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ON THE ESTIMATION OF A CONVEX SET!

By MARC MOORE

Ecole Polytechnique, Montréal

Given independent observations x,, ---, x, drawn uniformly from an
unknown compact convex set D in R? (p known) it is desired to estimate D
from the observations. This problem was first considered, for p = 2, by Ripley
and Rasson (1977). We consider a decision-theoretic approach where the loss

_ function is L(D, D) = m(D a D).We prove the completeness of the Bayes
estimation rules. A form for the nonrandomized Bayes estimation rules is
presented and applied, for an a priori law reflecting ignorance, to the cases p
=1 and where D is a rectangle in the plane; some comparisons are made with
other estimation methods suggested in the literature. Finally, the consistency
of the estimation rules is studied.

1. Introduction. Ripley and Rasson (1977) propose a solution to the fol-
lowing problem originally formulated by Professor D. G. Kendall: given a reali-
zation of a homogeneous planar Poisson process of unknown intensity within a
compact convex set D, find D. Let x;, ---, xy denote the points in D where
realizations are observed. Conditionally on the value n of N, x,, -- -, x, are the
values of n independent and uniformly distributed random vectors on D. When
the value n of N is known, the problem is then reduced to the estimation of the
contour of a compact convex set D given the position of n points uniformly drawn
from it.

The solution analyzed by Ripley and Rasson (1977) (the R-R procedure)
consists of a dilatation of the convex hull, H(x), of x = (x,, -- -, x,) about its
centroid. More precisely, they suggest considering first the set s(H(x)) = H(x)
— g(H(x)), where g(H(x)) is the centroid of H(x); when the Lebesgue measure
of D, m(D), is known, they argue that a translation of

(1.1) [m(D)/m(H(x))]"*s(H (x)),

is the maximum likelihood estimator of D. For m(D) unknown, they find a
constant ¢ such that E[m(cs(H(x)))] = m(D),

c={(n+1)/[n+1—E[V.nl}¥?

where V.., is the number of vertices in the convex hull of x;, - .-, x.4+1 (i.e., if
there would be one more point drawn from D), and propose to use it as the factor
of s(H(x)) in (1.1). Rasson (1979) obtains, under particular conditions, an
expression for E[V,.]. Since the computation of E[V,,] is difficult, we may
choose, in practice, to replace it by an estimator; for example, the observed value
v, of V,, i.e., to use ¢ = [n/(n — v,)]"2
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The final R-R estimator is
(1.2) D = g(H(x)) + cs(H(x)).

This solution is affine invariant, as is the problem itself.

In this paper, we first formulate this problem (still conditionally on the value
of N) for convex sets in R”, in the context of statistical decision theory using an
appropriate loss function. In Section 3 we prove the completeness of the class of
Bayes estimation rules. The form of the nonrandomized Bayes procedures is
derived in Section 4 and applied to the case p = 1 in Section 5, and to a class of
rectangles in the plane in Section 6; some comparisons with other estimators are
made. Finally, some observations about consistency are presented in Section 7.
In particular, we show that under rather weak conditions the procedure suggested
here and the R-R procedure are asymptotically equivalent.

2. The problem. Let 2 be a uniformly bounded class of compact convex
sets in IR? (p fixed and known), each of positive measure (there exists a compact
convex set K C R” such that m(K) <« and D C K for every D € ). Given the
independent observations x, - - - , x, drawn uniformly from an unknown element
D € Z, we wish to produce an estimator D of D. We consider a decision theoretic
approach where: the set of “states of nature” is &, the decision space is a class
of compact convex sets, Z’, in IR” and the loss function is

LD, D) = m(D a D),

where D A D = {x: x € D N D¢ or x € D° N D}. The function L(-, -) defines a
metric on & X Z’. The analogues to the metric L can be defined on & X &
and 2’ X 2';let & and '’ denote the o-algebras generated by the open sets
for these metrics.

A decision rule 4 is a function from the sample space, @ = [["D (the n-fold
product of D € ), to the set of probability measures on (2’, 2’) such that,
for every B € 9, the function

X — G‘;(x)(B)

is B, = []"%,-measureable, Gsx(-) being the probability measure on
(2’, 9') assigned to x by 6 and 4, the class of Borel sets in R”.
The risk associated with 6 in estimating D is

R(D, %) = jl;w J; L(D, D’) dGsx (D')xe(x)/[m(D)]" dx

Is

x4 (+) being the characteristic function of the set A. Given an a priori probability
measure A on (9, 9),

r(\, 6) = f R(D, &) d\(D)

denotes the Bayes risk corresponding to 4 relative to \; the estimation rule 4, is
Bayes with recz=2t to A, if

r()\, 60) = infbr()\, 6)
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3. Completeness of Bayes estimation rules. To study some properties
of the class of Bayes estimation rules, we impose the following conditions on &
and 9':

(i) There exists a 6 > 0 such that m(D) = 6 for every D € <
(ii) 2 is uniformly bounded.

(ii1) There exists a 6’ > 0 such that m(D’) = 6’ for every D’ € &'.

THEOREM 3.1. Under the conditions (i), (ii) and (iii), the class of Bayes
estimation rules is complete.

The proof of this theorem is rather technical and essentially consists of a slight
generalization of Theorem 10, page 385, in Berger (1980). The main steps may
be summarized as follows:

1. Under the conditions imposed, the spaces (9, @) and (2’, @’) are both
compact. This follows from Blaschke’s theorem (Valentine, 1964, page 37), using
the fact that the metric considered here is equivalent to the Minkowski distance,
(assumption (iii) could be removed if £’ includes the empty set).

2. Since (2', ') is compact, since L(-, -) is bounded and continuous, and
since the family of distributions is dominated, it can be shown that the set of
risk functions is compact in the sense of pointwise convergence (applications of
proposition 1 in Brown (1980)).

3. The joint density of the observations is, for almost every x, continuous
with respect to D € <2 Then, since L(-, -) is bounded, we may show that
R(D, 6) is continuous with respect to D for every é.

4. From 2. and 3., and the compactness of (&, 9), we obtain the desired
result (see Brown (1981), proposition 1.9).

To obtain Theorem 3.1 we have to consider all the decision rules (randomized
and nonrandomized). From a practical point of view it is of interest to know if
we can restrict the search of Bayes decision rules to nonrandomized procedures.

THEOREM 3.2. Under the conditions (i), (ii) and (iii), for every ¢ > 0 and every
decision rule & there exists a nonrandomized decision rule 6* such that | R(D, §) —
R(D, 6*)| = ¢ foreveryD € 2

PrROOF. From the conditions imposed on & the space (<, &) is compact
for the metrics
p1(D1, D2) = supse.,| m(S N D1)/m(D;) — m(S N D;)/m(D,) |
and
p2(D1, D;) = suppeg | m(D1a D’) — m(D; A D’')| = m(D, a Dy),

which are equivalent.
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Also under the restrictions imposed on 2, the space (2, 2’) is compact
for the metric

p'(D{D3z) = suppeg| m(D A D{) — m(D A D3)| = m(D{a Dj).
Then, from an easy adaptation of Theorem 8.1 in Dvoretzky, Wald and Wolfowitz
(1951) we have the desired result. 0

REMARK. For p = 1, the loss function presents a convexity property which
permits us to prove that the nonrandomized procedures form an essentially
complete class.

4. Nonrandomized Bayes estimation rules. The Bayes risk correspond-
ing to a nonrandomized decision rule is

r(\, 8) = Lan m(D a §(x))f(x| D) dx d\(D)

(4.1)
= f f m(D a 6(x)) dy(D | x)f (x) dx,
e v
where
f(x|D) = xao(x)/[m(D)]",
fx) = Lf(XID) d\(D),
and

dy(D|x) = f(x| D) d\(D)/f(x)

is the posterior density of D given x. From (4.1) it is clear that & is a Bayes rule
with respect to X if, for each x,

(4.2) Lm(D A §(x)) dy(D| x)

achieves its minimum at 6 (x).

For a fixed §(x), (4.2) is the expectation with respect to the law (- | x) of the
measure of the random set D A 6(x). As shown by Robbins (1944) Fubini’s
theorem yields that this expectation can be written as

(4.3) Lﬂ v({D:y € D A §(x)}|x) dy.

For many classes & it is possible to obtain an explicit expression for (4.3) and
hence the 6(x) giving it its minimum value. From (4.3) we can show that if

(4.4) Sx)={y€RP: y({D: y € D} | x) = ¥}

is convex (a.e.) then §(x) = S(x) is a Bayes procedure, a fact which may be useful
in the computation of Bayes procedures.
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5. The one-dimensional case. When p = 1, the problem considered re-
duces to the estimation of the parameters a and # from observations x;, - - - , x,
drawn uniformly on [a — 4, a + /].

Estimation of the upper limit of the interval [0, 8] from a sample drawn
uniformly on this interval has been carefully studied, both from the fixed-sample
and from the sequential points of view. For example, Craig (1943) obtains the
best linear unbiased estimator based on the ordered sample, § = (n + 1)x,/n,
Alvo (1978) gives an account of the sequential approach, Jones (1978) presents
a review of the literature regarding the Bayesian approach, and Susarla and
O’Bryan (1979) study the empirical Bayes approach to obtain an interval estimate
for 6. Another form of the one-parameter uniform distribution which has deserved
study is the one where the sample is uniformly distributed on [0 — Y2, 6 + Y],
# > 0; see, for example, Welch (1939), Wald (1950), Blyth (1951) and Fraser
(1952).

The two-parameter uniform model, [a — 2, a + /] has received less attention.
All the proposed estimators are based on the ordered sample x), - - - , x(n); since
every approach gives the same estimator for a, (xq) + x))/2, we will consider
only estimation of the length 2/ Carlton (1946) obtains the maximum likelihood
estimator: xu, — xqu), Lloyd (1952) derives the best linear unbiased (b.l.u.)
estimator: (n + 1)(xy,) — x1))/(n — 1), while Ripley and Rasson (1977) give the
maximum likelihood estimator based on x, — xu): n(xm — xu)/(n — 1).
The least-squares affine invariant (l.s.a.i.) estimator, however, is (n + 2)

(X(m) = 2)) /7.
Our approach here is decision-theoretic with loss function

(5.1) Ll 2), @, AAl=m(a—-4a+2]ald -2, éd+ 7).

In order to make comparisons with other methods of estimation for a and 4
we consider an a priori measure \ reflecting ignorance. The decision problem
considered is not invariant under the affine group, but it becomes invariant under
that group if the loss function is

(5.2) Lil(a, 2), @, A)l=m(a—4a+2]ald—72, a+2)/24

When the loss function L, is used, the a priori law reflecting ignorance is the
right invariant Haar measure (Berger, 1980, page 262):

(5.3) d\(a, /) « 1/4

It is easy to see that the generalized Bayes procedure for loss L, and prior (5.3),
is the same as the generalized Bayes procedure for loss L and prior

(5.4) d\(a, 7) « 1/72.

The prior measure (5.4) is the inner prior and (5.3) is the outer prior correspond-
ing to affine transformation (Villegas, 1977).
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From (4.4) we verify that the Bayes procedure for loss L and prior (5.4) is
(5.5) bo = (xq) + %m)/2, Zo = (2Y" — Vo) (x(n) — x(1))-
Here

Vv(la—4a+7l:yE€Jla—4a+ 2B xw, -+ 5 Xm)

{[(xm) — 20)/(xm = V" iy < xq
[((xm) — x))/(y = 2))]" if y > xn).

If the prior (5.4) is used with the quadratic loss function (@ — )% + (£ — /)?
we obtain (n + 1)(x(,) — x))/(n — 1) as the Bayes estimator for 2/; if the prior
(5.3) is used with the same loss function we obtain n(x.,) — xq))/(n — 2).

The Bayes estimator (5.5) for 22 has smaller bias and m.s.e. than the maximum
likelihood estimators. However it is not better (more bias and m.s.e.) than the
b.Lu. estimator and the l.s.a.i. estimator. The comparison of the m.s.e. between
(5.5) and the l.s.a.i. estimator (also the b.l.u. estimator) is in a sense unfair since
the estimators were developed for different loss functions; it may, however, give
information on the robustness of a procedure relative to loss function.

Since (n + 2)/n = 2**Y/" —1 for every n, the length of the estimated interval
is smaller with (5.5) than with the Ls.a.i. estimator, which itself produces a
smaller length than the b.l.u. estimator.

6. Example: a class of rectangles. To illustrate the application of our
approach to convex sets in the plane, we consider the situation where both &
and 2’ are the same set of rectangles with sides parallel to given axes. This set
is characterized by the coordinates of the center, (t, u), and the half-lengths of
the sides, r; and r,, i.e., an element of D is [t — ri, t + 1] X [u — ra, u + r;]. We
use the inner prior (Villegas, 1977) corresponding to the transformation (x, y) —
(c1x + b1, coy + by); 1, ¢z, by, by are some constants:

d\(t, u, ri, ry) < ry2ry2.

The Bayes procedure may be computed from (4.3) using the fact that

Mi(x, <o+, x)Mo(x1, -+, x,) ]n

D:ye D}|xy, -, x,) = : : ,
w({ Y }l ! ) I:Ml(xly ey Xny y)MQ(xly cecy Xny y)
where M;(2, - - -, 2x) = maxi<j=x{z;} — min,;<x{z;:}, i = 1, 2. We obtain,

f= minlsjsn{le} + Ml(xl, Tty xn)/2y

i = minigj=n{xje} + Ma(x1, -+ -, x,)/2,
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and 7y, 7, the solutions of the equations:

45, + 20 M {—2(2n + 2)M;’"1<% + fl)

(n—-1)
(M N M\
+ 8(M1M2)n ——2 + rs _2 + r = 0,

M, M. M, _\"
4 + ——2=4-22n + M=+ A,
(n—-1) 2
-n —n+1
+ 8(M1M2)n_1<M?2 + ;'z) <% + ;'1) } =0
where the arguments x;, ---, x, have been deleted in M;(x;, ---, x,) and
M2(x11 M) xn)'

As an illustration we consider a case where n = 6 and the points are (0, 5),
(3, 0), (6, 3), (3, 8), (2, 3) and (4, 5); we obtain ¢ = 3, il = 4, 7, = 3,6785, , =
4,9011/@. Figure 1 illustrates the estimation obtained and the one given by (1.2) with
c= V3.

Here a generalized prior has been utilized because we wanted to represent
ignorance. It is to be noted that the decision-theoretic approach permits, using
an appropriate probability measure as prior, to incorporate prior information.

7. Convergence. In this section we study the consistency of the Bayes and
R-R procedures and their asymptotic equivalence.

DEFINITION. Given a compact convex set D, and an estimator D, produced
by a rule 6 based on n points drawn uniformly from D, then 6 is said to be
convergent if m(D a D,) converges in probability to zero.

THEOREM 7.1. The R-R procedure used with ¢ = [n/(n — v,)]"/?is convergent.

PrROOF. From (1.2) it is sufficient to show that m(H,(x) A D) and V,/n both
converge to zero in probability (H,(x) is the convex hull based on n sample
points).

Consider first the case where D = [0,'1] X [0, 1]; that m(H,(x) a D) converges
to zero almost surely then follows from the Borel-Cantelli theorem. The same
result for an arbitrary D € 2 follows since there exists a homeomorphism
between the interior of D and S = (0, 1) X (0, 1).

To prove that V,/n converges to zero in probability it is sufficient to note that

E[V./n]l =1 — E[A,-1)/m(D),
Var[V,/n] = (1 — E[A,._1]/m(D))(E[A,-1]/m(D)),
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and

lim, . E[A,-1]/m(D) = 1,
where A, denotes the area of H,(x). The first two statements follow from
arguments found in Ripley and Rasson (1977, page 486). 0

We now consider the nonrandomized Bayes procedures defined in Section 4.
The following theorem is easy to prove.

THEOREM 7.2. If the a priori measure )\ is such that the posterior density
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d Y(D | x) converges in probability to the degenerate density at D,, the true value
of D, then the nonrandomized Bayes procedure, if it exists, is convergent.

COROLLARY. If Dy, denotes the estimator obtained with the R-R procedure
based on n sample points, and if D,, is the Bayes estimator, based on the same
sample points and corresponding to an a 1 priori measure for which the condition of
Theorem 7.2 is satisfied, then m(D,, a D,,) converges in probability to zero.

REMARK 1. In the case where the class & is characterized by a vector
parameter (01, - - - , 0,), and where A is an a priori probability measure admitting
a density, we see, from Doob (1949), that the condition of Theorem 7.2 is satisfied.

REMARK 2. In the case of a more general space 2 we may use a result given
by Strasser (1981) to verify the condition of Theorem 7.2. We can show that an
approximate maximum likelihood estimator, D,, as defined by Strasser (1981),
is here such that

f(x|D.)/f(x| Do) = 1

for almost every x = x;, ---. Then, from Wald (1949), D, is almost surely
convergent to estimate D,, the true value of the parameter. So from Theorem 2.5
of Strasser (1981), if & and the a priori measure satisfy the conditions imposed
there, then the posterior density converges in probability to the degenerate
density in D.
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