an independent uniform element from G, and p is the uni-
form measure on S,. The independence of the events {X,, € V; X R} and
{G, X, € W, X R} and the equivalency of the events {G, X, , € S, X W,}
and {X, , € S, X W,} shows this covariance is 0. It remains to show that any
finite linear combination of elements S,(x,,V;) or S,(x,, W;) is asymptotically
Gaussian. But, G,x,, =y, is a vector (Y, ;,...,Y, ) of iid. variables with X, ;
independent of Y, ; if i is different from ;. Hence, the Lindeberg C.L.T. is
directly applicable, yielding the result. In the case @, is not in Q, with
dy(@,,Q.) — 0, we need to verify Condition E when P = Q7 and @ = Q..
The above method extends to this case. Alternatively, let P, = 7@, and P, = @
so that dy(P,, P)) — 0. Observe that the behavior of the critical value from the
randomization test (under @) as obtained from (-, P}*|G,x,,) only depends on
the distribution of G, x,. But G, x, has the same distribution whether x, has
distribution @, or P,. Thus, the above analysis is applicable, and Condition E is
verified. O

PROOF OF PROPOSITION 3.3. The proof is completely analogous to the proofs
of Propositions 3.1 and 3.2. Indeed, the differentiability condition holds with no
error term at all and the pertinent covariance calculation is identically 0. See
Romano (1987) for details. O
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PrOOF OF PROPOSITION 3.4. Let P, be any sequence of probabilities on S
satisfying dy(P,, P)) = 0 as n — co. Define a process S,(x,,):V = R* by
S,(x,, V) to be the vector with ith component

Sn,i(xn’ V) = nl/zcn,i[pn(v) - ﬁn,,i(v)]’

where x,, is an observation in S”, P, is the empirical of all n observations and
IA’,,,,- is the empirical of those n; observations corresponding to the ith sample.
Regard S, as a random variable on LX(V), the metric space of bounded
R*-valued functions on V with metric p given by
p(S,S*) = max sup |Sj(V) - S*(V)I.
1<j<k yev

Let L, (P™) be the distribution of S,(x,,:) when x, has distribution P™.
From Romano (1988), L,(P") converges in L*(V) to a mean 0 Gaussian limit
law L(P,) [whose paths lie in a separable subset of LX(V)]. By the continuous
mapping theorem, J(P,,..., P,) converges weakly to a limit law J(P,,..., B if
dy(P,, Py) — 0. From Romano (1988), this limit law is continuous and strictly
increasing.

Let P, be the empirical measure of n observations from P,. It follows by the
generalized Glivenko—-Cantelli theorem that dy(P, B)) > 0 as. as n — oo.
Hence, if b,(a, P,, ..., P,) represents an upper a quantile of J,(P,,..., P,), then
b,(a, P, ..., P)) tends to a finite limit b(a, P,) in probability. Consistency of the
test now follows easily, for suppose the actual distributions of the & populations
are P,..., P,. Clearly, the observed test statistic T, = co in probability. On the
other hand, the bootstrap critical value tends to a finite limit b(a, Py) in
probability, where Py = ¥\, P,.

To see that the randomization null distribution behaves in the same way as
the bootstrap distribution, we must verify Condition D. Now, assume the
conditions on the distribution @™ of x, as given in the statement of the
proposition. Let G, and G, be independent of x, and i.i.d. uniform random
transformations from G,. By analogy with Condition E, we must show the
processes S, (G, x,, -) and S,(G;x,, -) are asymptotically independent. As before,
it suffices to examine the finite dimensional distributions of these processes. But,
the linearity of these processes easily implies a limiting Gaussian distribution for
linear combinations of elements S,(G,x,,V;) and S,(G,x,, W,). Moreover, a
covariance calculation (easily obtained by conditioning on G, and G,,) shows the
covariance between S,(G,x,,V) and S,(G.x,, W) to be of order O(n'), and
the result follows. O
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