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EMPIRICAL BAYES WITH A CHANGING PRIOR

By M. K. MARA AND J. J. DEELY
University of Georgia and University of Canterbury, New Zealand

We consider modified empirical Bayes problems in which the prior
distribution of © at stage n + 1 is G"*"(#). The Bayes optimality criterion is
now given by the sequence of functionals R(G"™V). The observations
X, -+, X, are no longer i.i.d. so decision procedures are constructed based

. on modified empirical density estimates for femn(x). Asymptotic optimality
together with asymptotic convergence rates is established for two action and
estimation problems when the observations are drawn from a member of the
one-parameter exponential family.

1. Introduction. The empirical Bayes approach to statistics has been
formulated by Robbins (1964). One of the principal assumptions of this method
is the existence of a prior distribution that remains fixed for each component
problem. It is clear that any physical process generating data under the assump-
tion of “existence” could change from time to time. Existence of a prior distri-
bution implies that 6, the parameter of interest, is being generated by a distri-
bution G, which physically exists and is not merely a subjective considered
opinion. Hence during this generation process it is to be expected that G could
change. Furthermore, in this context it is clear that the empirical Bayes model
is precisely the same as that used to describe data generated in a mixture problem.
For a discussion of this relationship, see Deely and Lindley (1981).

Mixture problems amenable to a model with a changing mixing distribution
(i.e. the prior) occur in such fields as quality control, reliability, biometrics,
education, and many others. (See for example Hoadley, 1979, Everitt and Hand,
1981, and Gupta and Huang, 1980). A specific example from quality control is
given in Section 4. Whereas there are many ways this change could be described,
only a deterministic linear drift in the mean of the prior is dealt with here. Also
it should be mentioned that the problem considered in a series of papers, O’'Bryan
and Susarla (1975, 1976a, 1976b, 1977), allows changes in the form of the
observations for each component problem but not the prior. Allowing the prior
to change seems to be a neglected yet important area of research.

Consider the sequence {(6;, X))}, i =1, 2, - - -, of independent random vectors
where, conditional on 6; = 6, X; is drawn according to the density

(1.1) f(x]0) = eB(0)h(x), xE & CR.

The functions 3(6) and h(qc) are known. The random variables 6, are unobservable
with prior distribution G¥(9), i = 1, 2, - - .. It is assumed that all G’s have the
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same support €. This gives the marginal density of X; as

(1.2) fao(x) = h(x) J; e B(6) dG¥(9).

It is assumed that h(x) is r-times differentiable and | A’(x) | is bounded on Z.
From (1.2) it is apparent how the empirical Bayes formulation is related to
mixture problems—f; is the mixture of ingredients, f(x|6), using a mixing
distribution, G.
At the (n + 1)st stage (X1, -, X, have previously been observed on fsw,
.+, fe= respectively) the observation X,.; = x is made. The loss function for a
decision rule #(x) is given by L(t(x), 8). Hence for a decision rule ¢,(x) which

depends on X, ---, X, the overall expected loss for a decision concerning 6,,+,
is
(1.3) Ru(tn, G™Y) = Epi[L[tn(Xn41), 0]]

where expectation E; is w.r.t. X;, - -+, X;; 7 =1, 2, - - .. When G"*V(6) is known,
it is generally straightforward to obtain the Bayes procedure t(x; G™*") which
has minimum expected loss given by the Bayes envelope functional R(G™*").
When G™?" is unknown but nevertheless exists, the problem becomes one of
trying to use the past history (i.e. observations x,, - - -, x,) to compensate for this
deficiency. That this can be done when the G’s are identical is the essence of the
many papers on empirical Bayes. As one would conjecture, even if the G’s differ
by a linear drift in their means, the past history can still be used effectively to
obtain asymptotically optimal (a.0.) procedures. However, in this case the defi-
nition of asymptotic optimality has to reflect this notion of a changing prior and
therefore the following definition is given:

DEFINITION. The sequence of decision rules T = {t,} is a.o. relative to {G,} if

(1.4) lim,—w{Rn(t,, G™Y) — R(G™V)} = 0.
Suppose that G® has density g with g®(8) = g*(8 — \,) for some g*, where
N =E[6],i =1, 2, ---. In addition, suppose 6 is a location parameter for the

density f(x | 8). (For characterization of such, see Ferguson, 1962). Without loss
of generality it may be assumed that E[X|6] = 6. Now define new random
variables Y, = X; — \; and note that the Y/’s are i.i.d. with mean zero and density
fe+(Y). In particular, we have feio(X;) = fe+(Y),i =1, 2, ... Thus if {\;} were a
known sequence, the Y;’s are observable and the usual empirical Bayes situation
is evident.

Suppose now that the A/s are unknown, but that they follow a linear drift A;
= az; + b where a, b are unknown but {z;} is a known sequence. Thus writing X
= az; + b + Y, gives the usual form for simple linear regression with residual Y.
Provided lim, .. Y%, (2; — 2)? = «, a, b may be consistently estimated by the
usual least squares estimators a,, b,. In fact, defining the double sequence {\; ,}
of estimators of {\} by i, =a,Z;+ b,,i=1,2,---,n+1;n=1,2, ... yields
plim | A, , — A\;| = 0. Thus to find a.o. procedures in the sense of (1.4) it remains
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to show that the consistent estimation of A’s is sufficient for the usual empirical
Bayes requirement that fs+ be consistently estimated. The construction of this
consistent estimator is given in Section 2, and in Section 3 this estimator is used
to obtain a.o. procedures for the cases of hypothesis testing and estimation.
Section 4 concludes with several remarks and a practical example.

2. Estimation of fg+«(Y). Following Parzen (1961) and Schuster (1969)

define, for j =0, 1,
Sy — Y
k"+l Zt=1 Km(""k_n—“) = f k KU)( kn ) an(t)

where F,(t) is the empirical c.d.f. of the Y;’s and the kernel K is a continuously
differentiable function on a closed interval I in (—o, ) such that [ K(u) du =1
and [ | u| K(u) du <. When Yy, - - -, Y,, Y,.; are known, the results of Schuster
(1969) guarantee consistency of the estimates (2.1). Replacing Y.’s by Y;,’s in
(2.1) where Y;, = X; — A\, define the estimators

(2‘2) (1)( )-_fK(J)(

where F,,(t) is the empirical c.d.f. of Yy,, ---, Y, and ¥ = yp11, = x —
Au+1,n. Note that the “present” observation with respect to the Y; sequence is
y = x — A+1 and hence must also be estimated, in this case with y. For notational
ease when j = 0 in (2.1) or (2.2), the superscript will be omitted. We can now
prove:

@1) 9y =

) dF ()

LEMMA 2.1.
(2.3) Ep | fan(9) = fa(9) |* = O((nk3)™"?)
(2.4) E,| far(3) — f2(9) |° = O((nk3)™"?)
for0 <6< 2.

PRrOOF. Since K is continuous on I,
| frn(9) = fo(») | = M(nk2) | By (Yin — Yi+ Yorr = Yourn) |
where M = sup.e;| K”(u) |. Therefore for 0 < § < 2
(M(nk2)™)° Yics En| Yin—Yi+ Yoi1 = Ynern |’
for 6 =1, Dby the C; inequality
(M(nk2) ") (X1 (En | Yin— Yit+ Yorr— Yourn |)VP
for 6> 1, by the Minkowski inequality.

(25) En I fn,n_fnl‘s =

Since E, | Y;, — Y:|2= 0(n™?), V,, the r.h.s. of (2.5) is O((nk})~*/?) as required.
Equation (2.4) follows in a similar fashion.
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The conditions of Lemma 2.1, together with the results of Schuster (1969) are
sufficient to guarantee consistency of the estimates (2.2). Following Johns and
Van Ryzin (1972) and upon choosing k, = O(n=/?*D) and a kernel K with
support on I = [0, u,] satisfying

(2.6) f uHK9(u) du =0
0

fori=1,2,-.--,r—1andj =0, 1, we can establish a rate for this convergence
with the following:

LEMMA 2.2.
2.7)  Enl fan(9) = far(¥) |° = O(n~ @=992C+0) 1 4 (FX(3))2 + ((¥))%}
(2.8)  E.| fON(3) = fGUy) |° = O(n~ (@502 )(] 4 (£¥(3))2 + (¢(y))?)
where 0 < & < uy, f¥(y) = suPo<s<c{ far(y + 8)} and ¢ () = suposs=c{ fr(¥)}-

Proor. To verify (2.7), first note that from the C; inequality we have
29) E,| fon(9) = fe () |°
= C«SEn I fn,n(y) - fn(y) |‘S + CéEn | fn(y) - fG"‘(y) |6'

The first term on the r.h.s. of (2.9) is O(n~#~%%22r+1) by Lemma 2.1. The second
term is bounded by O(n~C~VYE+D){(f*(y))¥2 + (¢"(y))?} from Theorem 3 in
Johns and Van Ryzin (1972). Since O(n~#"~3%22+1) j5 the dominating rate, this
yields the result. Also, (2.8) can be verified in a similar fashion.

3. Asymptotically optimal procedures.

(a) Hypothesis testing. Consider the test of Hy: 8 < 6, vs H;: 6 > 6, under the
piecewise linear loss structure

‘ _ Jmax(0, 8 — 6y), if i=0
(3.1) La;, 0) = {max(O, bo—6), if i=1

where a; is the action in favor of H;, i = 0, 1. At stage n + 1 we observe X,;; = x
and since fg,,,(x) = fe«(y), where y = x — A1, the Bayes procedure may be
written as t(y; G*) = P (accept H, | y) with

1 if a*(y) =<0
0 elsewhere

(3.2) t(y; G*) = {

where a*(y) = (v(¥) — Oo)fa-(¥) — f&(y) with
ROy + A1) _ RO(x)
v(y) = = .
h(y + A1) h(x)
As in the usual empirical Bayes situation, the form of (3.2) suggests a natural

candidate for an a.o. procedure, except in this case the “present” observation y
= x — A+1 must also be estimated. Using y as in (2.2) for the estimate of y,
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define a,(3) = (V(¥) — 00)fnn(P) — FI(F) and

1 if a,(3) <0
0 elsewhere.

(3.3) tn(y) = ‘{
Note that y does not appear in v(y) since that function depends only on knowledge
of x, the “present” observation with respect to the x; sequence. (See also (3.7)).
From Lemma 2.2 we have | a,(3) — ag+(y) | =, 0 which is sufficient for asymptotic
optimality, in the sense of (1.4), of the procedure T = {t,} for all sequences for
which A\, < o, ¥,,. Using Lemma 2.2 directly, we can establish the following.
THEOREM 3.1. Consider the hypothesis testing problem with loss (3.1). Define

T = {t.} by (3.3) with f{), given by (2.2), j = 0, 1, and K satisfying (2.6). If for
some 0 < 6 <2 and some ¢ > 0

(3.4) f [o*() "1 + [(NTHL + [FE()I7% dy <

(3.5) f [a*() 771 + [(PHL + [P ()]} dy <
then Rn(T, G(n+1)) _ R(G(n+l)) — O(n—(2r—5)6/2(2r+1))'
PROOF. From Lemma 1 of Johns and Van Ryzin (1972),
R,,(T, G(n+1)) _ R(G(n+1))
= f [ a*()P(| an(y) — a*(y)| > [a*(y) |) dy
= f | *(3) ' En| an() = a*(3) |° dy

=G f [ a*(3) 1'[v(y) = 00PEn| fan(P) — fa-(y)|° dy

+ G f | a*(y) '°En | fR0(3) = () |° dy.

Using Lemma 2.2, we have the result, since the second term dominates asymp-
totically.

(b) Estimation. The Bayes procedure for the squared error loss estimation
problem is t(x; G™*Y) = t(y; G*) with

(3.6) t(y; G*) = v(y) = (FR)/for(3)).
In our changing prior case, a suitable empirical Bayes procedure is then
(3.7) ta(9) = 0(3) = (For()/Fan()

where f, () = max{f, .(y), n.} and {n,} is a known sequence, 1, J 0. By modifying
the results of Deely and Zimmer (1976) to the changing prior case, and appealing
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to Lemma 2.2, the asymptotic optimality of (3.7) is assured. In addition, however,
we can establish an asymptotic rate of this convergence as follows.

THEOREM 3.2. If for some ¢ > 0
)
f {1 [ff ((y))] }“ +fH3) + (@D for(y) dy <

and if there exists a 6 > 0 for which

f(l)(y)}
Jl‘y:fa-(y)qnl {fG (y) fox(y) dy < Cn,

for some C > 0, then with {k,}, K as previously defined, the sequence T = {t,} given
by (3.7) is a.o. in the sense of (1.4) with

R,(T, G") — R(G™) = O(n~)
where v = (2r — 5)/(2r + 1)(2 + 8).

PROOF. From Lin (1975)
f(l)

= 02°En | fan(3) = Fan(3) 55

f()

5277;2{En| () = fG(3)1* + E | Frn($) = fo~(y)lz}

< 202%E,. | fO9) — fRAy) |2

f Sy FEy)

fo(y)

—2

Enlfn,n(y) fo(¥) % + 49,2 Xtysfge()<nn) +

Thus, since

RAT, G™V) — R(G™) = f E,|t(3) — t(y; G*) |*fe+(y) dy

the result follows, noting that the final term in the above inequality is asymptot-
ically dominant.

4. Example and remarks.

(1) Suppose a typical quality control variables sampling situation in which
the process generating lots deteriorates with time. Each lot is given a true mean
6 according to the process G and a sample of k items from the lot yields a mean
% which is normally distributed with true mean 6. Suppose the deterioration in G
over time is described by a drift in the mean A from a lower bound b to an upper
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bound (a + b) as a function of time, say A\, = b + a(1 — e™*). According to the
particular sampling rate, a sequence of ¢’s is generated. Thus setting Z; = 1 —
e~% gives the linear drift model where A; is the mean of the process during the
generation of the ith lot. The empirical Bayes estimator for the true mean of the
(n + 1)st lot is given by (3.7).

(2) Upon strengthening the convergence of the least squares estimators given
in (3.5) to a.e., it is easy to show that P(lim F, .(y) = Fg+(y)) = 1. Thus direct
estimation of the prior distribution may be considered and in particular Theorem
2 of Robbins (1964) can be extended to the changing prior case treated in this

paper.

(3) The definition of asymptotically optimal in the sense of (1.4) is equivalent
to

lim R(t,, G™Y) = R(G?)
where
G90) =G*(0 — azo — b), zo=lim z,.

One could then view the problem as a usual empirical Bayes problem with the
same prior G and proceed to estimate G (or find a procedure whose risk is
close to R(G'?)) using the past history up to stage n. Whereas these two views
are equivalent in the limiting case, the approach we have taken emphasizes the
fact that as n increases, the difference between our “estimate” and the “present”
situation, whatever it may be at the moment, is small. It also appears that a
smaller number of observations is necessary to make | R(t,, G™") — R(G"*") |
< ¢ than to make | R(t,, G"*Y) — R(G?) | < ¢ although precise statements are
not yet available on this matter.

(4) The results given above are nonparametric inasmuch as they rely upon
the kernel function estimators of a probability density function. If a parametric
form is assumed for G"*V(6), the Bayes procedure may often be expressed directly
in terms of the prior parameters. In such cases, it may be possible to remove the
condition that f(x|6#) and g"*V(#) are location parameter densities. As an
example, suppose f(x | #) is Poisson with parameter 6 and that g’() is a gamma
(i, B;) density, 8; known. The Bayes procedure for squared error loss estimation
of 0 is

(41) t(x9 G(n+1)) = (an+l + x)/(ﬁn+l + 1)-

If we suppose «; = az; + b, {2;} known, and let a,+1,n+1 = An+12n+1 + bny1, Where
Qn+1, bnse1 are the ordinary least squares estimates for a, b respectively,
then defining t,(x) by replacing a,+; by apt1.+1 in (4.1) will yield that T =
{t.} is a.0. with a convergence rate of O(n™') provided only that Var(X;) =
ai B + 1)/8% < .

(5) Itisclear from the development given here that various questions remained
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unanswered. A general theory for a drift in the mean of the prior (i.e mixing
distribution) would be desirable as well as statistical tests for validating the type
of drift. Tests concerning G fixed should be developed if empirical Bayes proce-
dures are to find application. However, the practical but difficult problem that
remains unsolved not only for the linear drift model but for the usual empirical
Bayes model as well is the calculation of a lower bound for the number of
component observations necessary to make the present risk arbitrarily close to
the Bayes risk. Specifically, using the notation in this paper, given ¢ > 0, find N,
such that n = N, = | R,.(¢,, G"*Y) — R(G™Y) | <.
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