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ADVANCES IN PATTERN THEORY!

BY ULF GRENANDER
Brown University

Pattern theory offers concepts for modelling images and methods for
making inferences from observed images. This will be described briefly and
illustrated by examples.

We shall present limit theorems for the Markov processes on graphs (that
are basic to pattern theory) motivated by computational considerations.
They will yield approximations that have been exploited to make the infer-
ence algorithms computationally feasible.

We shall also consider the problem of estimating parameters in the prior
measures encountered in pattern theory. These parameters are high dimen-
sional, not automatically identifiable and notoriously difficult to estimate by
standard methods. We therefore present a standardization technique for
dealing with them and show how, after standardization, the remaining free
parameters can be estimated by different methods. The estimation methods
are examined in terms of their asymptotic efficiencies.

1. Inference machines for parallel logic. We shall study inference ma-
chines that implement parallel logic under uncertainty for complex systems. The
underlying sample space describing such systems will be defined and analyzed in
terms of general pattern theory and we shall summarize the fundamental
concepts and methods and illustrate them by examples. The interested reader
will find more detailed information about this in Grenander [(1976, 1981a),
Volume I, Sections 1.1, 2.1-2.2, 3.1 and Volume III, Sections 3.1-3.2 and
Chapter 5].

1.1. The sample space C—the configuration space—will be made up of
mathematical objects generically denoted by ¢ = a(g,, &, - ., &,)—the configu-
rations.

Here the g, i = 1,2,..., n, are elements from a generator space G. To each
& € @G is associated a number w(g), the arity of g. Toeach j=1,2,..., w(g)is
attached a bond value B;(g) with elements from a bond value space B.

The connector graph o over |6| = n sites expresses how the generators g;
communicate with each other and will represent segments between sites ¢, and i,
of the connector as in Figure 1. The generator g; sends a signal B, = B,(g; ) that
meets the signal B, = B;(g;,) emanating from site i,. Depending upon how B,
and B,“agree,” in a sense to be defined later, g; and g; will influence each other
directly in deterministic or probabilistic terms.
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FiG.1. Interacting generators.

Only generators at sites connected by a segment in o are influencing each
other directly. Other pairs may also exert influence on each other but only
indirectly via paths in the graph. In the figure the bond &, = (i,, j,) connects
with the bond &, = (i,, j,) forming a segment s = (i, i,) € o.

In general the connector ¢ need not be fixed; instead we specify a set 3, the
connector type of graphs and ask that ¢ € =. For example, = may be the set of
all rooted trees as in Section 1.2.1.

We shall only assume pairwise interaction in the following. Actually this can
be shown to be no essential restriction, but we shall not discuss this topic here.

1.2. Given a truth valued function p, the bond relation p: B X B —
{true, false} we shall denote by C(2) € C (where 2 is defined below) the set of
all configurations in C such that the bond relation is satisfied along all segments
of o. p[B;(8,) B;(&;,)] = true for all segments s = (i,, i,) € 0. We can express
this by the structure formula

(1.1) A o[Bi(g:). B (g;,)] = true

(i, i) €0

for the regularity # = (G, o, p). Here the graph o represents the logical archi-
tecture and the global regularity, the the bond relation p expresses the local
regularity.

On the sample space C we introduce a prior measure P by another structure
formula,

1 n
(1.2) P(c)= 5 T1 A[B(g:) By(e,)] TTR()
(4, 1) €0 1=1

for finite generator space |G| = r < co. If G is infinite, for example R? we
interpret the right-hand side of (1.2) as a density with respect to some fixed
measure.

In (1.2) A is the acceptor function A: B X B - R™, @ is a weight function @:
G —» R™ and Z is a normalizing constant, the partition function well known in
statistical mechanics, ensuring that P(C) = 1. Z is notoriously difficult to
calculate except for the simplest cases.
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Probability models related to (1.2) have appeared in many contexts, of which
we mention genetics, physics and pattern theory.

In the case of rigid regularity, which means that p(8,, 8;) = 0 (meaning false)
implies A(B,, B;) = 0, the support of P is in C(£). If this is not the case we
speak of relaxed regularity. In either case we write the regularity Z = (G, 0, A).

Since the measures in (1.2) are induced by the regularity # one speaks of
regularity controlled probabilities.

1.2.1.- To make the above more intuitive we shall start by an example from
formal language theory: context free grammars, structures that have been
studied for a long time.

Consider a finite vocabulary

V=V,UVy,

where V; = {a, b, c,...} is the terminal vocabulary containing “words” and
Vy = {a, B,...} is the nonterminal vocabulary containing syntactic variables
(such as noun, verb phrase, article,...). In Vy we let a be the initial variable
that will be at the apex of all derivation trees.

We also need a finite set W of rewriting rules. Each is of the form

T, 8;,89,--.,8,; €V, r, € Vy.

We start with a and rewrite each nonterminal appearing in the derived string
using rewriting rules repeatedly until the derived string contains only terminals.
Then we stop.

A derivation could look like Figure 2a. We have used the abbreviations
NP = noun phrase, VP = verb phrase, ART = article, ADJ = adjective, N =
noun and V = verb. The derived sentence is “ the big dog saw the little cat.” The
set of all finite strings that can be derived, the syntactically correct sentences, is
called the language generated by the system.

This is naturally identified with a regular structure as follows:

G: generators are the rewriting rules, each of which has one in bond (a
syntactic variable) and a finite number of outbonds (from V') so that the bond

/\

/NP VP
ART ADJ N V\N\}l)
tLe big dog saw ART ADJ N

the little  cat

F1c. 2a. Derivation of sentence.
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F1G. 2b. Configuration diagram.

value space

B: equals the vocabulary V.

2: the set of connector graphs consists of rooted trees.

p: the bond relation means equality.

C: the configuration space consists of all syntactically correct phrases (sub-
trees of correct derivation trees).

A more complete configuration diagram is given in Figure 2b with the
rewriting rules

&8, a > NP, VP

8,: NP - ART,ADJ,N
&85: VP — V,NP

84t Art — the

&5 ADJ — big

8¢: N — dog

8,1V - saw

&g ADJ — little

89: N — cat
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1.2.2. Our next example appears in the global shape models that have been
used to describe three-dimensional objects. Let us start with the biggest of the
five regular polyhedra: the icosahedron. Each of its faces is an equilateral
triangle. Subdivide each face into four naturally congruent equilateral triangles.
Repeat this procedure / time so that we have a finely tesselated polynedron. A
homeomorphic map of it could look like the one in the middle of Figure 3 (due to
D. Keenan); the four others represent samples from a regularity controlled prior
measure.

G: the edges of the polyhedron.

B: the bonds of a generator should be the endpoints of the edge, so that
B = R3.

>: the set of connector graphs will be the edge graph of the polyhedron (where
two edges are said to be neighbors if they share one endpoint) and its subgraphs.

p: here the bond relation means equality.

C: the set of subpolyhedra of the /th level polyhedron.

1.2.3. As a third example let us consider schemas made up of computational
modules. Each computing module represents a computing operation, a function.
Its input x = (x,, x,,..., X;) has components x,, x,,... with values in spaces
X,, X,,...,respectively. Its output y = (¥;, ¥,..., ;) has components y,, y,,...
with values in spaces Y, Y,, ... . The values of & or / may be zero.

Combining the modules by a wiring diagram we must make sure that a
function is not called for execution before its inputs have been evaluated. We do
this by arranging the modules by a partial order, assuming that all looping, if
any, takes place within modules.

We must also make sure that outputs belong to input spaces for two con-
nected modules. An example is given in Figure 4 that illustrates schematically a
computation schema for the function

» = 4(log x, + 1/x,),

Yo = X, + x5,

where we assume all variables to be real, x; > 0, x, # 0.
The pattern theoretic formalism for this can then be chosen as:

G: set of functions (computing modules).

B: the bonds are the X and y spaces of the inputs/outputs of a function.
3: Poset graphs are the connectors.

p: the bond relation means inclusion.

C: the configuration space represents computing schemata.

In this case the prior could be given, in the notation of (1.2), by A(B’, B8”) =
85 and some weight vector @ with values < 1. This would make large
configurations less likely than smaller ones.
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Fic. 3.
It is well known that P defines a Markov process in the graph o in the

following sense. Consider Figure 5 as an example. We then have, assuming for
simplicity that A and @ are strictly positive,

(1.3)

1.3.
equals the conditional probability of ¢’ given the boundary ¢’ .

so that the conditional probability of a subconfiguration ¢
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log x; =+ x4~y

X1

y2

Fic. 4. Computational configuration.

A similar but stronger statement is due to Thrift (1979):

THEOREM 1. Given a subconfiguration ¢’ C ¢ and a site i € ¢, we have
(1.4) P(g|c’) = P(gjc")
where ¢’ consists of all sites that are connected to i by a chain outside (i.e., all
its sites are in the complement of ¢’) c'.

Fic. 5. Configuration with subconfigurations.
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A proof can be found in Grenander [(1981), Section 5.2].
We shall write

A(Bl’ BZ) = exp[a(Bl’ BZ)]’

1
a(B,, B,) = ao( Bi, B;) or,if B is a vector space,

a(Bl,ﬁ2)=ao(ﬁ‘;B2)

in terms of the affinities a(B,, B,) and the temperature T. The temperature
measures the degree of disorder in the relaxed regularity. The role of the scale
parameter ¢ is similar to that of T.

In general the acceptors A may be allowed to depend upon the segment
s = (i;, I,). We then indicate the dependence by the notation A..

(1.5)

1.4. The study of these complex systems is made harder by the fact that the
configurations are often not completely observable. Instead the observer can only
see some function I = R(c) of the configuration ¢, where R, the identification
rule, is not generally invertible. The possible images form a set 7, the so-called
image algebra; see Grenander [(1976), Chapter 2] where they are studied as
partial universal algebras. The prior measures in (1.2) can then be viewed in the
context of probabilities on algebraic structures, but this will not be pursued in
the present paper.

In some, but not all cases to be discussed below, R is just a function applied
to each generator g; separately so that the image I consists of observations
R(g,), R(g,),..., R(g,). It is clear that we cannot in general claim that I forms
a Markov process on ¢. Instead our prior measures will be incompletely observed
Markov processes on graphs.

Let us see what identification rule is natural in the above three examples. In
1.2.1, two configurations will be identified if the resulting strings are equal. Note
that for some context free grammars a string may be derived in more than one
way, so that R will be many-to-one. The image I represents a syntactically
correct phrase, not just its derivation(s).

In Section 1.2.2, we shall identify two polyhedra if they represent the same
geometrlc object in R3. We then lose knowledge of the subscripting of the edges
and R is again many-to-one.

In Section 1.2.3, we shall identify two configurations if they represent the
same function. A configuration is a meaningful formula, and many formulas may
represent one function.

1.5. A further complication is that the image I may also be hidden by noise.
A stochastic deformation mechanism 2 operates on I, resulting in some de-
formed image I? = 21I. Perhaps 2 consists of additive noise, symmetric binary
noise, blurring (convolutions) or a mask operation hiding part of the image.
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The typical inference problem then looks like the following. Having observed
a deformed image I?, reconstruct the pure image I by a procedure that is
optimal in some given sense. Since we have a prior measure on J we use a
Bayesian approach.

The dimensionality of the image algebra .7, which here plays the role of
parameter space, can be enormous, easily 103, even 10° in some image processing
applications. We are therefore dealing with problems in abstract inference. In
addition to the Bayesian approach described in this paper one can also use the
method of sieves [see Grenander (1981b), Part III] but this possibility will not be
studied here.

1.6. For Bayesian inference we need the posterior measure

P(I)P(I?I)
2\ _
(1.6) P(1|I?) P(1%)
Unfortunately (1.6) is usually awkward to handle analytically due to the appear-
ance of the partition function Z in (1.2). Instead we shall solve the inference
problem by simulating (1.6) for a fixed observed I 2 and produce a sample from
this distribution. For a given optimality criterion we then use the sample to
construct an estimate I*.

For high regularity so that A(x, x’) is small unless x is close to x’, it may be
enough to use sample size 1 since the posterior in (1.6) is then typically very
peaked.

But how can one simulate Markov processes on graphs? Direct simulation
seems possible only if ¢ has no cycles—it is a tree. Then one can, at least in
principle if not always in practice, start simulating g; for some site i, and then
follow the graph from i, simulating conditional distributions until all the sites in
o have been dealt with.

The case when ¢ has cycles is the situation when parallel logic is of greatest
interest: Conflicting evidence will have to be resolved. We can then use a
modification of the Metropolis algorithm; see Metropolis, Rosenbluth, Rosen-
bluth, Teller and Teller (1953). The basic idea is to use the Markov property for
each site and it goes as follows.

Step 1. Initialize ¢ according to some convention.

Step 2. Initialize by setting i = 1.

Step 3. At site i simulate g; conditioned by the neighboring sites.

Step 4. Update i toi + 1, i <norlif i=n.

Step 5. Go to Step 3 or stop when the number of iterations is deemed sufficient.

It is easily seen that the Markov chain C;, C,, C;, ... with the state space C,
assuming that A and @ were assumed to be strictly positive, is ergodic and that
the above procedure, stochastic relaxation, converges to the unique equilibrium
measure that coincides with (1.6).
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F1G6. 6. Inference machine.

The sequence 1,2,...,n,1,2,... can be replaced by other sweep strategies as
long as they guarantee that each site will be updated i.o.

1.7. To visualize stochastic relaxation consider Figure 6 in which for simplic-
ity o is just a linear graph with |c| = 5.

In this three-level inference machine the upper level represents the configu-
ration ¢ = o(g,, 8o g,) following the regularity # = (G, o, A> the second
level the (pure) image I = Rc and the third level the observed image 17 = 21I.

During the stochastic relaxation all the third level generators g/’ are kept
fixed to the values observed, while the others are updated by visiting them
following some sweep strategy.

The resulting estimate I*, the image restoration, appears in the second level
after the relaxation algorithm has been executed. The configuration c¢* in the
first level is the synthesis, or explanation, of I* and expresses our understanding
of I*.

1.8.1. Let us make the above more concrete by the following three examples.
In the first we choose G = {0,1}, o a cyclic square L X L lattice, n = L? R is
the identity and 2 represents a noisy binary, symmetric channel with error rate
e. This is just an instance of the celebrated Ising model of ferromagnetism; see,
e.g., Kinderman and Snell (1980). As a model for picture processing it lacks
enough generative power and is only used here because of its simplicity.

In Figure 7 we show the pure image I ‘(here coinciding with the configuration
c), the deformed I? with ¢ = 20% and the restored image I*; the latter was
obtained by the procedure described in Section 1.6.

1.8.2. In our second example ¢ is still a cyclic square lattice but now with
arity eight for the sites so that each site has eight neighbors. The generator space
now is of size r = |G| = 42 (if redundancy is removed deleting identical genera-
tors), with more structured elements representing geometric tendencies.

For example g = 0 expresses the tendency for a site to become an outside
point, g = 1 an inside point and the remaining 40 generators represent tenden-
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F1G.7. Restoration of binary image.

cies to become boundary elements with different curvatures and orientations.
This information is coded into the eight bond values for each g. Space does not
allow us to describe the details that can be found in Grenander [(1983), pages
109-115].

Here R maps g = 0 into 0 (white) and all other g’s into 1 (black), while 2 is
the same as in the first example.

In Figure 8 we show a pure image in (a), a deformed image in (b) and the
restored one in (c), the latter obtained by stochastic relaxation of the posterior.

1.8.3. In the third example where the images will be random polygons the
generators consist of line segments and p expresses the condition that the sides
of the resulting polygon should connect at endpoints. The function @ attaches
weights to segments of different lengths and directions. Note that the connector
graph o now consists of one or several cyclic chains; we shall consider a single
one here.

So far this describes the shape, and it remains to decide on the location,
orientation and size of the polygon. We do this by specifying a probability
measure over the group consisting of the Euclidean group in R? times the
uniform scale change group. In the computer experiment we have simply used
simple unform measures.

Note that in this example the prior is made up of two measures: a measure of
the form (1.2) for shape and another measure to account for location, orientation
and scale. A

The identification rule R interprets such a configuration as the inside of the
corresponding polygon.

In Figure 9 we show the result of a computer experiment using the regular
structure just described.
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F1G. 8. Restoration with boundary generators.

Let us mention in passing that this is a special case of an emerging theory of
random shape; see Grenander and Keenan (1988). It deals with objects in R?
and, in a tentative manner with objects in R, and will be presented elsewhere.

The estimation procedure obviously depends on what optimality criterion is
used. One attractive possibility is to search for the I that maximizes (1.6), the
mode in the posterior.

Since the posterior can have many local maxima, standard hill climbing
techniques are not recommended. Instead simulated annealing seems reason-
able, lowering the temperature [see (1.5)] slowly during the stochastic relaxation.
The question of the rate of decreasing temperature was recently answered; see
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Geman and Geman (1983) and Gidas (1985). Convergence to the mode is guaran-
teed if the temperature T is lowered at a rate not faster than constant/log ¢,
where ¢ is the iteration number. This has been used with success in a large
number of image processing computer experiments.

It is not known what the best procedure is in practice. Based only on
computational experience, but without analytical backup, the author prefers to
simulate the posterior a number of times and “average” (in some sense, not
necessarily linear) the results. This corresponds to estimating some posterior
“mean” rather than the mode. The latter may not always be representative of
the posterior in the sense of being close to where most of the probability mass is.
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1.8.4. These and many other similar experiments indicate that excellent
restoration can be achieved. But this is not the main point. One can get good
restoration by more ad hoc methods. However, it is not possible to discuss in
precise terms how good a restoration is, how well it compares with a theoreti-
cally optimal method, unless one starts from a model based approach.

Here we are doing just that, building the models of random geometries on
pattern theoretic ideas and then deriving the optimal algorithm (for a given
optimality criterion).

This is clearly preferable if it can be done, and it should be pointed out that
serious obstacles must be removed in order to carry this out. Let us mention
some of these difficulties.

1.8.4.1. First, and most importantly, we need a repertoire of pattern theo-
retic models (in the case of picture processing random geometries, in particular
random shape models) from which we can select a suitable model. Random
geometries have been studied for a long time in integral geometry [see also
Harding and Kendall (1974)], but we need more specific models. This is not
primarily an analytical problem: It is not a well-posed mathematical problem; it
requires more intuition and inventiveness than analytical skills. It will not be
discussed here. The interested reader can find a large number of pattern theo-
retic models in Grenander (1976, 1978, 1981a) and Grenander (1983) but much
more is needed.

1.8.4.2. Once the structure of the model has been determined we must decide
the values for its parameters. It is only recently that (partial) answers have been
obtained to the question of parameter estimation for these models. This will be
discussed in Section 2.

1.8.4.3. After completely specifying the model we implement it, for example,
by stochastic relaxation as described. It has become clear that the relaxation
time can be large, so that massive computation is needed

(a) if the graph is large, n big,

(b) if the regularity is high, T or ¢ small,

(c) if |G| is big or even infinite,

(d) if the conditional measures are not of familiar form.

In particular we must expect extreme CPU time requirement if all of (a)-(d)
hold.

Recent advances in computer architecture tend to ameliorate the situation; in
particular array and parallel architecture seem tailormade for implementing the
mathematics of parallel logic/complex systems. Nevertheless, there is a need for
analytical improvements, in particular for limit theorems that yield more
tractable approximations to the probability measures. This will be treated in
Section 3.

1.9. Before presenting some new analytical results let us briefly mention
some possible applications. A massive research effort is under way with the goal
of applying the ideas to image processing. Other applications are being discussed,
so far only in a speculative manner.
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1.9.1. Computer aided medical diagnosis, usually discussed from the perspec-
tive of expert systems and knowledge engineering, seems a natural application.
The sites would carry information about patient data, personal characteristics,
test results, medical history, disease X on/off, etc. The connector would express
the current state of medical doctrine, one site is believed to influence another site
directly but a third site only indirectly and so on. The strength of interactions
would be expressed by the acceptor functions.

Some sites would be observed, others would be estimated by the inference
machine, and determined by conditional probabilities.

1.9.2. Decision making in complex systems where there is a lot of data,
vague and uncertain, some of it hidden. Again, the goal would be to model the
complex system in pattern theoretic terms by a regular structure and implement
it by an inference machine. Of course the acceptor functions must be determined
empirically.

1.9.3. Biometric situations, say related to pharmacology, in which a large
number of treatments (substances) are tested under various conditions. Model
building in such a p-iori unstructured situations can be expected to be difficult,
but Markov processes on graphs, perhaps incompletely observed, form a tool
worth trying. One obstacle, appearing in the absence of an explicit subject
matter theory, is the choice of the graph o.

1.9.4. Analysis of biological shapes, for example, the shape of hands and
other biological forms [Grenander and Keenan (1988)] and their automatic
recognition by computer. This is currently being done.

2. Estimating acceptors. When it comes to estimating unknown parame-
ters in the acceptor functions two cases should be distinguished. In the first all
acceptor functions are the same, there is only a single one, and one treats large
graphs. The asymptotics then means that the size of the graph, n, tends to
infinity. In the second case we allow acceptor functions to vary from edge to
edge. The natural asymptotics then is to assume that the number of observed
images, N, tends to infinity.

Let us try to determine the unknown entries in the acceptor matrices A
empirically. Say that |G| = r < c and that we have observed an i.i.d. sample of
configurations c(1), ¢(2),..., ¢(¢),..., c¢(N) from P given by (1.2). For simplicity
we shall assume “full information bonds,” i.e., B;(g) = g. First it is clear that we
can absorb the Q-factor into the A ’s without restricting the family of prior
probability measures. We shall write, for the time being,

(2.1) Plc(t)] = %exp[ i as(gil,giz)], t=1,2,..., N,

s=1

and
(2.2) c(t) = o[g:(t), &(t),..., 8,(1)],
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where m is the number of segments in o.

To keep track of which is the first and second argument in a (-, -) we use a
directed graph ¢ with the convention s = (i, ).

To begin with we shall take a nonparametric approach, letting all the mr?
entries in the a, matrices be free. Of course we can add a constant & to all the
entries if we at the same time multiply Z by e*. We do not have full identifiabil-
ity. So we ask that Z = 1, introducing of course relations between the a’s.

The lack of identifiability is, however, more serious than so. We shall devote
the next section to clarifying this issue before we begin the construction of
estimates. Identifiability as such could be inferred from results in Besag (1975),
but we need the following formal developments for Theorems 2-6 and for
studying another estimation method.

2.1. Let us consider an example, see Figure 10, in which we show a directed
graph o with n = 6 sites and m = 7 segments and G, r arbitrary but finite. The
arities w; are also shown. We assume the graph to be directed in order to
distinguish between the endpoints of any edge. Compare with examples in
Sections 1.2.1 and 1.2.3 in which it is also seen that we must be prepared to let

F16.10. Configuration diagram.
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in-arities differ from out-arities. It is easy to see that the a, entries can be
modified in many ways without changing the measure P. We are actually dealing
with exponential families and the trouble is caused by singularity of a matrix;
see Barndorff-Nielsen (1978).

We must therefore restrict our parameter space by replacing it by a subspace.
When we do this we must ask that (a) the new parameters are uniquely
determined by a P of the form (2.1) and (b) that the family { P} is not reduced.

This can be done in many ways; the following one is both theoretically
attractive and computationally convenient. We do it by the following cutting
system: Cut the segments (at one side, at both sides or not at all) so that

1. exactly one segment remains uncut;
2. for each site there is exactly one joining segment that is not cut close to the
site.

In our example we show one such cut system in Figure 11. Segment 5 is the
uncut one. One can prove that this can be done for any finite connected graph,
usually in many ways.

We can use the following:

CUTTING ALGORITHM.

0. Sets S and A are empty.

1. Choose one segment in the graph and leave it uncut. Add the segment to set S
and one of the sites to set A.

2. Choose a segment in the graph that connects to at least one site in A.
(a) If only one of the two sites that are connected by the segment is in A, then
cut the segment close to that site. Add the segment to set S and add the other
site to set A.
(b) Otherwise cut the segment twice. Add the segment to the set S.

3. Repeat Step 2 until all segments have been added to S.

With such a cutting system we can establish identifiability. Select one genera-
tor (arbitrarily) to be denoted by 0.

THEOREM 2. Standardize the acceptors by

a,(g,0) =0,
2.3) =g, ifs= (z, j) is cut close to i,
as(Os g) = 0’

=g, ifsiscutcloseto].

Then the remaining a, entries are uniquely determined by P.
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F16. 11.  Cut configuration.

We can be more specific. Introduce the difference operators for some function
f = f(glngy"-»gi""’gn)’

(24)

Aif=

f(gly g21"'ygial;giygi—}»ly"'ygn)
_f(glyg2»“-;g;‘*lyo»gz#lw“ygn)y

(f):.=1(0,0,...,0, g,0,...,0).

We can then derive the following explicit representations for the acceptor entries
in terms of the log probabilities p(c) = log P(c).

THEOREM 3. With a cutting system as defined we have

(2.5)

as(gi’ gj) =

AAp+(4,P),
if s = (4, J) is cut close toi,
AlAjﬁ + (Aiﬁ)i;
if sis cut close to j,
AiAjl—)y
if s is cut twice,
ALAJﬁ + (Atz—))z + (Ajl_))j+l—)(010y°"’0);
if s is uncut.

The important homogeneous acceptor case, when all A, are the same, has
also been solved. We can state
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THEOREM 4. In the homogeneous acceptor case identifiability is achieved
(@) if for each site i the in-arity equals the out-arity, ', = w.,, use the
restriction a(0, g) = 0, g € G;
(b) otherwise no restriction is needed.

2.2. Now the estimation problem is correctly posed and we can ask for an
estimate. a* of the whole set of free acceptor entries organized as a vector a. The
likelihood function for our sample is then

2.6) Ly(a) = Z2-Ma) nexp{ alg,(0), gQ(t)]}

To use maximum likelihood estimation, which is well advised in principle for an
exponential family situation, is not computationally feasible because of the
difficulty of evaluating Z(a).

Instead we shall use a modification of the ingenious pseudolikelihood method
introduced by Besag (1974); see also Possolo (1985), which contains many
references to this subject. Introduce the pseudolikelihood

27) PLy(a) = IT TTP*[a(tyem(0)],
where
(2.8) P?[g;(t)lenv,(¢)] = P*[g,(¢) | all neighbors of g; in c(¢)].

This function does not involve the troublesome partition function Z(a) since we
can write

(29) Pa[glenvi] ( )exp Z (g» envij)
with

(2.10) env/ = jth neighbor of site i

and

(2.11) zZi(a) = ¥ exp X a,(g,env/).

geqG Jj=1
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We now define the pseudolikehood estimate a} by solving
(2.12) PL,(a*) = maxPLy(a),

where, as before, the parameter space has been restricted according to a cutting
system for the connector o. It can be shown that as N — oo the probability that
(2.12) has a unique solution tends to 1 and, furthermore,

THEOREM 5. The pseudolikelihood estimate is consistent.

2.3. We can now go ahead and study the asymptotics of the pseudolikelihood
estimate. We derive the covariance matrix for the asymptotically normal distri-
bution of a* and get

THEOREM 6. The pseudolikelihood function provides an estimate of a that is
asymptotically normal with mean a (the true value of the acceptor functions)
and with covariance matrix

1
_K—l K—l
N 5 ’

where

K- —E{ 5 v logPi[gIenV]} |
i=1

0

S=FE

i=1 i=1

£ 5. ou s £, 5,00 1401 |

and [-], indicates that the expression is to be evaluated at the point a,,.

2.4. Software has been developed for cutting the connector ¢ and computing
the pseudolikelihood estimate. The latter is done by exploiting the fact that
PL(a) is a logarithmically concave function of a. This facilitates the search for
the maximum in parameter space and guarantees convergence of the search
algorithm. .

A systematic series of computer experiments has been designed and carried
out. In order to be able to compute efficiencies exactly we have chosen small
graphs but the applicability and feasibility of the software is not restricted to
small n. For larger graphs we recommend partitioning o,

G =0y,0,...,

and applying the program to each o, separately, iterating this a number of times.
Convergence follows again using the concavity of log PL,,.
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In the cases studied the obtained values for the asymptotic efficiencies
(relative to maximum likelihood) fell in the range 90-100% in all cases.

One of the purposes of this computer experiment was to investigate a “local
difference” estimator, using the equations in (2.5) to estimate the a values. To
do this one has to estimate the p values on the right-hand side of this equation,
which requires some care since many of the corresponding p values can be zero
or close to zero. This is very fast computationally and gave surprisingly good
results [Grenander and Osborn (1985)] if the graph was of small or moderate size.
The first versions of the software required much CPU time but improved
versions achieved higher speed. Computing speed is not critical here, however, if
estimation is going to be done once and for all off line. This is in contrast to
stochastic relaxation which is computed for each observed image, when we are
sampling from the same image prior.

The asymptotic sampling errors have also been used for the following purpose.
When a complex system is going to be predicted by our parallel logic, say by
predicting the g; value, given values for g;, g, , ..., &,, we can first use Theorem
1 to find what sites, if any, can be neglected among the observed ones. Then we
simulate

Pa' = Pa*(gi = glgily gizy ceey g‘l)’
which will normally differ from

P = P(g; = &lg; &> 8,
Our results allow us to make approximate statements about the error
E(Pe - P
The results in Section 2 are given with proofs and numerical results in

Grenander and Osborn (1985).

3. Limit theorems in pattern theory. In order to derive approximations
to the Markov process measures induced by the structure formulas we shall
consider the following types of limit problems in metric pattern theory:

1. Asymptotics of P as € or T |0, fixed o.
2. Asymptotics of P as n = |o| — oo, fixed ¢, T.

The case of greatest interest is, however, the mixed limit problem.
3. Asymptotics of P as ¢, T |0 and n = |o| = co.
It is considerably more difficult than the two first limit problems and we shall

postpone discussing it until Section 3.3.

3.1. In the first limit problem we keep everything fixed, including the
connector o, except temperature T or the scale factor . When they are made to
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tend to zero the regularity (G, o, A(¢)) or (G, o, A(T)) will become more rigid
and approach the frozen patterns.

Let us write the exponent in the structure formula (1.2), absorbing the @
factors into the first product, as

1
(3.1) - pH(e),

where H corresponds to the Hamiltonian energy term in statistical mechanics.
Then large values of the probabilities P(c) correspond to low values of the
energy H(c). Therefore the set

(3.2) M= {c|H(c) = mCinH(c)} cc

of minimum energy configurations can be expected to appear in the solutions of
the first limit problem. Without loss of generality we assume that the minimum
is zero.

For simplicity we shall assume that H is continuous and the minimum in (3.2)
is attained.

The results in Section 3.1 are due to Hwang (1980, 1981).

3.1.1. The simplest case is of course when the generator space is finite when
we can state

THEOREM 7. If |G| < oo we have

1
. li ={ M|’
(3.3) ;%PT(C) |M]|
0, else.

ifeeM,

In other words the limit measure is uniform on the set of minimal energy
configurations which is intuitive.

3.1.2. We turn now to the case |G| = oo and shall assume that G = R so
that ¢ can be embedded in a vector in R” If G is some other finite-dimensional
Euclidean space, the following holds with obvious modifications.

The densities p(c) = fr(c¢) in the structure formula are viewed as
Radon-Nikodym derivatives with respect to some fixed probability measure m:

Pr(dc) _
m(de) fr(c).
Assume

(3.4) m{c|H(c) <a} >0 fora>0.
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THEOREM 8. If (3.4) holds and m = m(M) > 0 (where m is not the same as
the earlier m) we have the limiting probability measure given by

(3.5) E%PT(A) = ;1l-m(A NnM).

Again the limit is uniform on the set of minimum energy configurations.

The case m =0 is a little harder. Assume first that M is finite =
{x,, X3, ..., x,}, that there exists an ¢ > 0 such that {x|H(x) < &} is compact and
that

m(dx)
p(dx)

Then the following describes the limiting measure.

(36) HeC¥2"), = f(x) is continuous, = u = Lebesgue measure.

THEOREM 9. Under the given conditions and assuming that the Hessian
H"(x;) of H(x) is nonsingular for all i and that for some k f(x,) > 0, then the
limiting measure is concentrated on M with the mass at x:

f(x;)[det H"(x;)] -1/2 |
) [det H ()]

(3.7)

If M is not a finite set things become more complicated and the conditions
needed will become somewhat elaborate. Without stating the conditions in detail
[they can be found in Grenander (1981), pages 220-230], let us assume that M
consists of a finite number of compact smooth manifolds and let N consist of the
highest-dimensional manifolds. Then one can prove

THEOREM 10. The limiting probability measure is concentrated on N with a
density proportional to

°H(y -1/2
(3.8) f(u) ﬂ—))] ,

at?

det (

where u is a coordinate vector on N and the derivatives with respect to t mean
differentiation in normal directions at u € N.

The density in (3.8) is taken with respect to a certain intrinsic measure on N.
In the special case when H is a linear-quadratic function so that the Pj
measures are Gaussian, we can use special methods. Indeed, let us consider

(3.9) H(x) =xTFx — kTx, keR"

THEOREM 11. In the Gaussian case (3.9) a limiting measure exists for T |0
if and only if F is nonnegative definite and k is in the range of F. Then the
limiting Gaussian measure has as covariance operator the projection down to
the null space of F and the mean m is given by k = Fm.
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3.2. In the second limit problem we keep T or ¢ fixed so that we need not
indicate them in our formulas. It is the connector ¢ that is made large in some
sense, so that n —» .

3.2.1. Let o be a linear graph and consider the frequency function with
respect to Lebesgue measure in £7,

1 n—1
(3.10) pie) = 7 [T Algi, 20802,

n =
where G is a compact interval on R, e.g., [—1,1]. Consider the marginal
distribution of g,, i =[an], 0 <a <1, as n = . The reason we ask i to
behave like this is that we want to avoid boundary effects for i close to 1 or n.
One can prove convergence for such marginal distributions.

The density (3.10) defines a Markov chain with (—1, 1) as a state space. Note,

however, that:

1. The transition probabilities are not time homogeneous; they depend upon i.

2. The transition probabilities will usually depend on n.

3. When n increases, P, will not necessarily be a marginal measure of P, ,
ny < n,.

These circumstances make for some technical difficulties in the proof of the
following result. Assume that A is symmetric, continuous and strictly positive
and introduce the integral operator

(TF)(x) = [A(x, 9)Q(»)f() db.

The kernel is not symmetric but can be symmetrized by the transformation
f— f\/a . One can then derive the following answer to the limit problem of the
second type.

THEOREM 12. The marginal distribution defined above converges weakly as
n — oo to a probability measure with a density

7 (x)
J¢i(x) dx’

where ¢, is an eigenfunction associated with the smallest eigenvalue of T.

(3.11)

This is due to Plumeri (1981).

3.2.2. To extend this to other connectors besides the linear ones has not yet
succeeded for conditions as general as above. In the Gaussian case, however, it
has been done and we first illustrate the sort of results that are possible by again
looking at a simple graph.

Let o be a generalized cyclic graph with n sites (for the linear graph the same
results can be obtained) and let the bond structure be as exemplified in Figure
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L2

D
g3 / =0 \ gy

Q

A L)

n=t(c) =7
w(g) = 4

(1) = . (8) -2

s &g

Fi1c. 12. Connector graph.

12, each site having 2 p neighbors, p = 2 in the figure.
Let the @ factors be Gaussian, mean value vector zero and

Y,

X
(312) gi= ( L)’ Xie‘@p7 },ie'@p’
where X; represents the bonds sent in one direction from g, and Y, the bonds in
the other direction. Let us use rigid regularity with the bond relation p meaning

equality and the kth bond of X; connected to, say, the kth bond of Y, +ay

Let the covariance matrix of @ be given by H ™' where H is the partitioned
matrix in the exponent

H, H
(3.13) H-= ( Looe

11 H X p.
H1T2 H22), a pare p X p

Introduce the fundamental circulant n X n matrix 7, = (8,;, ,) with addition
modulo n and the matrices

(3.14) E, , = diag(0,0,...1,...,0) with the 1in the kth place.
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To find the limiting measure as n — o we use the following construction.
Consider the sum of 2p X 2p matrices

p p
Mee H, + ) II,*® HyE, ,+ ) II%*®E, H}
k=1 k=1
(3.15)

P p
F Y Ime Ek,,,Hm)( e E)
k=1 =1

where A ® B means the matrix (g g).
Collecting terms in (3.15) the sum can be expressed as a sum of the form

q
(3.16) Y IteC,
k=—q

with new matrices C, of size p X p and where ¢ is some natural number..
As n — oo what limiting measure do we get for the vector valued stochastic
process (X;; i = 0,1,2,..., n — 1)? The answer is given by

THEOREM 13. The limiting Gaussian process is stationary with mean zero
and spectral density matrix

k= —

(3.17) f()\)=( 5 Cke‘k)‘) .

Many other graphs of lattice type with arities greater than 1 can be solved in
a similar way, so that the spectral density matrix can be obtained by purely
algebraic manipulations like the ones in (3.15)—(3.17). These results are due to P.
Thrift; more theorems and proofs can be found in Grenander [(1981), pages
252-288].

3.3. The results in Theorem 7.13 illustrate what sort of limit theorems can be
obtained when either ¢ or T and ¢ is fixed. The practically most important case
is when both tend to their respective limit since this is when stochastic relax-
ation is most time consuming and we need approximative procedures based on
analytical results.

Progress in that case has been slow and the only result obtained until recently
was the one to be presented in Section 3.3.1. It was clear that a different
technique was needed that was less dependent upon the particular form of the
connector o. Such a method has been suggested and used recently and will be
discussed in Section 3.3.2.

3.3.1. To study the mixed limit problem, say that o is a linear graph so that
our probability measure is given by the density in (3.10). Since we are now going
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to vary ¢ it should be included in the formula and we write

(618) () = p, () = 5 ] 4 £

“lazy,  aca.

We shall assume that @ € C, with a unique global maximum, say at g = 0,
and with a second derivative ¢ = —@Q”(0) > 0. The choice of the acceptor
function A(x) is believed not to be crucial as long as it decreases fast enough as
|[x| = oo to avoid long range dependence. In this section we shall use a rectangu-
lar window A(x) = 1if x| < 1, O else, but the results are of wider validity.

If we let n — oo first, with ¢ constant for the moment, we know that the limit
can be expressed via the first eigenfunction ¢, of the integral equation

M) = [ =2 ]R(:)e(0) &

because of Theorem 12. Now let ¢|0. How does ¢, behave? Using reasoning
similar to that underlying Theorem 8 it is easy to show that ¢, will contract to a
one-point distribution with the mass at the maximum of @. We need more
detailed knowledge, however, and a computer experiment was carried out in
order to guide us.

For a variety of @ functions the eigenfunction ¢, was computed and plotted
for a sequence of small ¢ values. The graphs were striking—they look very much
like Gaussian densities!

But why? Standard perturbation calculus for the operators 7, will not be
enough since the limiting operator is not compact: We are dealing with a
singular perturbation problem. The solution is given by

THEOREM 14. The normalized density Ve ¢E(\/; x) tends weakly, as €0, to a
Gaussian limit with mean zero and variance 1/ 1/3q .

The proof, which is long and technical, is given in Chow and Grenander
(1981). One can also show that the limit remains the same when ¢ and n tend to
their limits under a condition that says that n increases slowly enough compared
to the rate by which ¢ tends to zero.

3.3.2. The proof of Theorem 14 does not shed much light on why the limit is
Gaussian, it is too calculating and not intuitive enough. Also it does not seem to
be extendable to other connectors, for example, the cyclic one that appears in
some useful random geometries describing the shape of random objects; see
Section 1.8.3. One reason for this is that one has not succeeded in extending
Theorem 12 [some results for ¢ = tree can be found in Plumeri (1981)], which
underlies Theorem 14, to general o.

Instead a completely different analytical technique has been developed in
Grenander and Sethuraman (1985). Here we try to make statements not just
about the asymptotics of marginal distributions of some g; but about the whole
measure.
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Say that o is a cyclic chain so that (3.18) holds if modified by including a
factor A((g,,_1 — &)/¢) on the right-hand side. For analytical convenience we
choose A(x) to be of the form exp(—cx?) and introduce a stochastic process
C(t), 0 <t < 1, by defining

i i i+1
(3.19) Cn( —) = g;, C linear between — and .
n n n

We think of [0,1) as a parametrization of a circle M of radius 1. Then under
some assumptions on @ we have

THEOREM 15. The process c,(t) converges weakly, for e =1/n andn — oo,
to a process c(t) which is stationary (on the circle M), Gaussian, and Marko-
vian on M with the covariance function

cosh[(s -t—1/2)/\q

(3.20) R(s,t) = 2//q sinh(y/q /2)

A computational consequence of Theorem 15 is that since c(#) can be
simulated directly by the representation

el ”?
e(t) = 2sinh(,/g /2) fo

where w is the standard Wiener process, we can avoid stochastic relaxation and
obtain an extremely fast simulation procedure for the approximating process.
But, more importantly, the proof technique used for Theorem 15 does not rely
on the special geometry of the connector. Therefore it seems possible to extend
the result to many types of lattice graphs and this is being done at present.
Without going into this, it should be mentioned that for some such connectors
the limiting measure has to be associated with stochastic processes whose
“sample functions” are not ordinary functions, but Schwartz distributions.

(3.21) Loyl med 1]y oy

4. Open problems. The theoretical developments described above leave a
number of questions unsettled. Let us briefly mention a few of the major ones.

4.1. In a typical pattern theoretic setup some of the generators are unobsero-
able in principle: We speak of invisible sites. For example, in Figure 3 the sites in
the upper level cannot be seen by the observer.

To determine the acceptor values empirically using a set of pure images, we
cannot use the procedure of Section 2.2 without modification. Attempts have
been made to combine the pseudolikelihood approach with the EM method, but
so far this has been done only numerically and we have no theoretical support
for it.

For rigid regularity one can often determine the configuration from the image
in a unique manner and the above problem does not arise. Although this will
take care of many situations it is clearly desirable to look more carefully into the
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theoretical aspect. To do this, one should first of all seek a standardization of the
acceptors so that they become identifiable. This question is similar but distinct
from the one answered in Section 2.1 and we have no answer to it at present.

4.2. If only the deformed, but not the pure, images can be observed we get an
additional difficulty—noisy data. This seems less formidable than the one
associated with hidden sites. Indeed, the probability measure for the I’s is, for
most deformation mechanisms, identifiable from the knowledge of the probabil-
ity measure of I?. Therefore there is good hope to derive estimators of I given
I? and thus eliminate the difficulty, but this has not yet been done.

4.3. If the generator space G has large cardinality or is infinite, for example
G = R, it must be discretized before our estimation results can be applied. The
level of discretization must of course be related to the sample size N: Large N
will allow finer discretization.

It is natural to do this by a sieve when choosing the bond value space B and
let it have a small number m of elements. As N increases we can let m increase
(slowly!), or, equivalently, make the mesh size p = 1/m of the sieve tend to zero.

4.4, In Theorem 4 we showed how to standardize acceptors in the homoge-
neous case. This should be generalized to connector graphs ¢ = U,0,, where the
acceptors are the same, A,, over each subgraph g,. It is not known at present
how to construct an appropriate standardization.

4.5. We have assumed throughout that the connector is known. Often this is
the case and ¢ may be the structure of a scientific doctrine, for example. If the
connector o is unknown, however, we need estimation methods to determine o.
The only such procedure available for G = R, seems to be to compute (R*)"1,
where R* is the empirical correlation matrix for the g;’s, and look for entries
with large absolute values. This seems to work to a limited extent in cases when
all regressions are approximately linear, but we have no computationally feasible
method for general applicability.

4.6. Consider stochastic relaxation with a deterministic, periodic sweep strat-
egy; see Section 1.6. Let one full sweep constitute one unit of time.

How fast do the measures over C converge to the equilibrium measure P? The
Markov chain in time, with C as the state space, has some transition probability
matrix

(4.1) M = (P(c — ¢ after one sweep); ¢, ¢’ € C).

The next largest (in absolute value) eigenvalue A, of M determines the speed of
convergence. The smaller A, is the faster is the convergence.

In particular, does A, = 1 as n = oo and if so, how fast? This is the so-called
A, problem. It could be that more and more full sweeps are required as the
connector graphs are made large. Numerical experiments indicate that, for the
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regularities studied, this does not happen, but there is little theoretical support
for this conjecture at present.

4.7. If one could get a bound or an approximation for A, this would give us a
tool for choosing a good sweep strategy. We would select one for which A, was
small.

A remarkable numerical result was obtained by D. E. McClure, who computed
A, for connectors small enough for direct computation to be possible. For each of
those connectors, for |G| = 2, and for a number of deterministic, periodic sweep
strategies he got the same A,. This was done in double precision, about 16
decimal digits. This surprising observation has not been explained theoretically.
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