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CONSTRAINED SIMULTANEOUS CONFIDENCE INTERVALS
FOR MULTIPLE COMPARISONS WITH THE BEST?

By Jason C. Hsu
The Ohio State University

For comparing k treatment effects 6;, 6, - - - 8, often the parameters of
primary interest are 6, — max,.,0,, i = 1, -- -, k. In this article, we develop
constrained 100P*% two-sided simultaneous confidence intervals for 6, —
max,» 0, which we refer to as (constrained) MCB intervals. It turns out that
the lower bounds of the intervals imply Indifference Zone selection inference,
and the upper bounds of these intervals imply Subset Selection inference,
each given at the same confidence level 100P*% as MCB. We also extend our
method to give 100P*% simultaneous confidence intervals for 6; — §{)_,,, i =
1, ---, k, where 6{})_,, is the tth largest among the §’s excluding .

1. Motivation and background. Let 7y, m, - - -, 7, be k treatments and
01, 02, - - -, 0, their respective treatment effects. Suppose = is better than =; if
9; > 0,. Then simultaneous two-sided confidence intervals for §; — max;.,0;, i =
1, - - -, k, give the most direct inference for deciding which treatments to use or
not to use. For example, if the upper bounds for 6; — max;.0;,i =1, 2, are < 0,
then 7, and =, are at most second best and can be rejected. On the other hand,
if the lower bounds for 6; — max;.;0;, i = 3, 4, are = — §* where §* is close to
zero, then both 73 and =, may be acceptable.

In Section 3, we derive constrained 100P*% simultaneous two-sided confidence
intervals for 6; — max;.;0,, i = 1, ---, k, which we refer to as (constrained)
multiple comparisons with the best (MCB) interval. In the parametric case, these
intervals have the simple form

[—(Y, — max,»,; Yj - d)_, (Y, — mMax,;x; Yj + d)+]

i=1, .-, k. (In this article, x* = max (x, 0) and x~ = max(—=x, 0).) It turns out
that the upper bounds of these intervals imply the Subset Selection inference of
Gupta (1956, 1965), and the lower bounds imply the Indifference Zone Selection
inference of Bechhofer (1954), each given at the same confidence level
100P*% as the MCB intervals.

Note that previous MCB results were presented in terms of the parameters 6;
— max,<;<x0,. Hsu (1981) gave simultaneous lower confidence bounds on 6§, —
max;<;=x0,. They were later generalized by Edwards and Hsu (1983) to two-sided
simultaneous confidence intervals for 6; — max; ;<0 ; which reduce to the lower
bounds of Hsu (1981) when the upper bounds are set equal to +. It turns out
that the result of Hsu (1981) can be significantly strengthened. Specifically, the
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lower bounds of this article and those in Hsu (1981) are the same numerically.
They are the same inferentially as well because lower bounds on 6; — max;<;<.0;
are also lower bounds on 6; — max,.;0;, and vice versa, if lower bounds on the
latter are constrained to be nonpositive, which they are in this article. Thus, this
article shows that upper bounds on 6; — max;.8; can be added to the lower
bounds of Hsu (1981) at no cost (without decreasing the confidence level).

In Section 4, we extend our method to give 100P*% simultaneous two-sided
confidence intervals for 6; — 8{)_,, i = 1, ---, k, where 6{}_,, is the tth largest
among the 6’s excluding 6;.

2. Notations and assumptions. Suppose independent random samples of
size n are taken from the treatments m,, - - -, 7. Let

Y. = (Yil, Yiz, ety Yi.)

denote the random sample from =,;. Suppose the distributions under the k
treatments differ in location only, so that the joint distribution of (Y, - -+, Yi)
is 141 [1%=1 F (3.« — 0;) for some absolutely continuous F. Let (1), (2), - - -, (k)
be the unknown indices such that

(2.1) by =0 = -+ = 0.

In case of ties in the #-values, the indices can be chosen in any manner so long
as the order relation (2.1) is satisfied. Note that 6, is the ith smallest §-value.
For each i, let

Q) () (i
o) <0 < --- =00,

denote the ordered {6, j # i}, so for example §; — max;.;0; = 6; — 6{}_,,.

REMARK. Consistent throughout the article, ( ) in the subscript denotes
ordering according to the parameter values under consideration. (i) in the
superscript means the treatment 7; is being excluded from consideration. [ ] in
the subscript signifies ordering according to the observed values under consider-
ation.

Let T: R?" — R be a statistic such that

T(Y, + 511, Yj + 621) = T(Y,‘, YJ) + (61 - 52).

In the sequel, we use the abbreviation T;; = T(Y,, Y;).
Below we describe two classes of T which give rise to parametric and nonpara-
metric simultaneous confidence intervals respectively.

Parametric statistics. Let T;;= T(Y,;, Y;) = U(Y;) — U(Y;) where U: R" —
R is a translation equivariant estimator (e.g. sample mean, median, etc.). We use

the notation Y, = U(Y,)so T;;= Y, — Y.

Nonparametric statistics. Here T;; will be a nonparametric bound on 6; — 6;.
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Let R;;, () denote the rank of Y;, — é in the combined sample
Yo—6, -+, Yn—26,Yy -+, Yj
Fori#j, let
R;;(8) = Ya=1 a2n(Rija(8)) — nazn

where a,(-) is some nondecreasing score function converging in quadratic mean
to a nonconstant square integrable function ¢(-):

limn_,wf {a,(1 + [un]) — ¢(u)}® du = 0.
0
Here

1
G, = n7' Yoy an(@) —>J; ¢(u) du

and [un] denotes the largest integer contained in un. With the constant r to be
determined according to the desired confidence level P*, define
T,‘j = sup{ﬁ: RU(B) = — I‘}.
Two cases of a,(-) are of particular interest.
Wilcoxon statistics. Suppose aq,(x) = x/(2n + 1). If we let Wy < ...

Wijin2) denote the n® ordered differences Y, — Y5, 1 < @, 8 < n, then T};
Wijtwy+w) Wwhere wo = (n* + 1)/2 and w = (2n + 1)r + %.

I 1A

Median statistics. Suppose as,(x) = 1,0, or —1 as x >, =, or < (2n + 1)/2.
Let Yy = -+ < Yy, Yjuy < --+ =< Yju denote the ordered observations
from =; and ;. Then Ty = Yimp+m) — Yjim,—m) Where mo = (n + 1)/2 and
m=(r+1)/2.

3. Multiple comparisons with the best (MCB). In this section, we derive
simultaneous two-sided confidence intervals for §; — max;«0;,i =1, ---, k, by
pivoting the event

E={Two— 0w —0s),i=1,---,k—1) € A}.
Here A C R*! is chosen to be monotone, permutationally invariant, (defined
below) and making P[E] = P* = 1/k.

DEFINITION 3.1. A C R’is monotone if (x1, ---, x,) €E A and x; < x/ for all |
imply (x{’ ) x/,’ ) € A-

DEFINITION 3.2. A C R’ is permutationally invariant if (x;, - --,x,) € A and
(r1, - -+, 7,) is a permutation of (1, - - -, #) imply (x,, -- -, x,,) € A.
Define, fori=1, - .., k,
D}* = (sup{o: (Ty; — 6,] #1) € A}™.

We will show that, on the event E, §; — max;.,0; < D¥* for all i.
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REMARK. D}* is the nonnegative part of the maximum amount by which the
observations from =; can be reduced (while keeping all other observations fixed)
for 7; to still remain in the (generalized) Gupta’s (1956, 1965) subset containing
the best treatment.

For i # j, define
Dj; =sup{6: 6 >0, (T — 6, T}, 7 #iorj) € A},
D:k = _maxj;éiDjiy i = 1, ct k7

where sup(J) = 0. We will show that, on the event E, §; — max;.f; = D} for
all i.

THEOREM 3.1. For all 0,

P[D} = 6; — maxj.f; < D?* for all i] = P*.

PrOOF.
E={Twip— 0w —0y),i=1,---,k—1) € A}
C{(Twe — 0w — bp-1), i=1, .-, k—1) € A}
= {(Tji — Ow — Ow-1)), L #Jj) € A for j = (k)
and 0; — 64—y < 0 for j # (k)}
C {0, — -1y = D}* for all j}
= {0; — max;.0, < D¥* for all i} = E, (say).
Note we have equality for the last line because D** = 0.
E={Two— 0Ow—0u),i=1,---,k—1) €A}
C {0w — 0y < Dy fori=1, ..., k— 1}
= {—=Dyi =< 6; — O, for all i # (k) and
0 = 6; — O for i = (k)}
C {—max;«D; < 0; — B for all i}
= {D¥ < 0; — max;.0, for all i} = E, (say).

Note we have equality for the last line since D¥ < 0. Thus E C (E; N E,). Noting
P[E] = P* completes the proof.

Parametric confidence intervals. In the parametric case T;;= Y; — Y}, and we
can let

E = {Y(k)— Y(,-)—(B(k)—ﬂ(i))>—df0ri=l, '-°,k—l}

s0 A = (—d, ©) X ... X (=d, ®) C R*' is monotone and permutationally
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invariant. It can be verified that

D¥ = —(Y; — max;.;Y; — d)~, D = (Y; — max; Y, + d)*
so the confidence statement can be written as

(6; — max;»;0;) € = (Y; — max;«Y; = d)* for i=1, ..., k.

Note the striking simplicity and symmetry.
If the common distribution G of Y; — 6, is completely known, then to satisfy
P[E] = P*, we take d to be the solution of

f [G(z + d)]*! dG(2) = P*.

For the usual normal distribution model, however, we have Y; = ¥, =
Ya-1 Yi/n, G(y; — 0;) = ®((y; — 6;)/(n"%¢)) where & is the standard normal
distribution and the scale factor ¢ is unknown. To satisfy P[E] = P*, we take d
= d’s/n"? where s is the usual pooled estimator of ¢, and d” is the solution of

J; j: [®(z + d’s)]* ! d®(2) dQ(s) = P*.

Here Q is the distribution of s/s. The point is, d is always exactly the number
which enters the Subset Selection procedure of Gupta (1956, 1965) and the
Indifference Zone Selection procedure of Bechhofer (1954), each at the same
confidence level as MCB.
Nonparametric confidence intervals. In the nonparametric case we can let
E={Twwy — 0w — ) >0fori=1, ..., k—1}

s0 A = (0,0) X --. X (0, ©) € R*!is monotone and permutationally invariant.
Now

E ={RuwOuw — 0@n) = —rfori=1,...,k—1} as.,

so to satisfy P[E] = P*, we set r to be the smallest nonnegative number such
that

Py[R,(0) = —rfori=1, ...,k — 1] = P*

Here P, indicates that the probability is computed under §; = - .. = 6.
In the Wilcoxon case

D¥ = minj#i(Wij[wo—w]I 1D?'>0;) D¥* = (minj;éi Wij[w0+w])+

where wo = (n? + 1)/2 and w = (2n + D)r + %.
In the median statistics case

= =(Yipme-m) — maXjs; Yiimgsm)) ~, DF* = (Yipmgrm) — max;x; Yitmg-m1) ™

where mo= (n+ 1)/2and m = (r + 1)/2.

Asymptotic relative efficiencies. If we measure the relative efficiencies of
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confidence intervals by their abilities to exclude false parameter values, then the
same results as for the lower bounds of Hsu (1981) can be obtained by using the
arguments therein.

3.1 Implications for ranking and selection.

Subset Selection. The parametric Subset Selection procedure of Gupta (1956,
1965) selects w, if (Y; — max;,; Y; + d) > 0 where d is the same as in our confidence
intervals. Thus the traditional Subset Selection confidence statement is

(3.1) Plny) € {mi: DF* > 0}] = P*.
The confidence statement given by the upper bounds of our intervals is
(3.2) P[6; — max,.;0; = D** for all {] = P*
which, since D}* = 0, implies
P[0; — 0-1) = O for all i such that D}* < 0] = P*.
Note now the Subset Selection inference
[7w € {m: D¥* > 0}]] = A (say)
is essentially identical to the inference
[6; = 0k-1) = O for all i such that D¥* = 0] = B (say).

A is B if O—-1) < . If Ok—1) = O, then A is B with the additional restriction
that B does not include the inference 6; — 6,1, < 0 where 7; is the treatment tied
for the best that has been arbitrarily designated as the best treatment (. This
additional restriction is not useful, we feel, since in fact §; — 64-1) = 0 in this
case. Actually (3.2) is easier to understand than (3.1) and avoids completely the
technicality inherent in (3.1) of having the validity of the inference dependent
on an arbitrary assignment of 7, in case of ties.

Indifference Zone Selection. Since the lower confidence bounds D¥* for 6, —
max;;f; are constrained to be nonpositive, they are also bounds for 6; — 6. In
that form they were given in Hsu (1981), and shown to imply the union of the
Indifference Zone Selection inferences of Bechhofer (1954), Fabian (1962), and
Desu (1970), each given at the same confidence level as MCB.

4. Multiple comparisons with the tth best (MC¢B). In this section we
indicate how the method can be extended to give simultaneous two-sided confi-
dence intervals for (6; — 6{)_,), i = 1, ---, k, the difference between each
treatment and the tth best (¢t < E — 1) among the rest of the treatments. This is
achieved by pivoting the event

E =N {(Tpp — 0y — 0y), i=1, --- , k—t) € A}.

Here we choose A C R*"*to be monotone, Schur concave, and making P[E] = P*
= ()™
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DEFINITION 4.1. A C R’ is Schur concave if (x;, ---,x,) € A and (xq, .-+,
x,) majorizes (x1, ---,x/) imply (x1, --- , x/) € A. (See for example Tong, 1980,
for a definition of majorization.)

The reason for the Schur concavity requirement is that, when used with the
following lemma due to Hollander, Proschan, Sethuraman (1977), it allows us to
replace the unobservable T, in E by appropriate observable ordered T;.

LEMMA 4.1. Suppose \; < --- < \, are fixed. Let x;;) < x2)< - - - < x,jdenote
the ordered x,, --- ,x, . If A C R’ is Schur concave, then {(x; — Ay, -+- , %, — \)
EA} c {(x[I] Sl PRI /0 \) EA}.

For each i, let

Ty =Ty = -+ = Ty
denote the ordered {T;,, j # i}. Define, fori =1, --- , k,
D¥* = (sup{é: (Tyy — 6, -+ -, Tie—1) — 0) € A}™.

It can be shown that, on the event E, 6, — 0{._,, < D** for all i. The proof consists
of noting

E=Ntpee1 {(TihHoy — 0y — 0y), i =1, -+, k—t) € A}
C Nfkeerr {(Tppe-a — () — 0py), i =1, --+ , k— t) € A}

by monotonicity and the lemma and then proceeding much the same as in
Theorem 3.1.
For i #j, let

Tih < -+ < Ti-a
be the ordered {Tj,, # # i or j}. Now define
Dj; = sup{: 8 >0, (T;; — 8, Ty, -+, Thir-2)) € A}.
Here sup() = 0. For each i, let
Dpy = -+ < Dy
denote the ordered {Dj;, j # i}. Define
Df =Dy, i=1, -,k

It can be shown that, on the event E, 6; — {)_,, = D} for all i. The proof proceeds
much the same as in Theorem 3.1 with the additional intermediate step that

{0 — 0y =Dy, j=k—t+1,--- , ki=1,.--, k—t}
g{0(1)_0(i)SD[j—1](i)’j=k_t+]-7 ”"k,i=1’ "”k_t}

by the monotonicity and the lemma.
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Since P[E] = P*, combining the two sets of inequalities above gives
4.1) P[D} <0; — 0{)-y < Df*fori=1, --., k] = P*

for all 6.

For illustration, we give the exact expressions for D} and D* in the parametric
case, the expressions in the nonparametric case being analogous.

In the parametric case T;;= Y; — Y; and we can let

E = nf=k_t+1 {Y(j) - Y(,‘) - (0(,‘) - 0(,’)) > —d fOI' l = ]., ceey k - t}

s0 A = (—=d, ©) X ... X (—d, ®) € R*'is monotone and Schur concave. If, for
each i,

Y= . =Yy
denote the ordered {Y;, j # i}, then it can be shown that
Df =—(Y, - Y{il_.gy—d), H=(Yi- Y+ d)"

Implications for ranking and selection. For Indifference Zone selection of the
best t treatments without regard to order, the confidence statement of Bechhofer
(1954) can be written as

(4 2) P‘,[O = 0,‘ - 0(k—t+1) for all { with —6* < D:k] > p*
' if —0* = Oty = Oe—ts1)-
A stronger confidence statement by Chiu (1974) is implied by
(43) Po[—(s* < 0,' - B(k_tﬂ) for all ¢ with —6* < D:k
and 6; — 0,y < 6* for all i with D¥* <§*] = P*.

For selecting a subset of the treatments so that all those selected are good, the
confidence statement of Carroll, Gupta, and Huang (1975) can be written as

(44) Po[—a* < 0,’ - o(k_t+1) for all i with —é* < D;k] = P*,

For selecting a subset of the treatments to contain the best ¢ treatments, the
confidence statement of Carroll, Gupta, and Huang (1975) was essentially

(4.5) Py[6; — 6y < O for all i with D¥* < 0] = P*.
Clearly, the inference given by (4.1) contains the union of the inference given
by (4.2)-(4.5), each given at the same confidence level 100P*% as (4.1).

5. Concluding note. A computer program for MCB in the normal distri-
bution case has been written and is available for distribution from the author.
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