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The problem of selecting a random nonempty subset from k populations,
characterized by 6,, - - - , 6, with possible nuisance parameters o, is considered
using a decision-theoretic approach. The concept of asymptotic consistency

_is defined as the property that the risk of a procedure at (6, o) tends to the
minimum loss at (9, ¢). Necessary and sufficient conditions for both pointwise
and uniform (on compact sets) consistency for permutation-invariant proce-
dures are derived with general loss functions.

Various loss functions when the goal is to select populations with 6; close
to max 6 are considered. Applications are made to normal populations. It is
shown that Gupta’s procedure is the only procedure in Seal’s class that can
be consistent. Other Bayes and admissible procedures are also considered.

1. Introduction. The multiple decision problem of selecting a random
nonempty subset from k populations 7, .- -, 7, is considered. =1, --- , m, are
characterized by 6:, - - - , 6, respectively, where 6; € ® C R and the parameter-
spaceof 0 = (0, - - - , 6;) is @ C ©%. X7 is an estimate of §;, based on n observations.
We shall allow for the presence of nuisance-parameters, denoted by ¢ with
parameter-space 2. o is estimated by S"” € E. The joint distribution function
of (X", S") is denoted by F§,. Lew now G be the group of permutations g on
{1, ---, k}. For x € R, gx is defined by (gx); = x,,. For any subset A of R",

gA = {gx: x € A}. The probability model is assumed to be invariant under
G, ie. (a) if (X?, S”) has cdf Fj, then (gX", S™ has cdf Fg ., and (b)
280 =Q Vgeaq.

The decision-space is o = {a C {1, - - - , k}}, where the decision a is interpreted
as selecting the populations =;, { € a. For a € o4 ga = {gi: i € a}. The loss-
function #(0, a) is assumed to be permutation-invariant, ie. 40, a) =
4,(g0, ga) for all g € G. It follows that the multiple decision problem is invariant
under G. Furthermore, — < /,(8, a) < », Va € &7 V(0, ¢) € Q X Z. A subset
selection procedure is given by:

on(a] x, s) = Pr{decision a | X" = x, S" = s}.

We shall consider the class of invariant procedures, 2,, where 8, € 9, if and
only if 6,(ga| gx, s) = 6.(a| x, s) foralla € &/ x € R* s € E, g € G. The risk-
function of 6, is (8, ¢ | 8,) = Yecas’ (8, a)Ey,.8,(a| X", S™).
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The purpose of this paper is to develop a theory of asymptotic consistency for
different loss functions in this multiple decision problem. To define the term
consistency, let m,(0) = min.e. 20, a). If Z,(0, ag) = m,(0) then a, is a correct
decision when (8, ¢) is true. Obviously, r,(8, ¢ | 6,) = m,(6), Y(n, 6, ¢). All limits
in this paper are as n — .

DEFINITION 1.1. The sequence of procedures {6,} is consistent at (8, o) if
rn(8, | 6,) — m,(6).

We say that 6, is pointwise consistent on @ X Z if §, is consistent at each
0,0) EQXZ.

We shall also consider the concept of uniform consistency. We note that the
metric on Q X X is the usual Euclidean distance.

DEFINITION 1.2. The sequence {6,} is uniformly consistent if
SUPsek,,oek, (I (0, o |6,) — m,(0)} — 0 for all compact sets K;, K, of Q, 2.

Consistency is a desirable property universally in all decision-problems. It
simply states that the decision-procedure should take the correct decision as n
tends to infinity. The theory for pointwise consistency will require only the
following condition:

(1.1) Ey,| X! —6;] >0 for i=1,---,k, V(@ 0)EQX2Z.
Similarly, the theory for uniformly consistent procedures will require:
(1.2) supk,xk,Eoo| X? — 0;| >0 for i=1,---,k

for all compact subsets K;, K, of Q, Z.

In Section 2, necessary and sufficient conditions for pointwise and uniform
consistency are derived for procedures in 2; with respect to general loss-
functions. Let m; correspond to 6 where 6y < --- < 6. Section 3 considers
different loss functions reflecting the goal to select populations close to m.
These loss functions have been proposed by Chernoff and Yahav (1977), Bickel
and Yahav (1977), Goel and Rubin (1977), Gupta and Hsu (1978) and Bjgrnstad
(1981). It is noted that some of these losses imply that the classical approach,
started by Seal (1955) and Gupta (1956), of employing the so-called P*-condition
is not always appropriate.

To save space, the theory in Section 3 is applied only to the selection of means
from normally distributed populations in Section 4. It is clear, however, that
procedures for binomial, multinomial, multivariate normal and other selection
problems can be checked for consistency in a similar way.

It is shown in Section 4, that among all the procedures in the class proposed
by Seal (1955), only Gupta’s procedure can be consistent. We also consider two
classes of admissible procedures, derived by Bjgrnstad (1981), and the Bayes
procedures derived by Chernoff and Yahav (1977), Goel and Rubin (1977) and
Gupta and Hsu (1978) for their respective loss functions and exchangeable normal
priors.
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2. Consistent invariant procedures. Our first aim is to develop neces-
sary and sufficient conditions for pointwise consistency, with an invariant loss
function, for procedures in ;. For x € R*, x* = (xq), - - , X&) Where xq) <

- < x. Since for any 6, € I, r.(6, o|b,) = r.,(6*, a|d,), we have that
6, is consistent at (6, o) if and only if §, is consistent at (8*, o). Let Y* =
(Yg, .-, Y2)=Xb, ---, X&). We need the following result.

LEMMA 2.1. Assume (1.1) holds, and 6, < --. < 0.
(a) If 6; # 0; then P, ,(X!'= Y!') — 0.
(b) If g6 # 0 then P, ,(gX"=Y") — 0.
PROOF. (a): Let first i > j such that 6; > 6;. Then
Py, (X} = Y}) = Yoy Poo(Xh = X7)
< 1/(6; = 6)) The1 {Eool X = 0nl + Eoo| X7 — 0,1}
from Chebyshev’s inequality, and the result follows. Let next i < j. Then:

Py o(X? = Y}) < 1/(6; — 6:) Thej (Eool X! — 0;| + Eoo| X} — 04|} — 0.
Consider next part (b). Let g8 = (61, - - -, 0z). There exists j such that 6;; # 6;.
Since gX" = Y" implies X7, = Y}, the result follows from (a). 0

We can now state and prove the complete solution of pointwise consistency.
First, let
(2.1) A, (0) = {a € o 4,(0, a) = m,(6)}.

THEOREM 2.1. Assume (1.1) holds, and let 6, € 2;. Then (2.2) and (2.3)

below are two equivalent, necessary and sufficient conditions for {6,,} to be consistent
at (0, o).

(2.2) Eg o{Yaco 6 Onla| X", S")} — 1
(23) Eo".,{zae_q/”(o') 5,1(0 I Y", S")} — 1.

PROOF. As remarked earlier we may assume 0 = 6*. Now,
rn(o, o | 5n) = m,,(0) + Za@%@) {/0(0, a) - mo(o)}Eo,aan(a I Xn’ Sn)

and it follows immediately that (2.2) is niecessary and sufficient.
It remains to show that (2.2) & (2.3). Assume first that (2.3) holds. Let
x € R*and y = x*. The function I(a = b) = 1 if a = b, and 0 otherwise. Then

(2.4) onla| X, s) < Ypec dn(galy, s)I(gx =y).
It is therefore enough to show that for all a & o7,(9), all g € G,
(2.5) E;.6.(ga|Y", SMHI(gX"=Y") = 0.

If ga & Z,(0), (2.5) follows directly from (2.3). If ga € <7, (0), then Z,(0, ga) =
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4,(87%, a) < 2,0, a). Hence g6 # 0 and (2.5) follows from Lemma 2.1. The other
way follows in the same manner. []

The individual selection functions of a subset selection procedure §, are given
by
Yr(x, s) = P(selecting m;| X" = x, §" = 5) = Yus; 0n(a] x, s).
Let y" = (y1, ---, ¥}), and let ¥, correspond to 6. We note that for 4, € Zy,
(26) YI(x,5) = Yi(gx,s), V{gE€EG XERNSEE, i€, -, k)
When convenient, we shall denote the procedure §, by its selection functions ¢".

Immediately from Theorem 2.1 we have the following result.

COROLLARY 2.1. Assume 6, € D, is consistent at (0, ¢), and that (1.1) holds.
Then Eg .y (X", 8™) — 0 for all i such that {a € & a D i} N Z,(0*) = 3.

We now go on to develop necessary and sufficient conditions for uniform
consistency in &;. We shall assume

2.7) Z,(0, a) is continuous in (9, o) for each a € 4

Let now Q*={0 € Q: 0, < ... < 0,}. Then §, € D is uniformly consistent if and
only if

SUDPgek, ok, (8, 0| 8,) — m.(0)} — 0

(2.8)
for all compact sets K;, K, of Q*, Z.

Let d be the Euclidean distance in R*. Define for any compact set K;, g € G and
o> O, Mg,5= {0 (S K1: d(g0, 0) = 6}.
We need the following modification of Lemma 2.1.

LEMMA 2.2. Assume (1.2) holds. Let K,, K, be compact subsets of Q*, =
respectively. Let Ki; = {0 € K;: | 0; — 0;| = ¢}. Then
¢
(a) supx; xk,Po.. (X! = Y) = 0 forall ¢>0

(b) supny, ,xk,Po,. (X" = Y) >0, VgeG Vs>D0.

ProoOF. (a) We follow the same idea as in the proof of Lemma 2.1. Let first
i>j. Then

SupK,{ijzPo,a(X? = an)

. Jj .
Yh=1 SUPK,xk,Eo.| X — On| + . Supk,xk,Ee. | X? — 6;| — 0,

=

o | =
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from (1.2). Similarly for i < j,
SUpk: xk, Po.o(X? = Y}') < (1/e) Thj supk,xk,Eoc| X — 0nl
+ ((k — j + 1)/e) supk,xk,Fe.| XI' — 6i].
(b) For any fixed (6°, ¢°) € M, ;X Ko, let @ = {i, j: | 89 — 6°| = 6/vk}. Then
Pypo(gX" = Y") < Py o{Uq(X? = Y])} = Tisj SUPgis, Poo (XT = Y7),

where 8y = 6/ VE. The result now follows from part (a). 0

The nécessary and sufficient conditions for uniform consistency can now be
stated. Define for compact sets K;, K, of Q*, Z;
(2.9) K? = {(6, o) € K, X K;,: 4,(0, a) — m,(0) = ¢}.

THEOREM 2.2. Assume (1.2) holds, and that ¢/ satisfies (2.7). Let 6, € 2.

Then (2.10) and (2.11) below are two equivalent, necessary and sufficient condi-
tions, for {8,} to be uniformly consistent.

(2.10) supxEg ,6,(a| X", S") > 0 as n—

(2.11) supxsEs,.0.(a| Y", S") — 0
for all a € o ¢ > 0, and all compact sets K; of @*, K, of Z such that K¢ # @.

PrOOF. Now,
a8, 016,) — my(0) = Yoo [4(0, @) — m,(0)]Ey,0.(a| X", S7).
Using the fact that # and m are bounded on K, X K, we readily get from (2.10)
lim sup supk,xx,[4 (0, @) — m,(0)]Es.é.(a| X", S") =& Ve>0.

Hence (2.8) holds. The other way is obvious.
To show that (2.11) = (2.10), it is enough from (2.4) to show

(2.12) supxaFy ,0,(ga| Y", SN (gX"=Y") - 0, Vg€EQG.

Let g € G be arbitrary and define A,(0, a) = (0, a) — m,(0), Since the
loss-function is continuous, 3 a § > 0 such that: d(gd, ) < é and 0 € K, =
| A, (g8, ga) — A0, ga)| < ¢/2; Yo € K,. Then, for (4, ¢) € K, X K,
A0, a) = ¢ & A(g0, ga) = ¢ = d(gd, 0) = & or A0, ga) = ¢/2. Hence,
K C K& U M,; X K, and (2.12) follows from (2.11) and Lemma 2.2.
(2.10) = (2.11) in a similar way by showing that

supxaFs .0,(ga| X", SHI(X" = gY") -0, Vge G O

3. Some specific loss functions for selecting ; close to =(,. In this
section we shall apply the theory in the previous section to loss functions that
more or less reflect the desire to have 7 in the selected subset a, while keeping
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the size | a| of the subset small. The invariant loss-functions to be considered
are:

(1) A6, a) = 0w — (1/|a])Tjea b; + r(0w — maxie,6,); r>0
(32) 48, a) =0 — (1/]a|) Tjea 6 + LI(maxieb; < 64); L > 0.
Here I(a < b) =1 if a < b and 0 otherwise.

(3.3) 40, a) = cla| + 04 — maxie.b;; c>0
(34) 4, a) = cxl(maxe.b; < 0;) + cz| al; €, >0
(3.5) %40, a) = |a| + ¢ Tiga 1(6; = O)); c>0

(3.6) 40, a) = Yiea Oy — 0:) + o Yiga 1(6; = Ow); a>0.

4 was considered by Chernoff and Yahav (1977). They derived a Bayes procedure
for normal populations. We show in Section 4 that this Bayes procedure is
uniformly consistent for 4.

4 was proposed by Bickel and Yahav (1977). This loss is not continuous in 6
for given a, so for 4 only pointwise consistency will be discussed. The loss 4 has
been used by Goel-Rubin (1977), who derived a Bayes procedure. In the case of
normal populations we show in Section 4 that the Bayes procedure is uniformly
consistent for 4. Gupta and Hsu (1978) employed 4 (9, a). 4 and /¢ are members
of the class of additive loss-functions considered by Bjgrnstad (1981). We note
that 4, 4, 4 are not continuous in 6 for fixed a. Since all the loss-functions are
independent of o, we will use the notation m () and o/ (9) (see (2.1)).

Ei={0€K,:7(0,a) — m(0) = ¢ for any compact set K, of Q*

such that, from (2.9), K? = E¢ X K,. Define for any compact set K; of Q* and
e>0,

(37) K: = {0 € K;: 0, — 0; = 8}.
THEOREM 3.1. Let the loss be 4, given by (3.1), and let YyrE 9.

(a) Assume (1.1) holds. Then y" is consistent at (8, ) with Op-1) < Oy = Oy if
and only if

(3.8) Ey (X", S") -0 for i<p-1.
(b) Assume (1.2) holds. Then " is uniformly consistent if and only if
(3.9) Supk:xk,Ee 47 (X", 8") - 0 for i=1, ..., k-1,

for all compact sets K,, K, of Q*, = and all ¢ > 0 such that K:xX K, # @.

PrROOF. (a) Using Theorem 2.1, the result follows from Corollary 2.1 and the
fact that é,(a| x, s) < Yy?(x,s)ifaDi.

(b) Since K; C EZ, for a 3 i, (3.9) follows from (2.10). Assume now (3.9). Let
E: X Ky, # @, and a = {iy, ---, i,} where i; < ... < ig. Then §,(a|x, s) <
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*(x, s). Furthermore, E? C K} where 6 = ¢/(1 + r), and
supngszo,,,ﬁ,,(a I X", Sn) = supKflxszo,,,t[/f: (X", Sn) -0

from (3.9). 0

REMARK. m() and o7 () are the same for 4, given by (3.2), as for 4. Hence
Theorem 3.1 (a) is valid also for 4.
THEOREM 3.2. Let the loss be 4, given by (3.3), and assume y" € ;.

(a) Assume (1.1) holds. Then " is consistent at (0, ¢) with 0(,—1) < 0 = O if
and only if

(3.10) Eg, {Yk. v} (X", 8™} — 1 and Eg, y7 (X", 8") = 0 fori<p — 1.
(b) Assume (1.2) holds. Then ¢" is uniformly consistent if and only if

(3.11) Supk,xk,Es {21 17X, 8™} — 1
and
(3.12) supxixk,Ee ¢ (X" 8") = 0 for i=k—1

and for all compact sets K, K, of Q*, Z and all e > 0 such that Ki X K, # Q.

PROOF. (a) Let 0(,—1) < 0 = 0y and 8 = 6*. Then &/ (8) = {(p), ---, (R)}.
Now using the property that 6,(a | x, s) < ¢7(x, s) if @ D i and the equation

f=1 ¢tr’l(x, S) = 1 + 2§=2 (q - 1) 2{a:|a|=q] 6n(a|x’ S),
the result follows immediately from Theorem 2.1.

(b) Assume (2.10) holds. Let E¢ = {§ € K;i: 4(0, a) = ¢ + ¢}. Then K =
E*X K,.For |a| =2and e <c¢, E! = K;, and (3.11) follows. Also, (3.12) follows
from the fact that E¥ = K¢.

Now, let us assume that (3.11) and (3.12) hold. Clearly for |a| = 2, (3.11) =
(2.10). Fora = {i}, i = k — 1: 5, ({1} | X", S") = ¢7(X", 8") and (2.10) follows from
the fact that E!! = K:. O

REMARK. o7 (0) is the same for 4 as for 4. Hence Theorem 3.2 (a) is valid
also for 4.

Most of the research on subset selection has assumed that the procedures
satisfy a certain control condition. The most common is the so-called P*-
condition, due primarily to Gupta (1956, 1965) and Seal (1955). Let a subset that
includes ) be called a correct selection, CS. The P*-condition is:

(3.13)  infaxs P2, {CS|8,} = infoxzEo.{Yl} = P* 1/k < P*<1.

Suppose @ D Qo= {6: 6, = - -- = 0,}. If " € D;1is pointwise consistent for 4 and
4 on Q X 2, it follows from Theorem 3.2 (a) that for § € Q,, Eg y7= --- =
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E; W3 — 1/k, and therefore any pointwise consistent invariant procedure §,, must
have lim sup,{infoxsP%,(CS|6,)} < 1/k, and cannot satisfy (3.13) as n — oo,
Here we used that fact, derived from (2.6), that for any " € I, Egyl = Eg)T if
6; = 0;. In a similar way we see that if P* > 1, no procedure satisfying (3.13) for
all n can be consistent at any  where 60—y = 0.

Let Q, = {6 € Q: 64-1) < Oy}. Procedures that are consistent on Q; can of
course satisfy the P*-condition. Now, for any compact set K; in Qf there exists
¢ > 0 such that K, C {§ € Q}: 0, — 0,—1 = ¢}. From Theorem 3.2(b), we readily see
that if (1.2) holds and y" € &, then ¢" is uniformly consistent on Q; X 2 for 4
iff (3.12) holds.

Let us now consider 4 with ¢ > 1 and 4.

THEOREM 3.3. Let the loss be 4 with ¢ > 1 or 4, given by (3.5) and (3.6).
Assume (1.1) holds, and y" € ;. Then y" is consistent at (8, o) with 0,-1)< 0,
= 0(k) lf and only lf

nin Qn 0 for i=sp-—-1
(3'14) E0 ,a‘l/z (X ’ S ) d {1 for i > p'

REMARK. Comparing (3.14) with (3.8) and (3.10), we see that 4, 4 requires
one to select all populations 7; with 6; = 6 and excluding all others, while 4, 4,
4, ¢, essentially requires one to exclude all x; with 6; < 6, and including only at
least one w; with 0; = 6.

PROOF. Let 6(,-1)< 0 = 0 and 8 = 6*. Let ap = {p, -- -, k}. By expressing
Gas4(0,a) =#i€a:0; <6} + (1 —c)#fi € a: 6, =0,} + c#li: 0; = 0.} we see
that ©7(0) = a, for both 4 and 4, since 1 — ¢ < 0. From Theorem 2.1 it remains
to show that (3.14) is equivalent to

(3.15) Eg.on(a0] X%, 8™) — 1.

Obviously, (3.15) = (3.14). Assume now that (3.15) does not hold. Then there
exists a; # ao such that lim sup Ey,6,(a,| X*, S™) = 8> 0. If thereis an i € a,
i <p—1,then lim sup E, ¥} = 8, violating (3.14). If {i € a; = i = p} there must
exist j = p, j & a; and therefore lim inf E, ¢} < 1 — 8, implying again that (3.14)
does not hold. 0

Y" is said to be a just procedure if x; = x/ and x; < x/ for j # i implies that

Vi (x) = ¢r(x").

COROLLARY 3.1. Assume y" is just, invariant and pointwise consistent for 4
withec>1land 4on QX Z, QD Q= {0: 0, = ... = 6,}. Then infoxs Py ,{CS | Y™}

— 1.

PRrROOF. Nagel (1970) showed that for any just procedure, info.s Py ,{CS | ¢"}
occurs at some 6 € Q,. From (3.14) we have that for § € Q,

Eo,a\l/'f = e = Eo,.#/z —1. 0
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Corollary 3.1 means that no just, invariant procedure satisfying (3.13) with
equality can be pointwise consistent for 4 or 4, if P* is chosen independent of
n. Hence, if these loss functions reflect the true losses involved in the selection
problem the P*-condition is not appropriate. It seems clear that it is the term
Yiza [(0; = 6)) that makes (3.13) inappropriate.

Finally, consider 4 with ¢ =< 1. The following result is needed.

LEMMA3.1l. Y'=(X"* (a) 1.1)=Ep,|Y!—0f| >0fori=1,---, k.
(b) (1.2) = supxk,xk,Es.| YF-0;| = 0 fori=1, --- , k and all compact sets K,
K2 n Q*, 2.

PROOF. Let § = 6* Then |Y! — 6;| = 35, | XP — 0;| + Ty |16 — 6i]
- I(X} = Y?). Hence

Eo,|Y! = 6| < 2;"21 Eoo X7 — 0;] + Xjwi |0; — 0;| Py, (X} = Y7).

Then (a) follows directly from (1.1) and Lemma 2.1, and (b) follows from (1.2)
and Lemma 2.2. 0

For this particular loss we shall assume that X7, ..., X} are independent,
each X7 has density f7(-, 6;) with respect to a o-finite measure, and Q = 0*. It is
assumed that for fixed (n, o), f* has the monotone likelihood-ratio property.

Bjgrnstad (1981) showed that there is a uniformly minimum risk procedure in
9, for 4 when ¢ < 1. It is given by:

do(i}ly) =1/q for izk—q+1,
when

Yhg <Yh-qt1= -+ =y; VYE Z ={xER": x5 < ... < x}.

Obviously, &, is the only interesting procedure in Z; for this loss. Even though
4 is not continuous in § we can say something about uniform consistency of &,
as the next result shows.

THEOREM 3.4. The loss is 4(0,a) = |a| + ¢ Yiga 1(0; = 0ry)) with0<c < 1.
(a) Assume (1.1) holds. Then é, is pointwise consistent on Q X 3.

(b) Assume (1.2) holds and that f}(x, 8) is a continuous function of (8, o). Then
0o is uniformly consistent on Q; X Z, where Q, = {0 € Q: 0y > 05_1)}.

PROOF. (a) Let 6 = 6* and assume 6,_, < 6, = 6,. We see that when ¢ < 1,
) = {{p}, ---, {k}}. From (2.3) of Theorem 2.1 we need to show that
Es. 2fop0o({i}] Y™) — 1. 35, 80({i}| Y™) = 1 so we must show that E, ,8,({i}| Y")
— 0 fori<p—1. Now, Ey,60({i}| Y") = Py ,(Y? = Y}) — O since Y? — Y? —p
0, — 0, > 0, from Lemma 3.1.

(b) On Q;, m(6) = 1 so we must show that SUpKk,xk,In(0, o|dp) — 1 for all
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compact sets K;, K, in Qf, 2. We readily derive that
ra(0, | d0) = Po,.(XE > maxi<j<k-1X}) + (1 + ¢) Py (X} < max;<j<p1 XF).

It follows that it is sufficient to show infx xx,Ps . (XE > X?) - 1forj<k—1.

As mentioned earlier, there exists ¢ > 0 such that § € K; = 0, — ,_; = ¢. Since
fs(-,0) is continuous in (8, o), Py (X% > X7} ) is a continuous function of (9, o).
Hence infimum occurs at some (8", ¢") € K; X K, From (1.2), X* — 67
—p 0 under (0, ¢"), and

Poron(Xi — X7 > 0) = Py on{(XE—0F) — (XP—07)>—¢}— 1. 0O

4. Selection of means from normal populations. The k populations are
now assumed to be normally distributed, and X7 is the sample mean of size n
from =;. Hence X7, ..., X} are independent and X? is N(6;, 62/n), where ¢ is
unknown, ¢ € (0, ©). Moreover, let S™ = S2, the usual U.M.V.U. estimate of ¢2.
Then S —p o2 In this section Q@ = R* and (1.2) clearly holds. We shall apply
the theory in the previous section for the loss functions 4 — 4 on some subset
selection procedures that have been studied in the literature. It is now assumed
that ¢ > 1 in 4.

Consider the class %, proposed by Seal (1955). & = {y°™ Yt e,;=1,¢; 2 0;
Vi}, where

(4.1) Vit =1le X7 = 3 ¢; X0} - S,Du(c); Dalc) = 0.

Here X{i < --- = X{”,) are the ordered X7, j # i. Seal assumed D,(c) is
determined such that the P*-condition (3.13) holds with equality. We shall,
however, consider " for any sequence {D,(c)}. If we want (3.13) to be satisfied,

it is readily seen, since infimum of P(CS | ¥*") occurs when 6; = ... = §,, that
«/;Dn(c) — t(c) where
(4.2) P{Zf;ll C_,‘Z(j) - Zy =< t(C)} = P*,

Here Zy) < --. < Z-y) are the ordered Z,, ---, Z,_,, and Z,, - .., Z, are i.i.d.
N(O0, 1).

One procedure in £ has received special attention in the literature by many
authors. Gupta (1956, 1965) suggested the use of c,_; = 1. Let us call this
procedure ¥ %", and denote D, (c) by d,, such that

(43) l,bic’" =]l X! = X?k) - Sndn.
Applying Lemma 2.1, the following two results can be readily shown, using
Theorems 3.1-3.3.

THEOREM 4.1. Let the loss be one of 4, — 4, given by (3.1)-(3.6), where ¢ > 1
for 4. Assume cp—; < 1. Then y*", given by (4.1), is not pointwise consistent on
R* X (0, ) for any sequence {D,(c)}.

This result shows that no procedure in % except ¥ ", has a chance of being
consistent for the losses 4 — 4.
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The cases of {d,} when y%" is consistent for the different losses are specified
in the next result.

THEOREM 4.2. Let y%" be given by (4.3).
(a) ¥9" is uniformly (pointwise) consistent on R* X (0, ®) for 4(4), given by
(3.1), ((3.2)), if and only if d,, — 0.
(b) ¥°" is uniformly (pointwise) consistent on R* X (0, ®) for 4(4), given by
(3.3), ((3.4)), if and only if Vnd, — 0.
(c) ¥9" is pointwise consistent on R* X (0, ) for 4 with ¢ > 1 and 4 if and only
if d, — 0 and Vnd, — .

REMARK. If d, is determined such that y“" satisfies (3.13) with equality,
then, from (4.2), y®" is uniformly (pointwise) consistent for #4(4), but not
consistent for any of the other losses.

For the rest of this section we assume ¢ is known. Two classes of invariant,
admissible procedures for 4 and 4 with ¢ > 1 are given below.

(44) Y =1eo cexpb,X!) =Yk, exp(b,X’) or X! = Xp.
(45) yi"=1e (1 + (a/b,))exp(b,X?) = T 5, exp(b,X") or X! = X7,.

Bjgrnstad (1981) showed that y" is admissible for 4, and y*" is admissible for
%, for all b, > 0. From Theorem 3.3, the following result is easily shown.

THEOREM 4.3. (a) Let y*" be given by (4.4), and assume ¢ > k in 4. Then
Y™ is pointwise consistent on R* for 4, Z if and only if b, — © and b,/vn — 0.

(b) Let ¢*" be given by (4.5). Then y*" is pointwise consistent on @, = {§ € R*,
O-1y < Oy} for 4, % if and only if lim inf b, = «.

REMARK 1. It is readily seen that lim inf b, = « implies
Epyi™ — 1/(k —p + 1),

for some subsequence, for all p < k£ — 1. By (b) of Theorem 4.3 this implies, from
Theorem 3.3, that y*" is not pointwise consistent on R* for any {b,}.

REMARK 2. It can be shown that if ¢ < &, then ¥ ' is not pointwise consistent
on R* for any {b,}.

At last in this section we consider the Bayes-procedures derived for
normal exchangeable priors for 4, 4, 4 by Chernoff and Yahav (1977), Goel
and Rubin (1977) and Gupta and Hsu (1978) respectively. The prior is: 6’ ~
Ni(me, rl + tU), wheree = (1, ---, 1)’ and U = ee’, r > 0, t = 0. As shown by
the authors mentioned above, the risks of the Bayes-procedures do not depend
on m, tsowemayletm=0,t=0.Ifso, (| X"=x) is

2
N( T g M- I), where q,,=gn- and §" = —— X»

gn+r qgu.t+r gntr

is the usual squared error loss Bayes estimate.
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Let us consider first 4 and its Bayes procedure 6%. _Consider Tn(a|X") =
E{A0, a)| X"} = 1 + r)E{fp | X"} — (1/]a|) Yjee 07 — rE{max;c0;| X"}.
Then, 6%(a| X") = 1 iff a minimizes T,(a’ | X") for all a’ € &Z Clearly, 6% is
permutation-invariant. Lemma 3.1(b) implies that T, (a| Y") — 4(0,, a) —p 0
for any sequence {0,} € K, and compact set K of 2*. We shall show that 6% is
uniformly consistent for 4 on R*. In order to do so it is enough, from Theorem
2.2, to show that supe:E;62(a| Y") — 0, where E? = {# € K;: 4(0, a) = ¢}. Now,

_ Eo67(a]| Y") = Po{Tn(a| Y") = Tu({k}| Y™},
which is a continuous function in 6. Hence, for some 0" € E?,
supe:Es67(a| Y") = Pr{Tala| Y") < Tu({k}| Y)}
< Ppi{To(a| Y") — 48", @) — T,({k}| Y") < — ¢} = 0.

Next, we consider the Bayes-procedure 85 for 4. Let v2 = rq,/(q, + r) =
1/(r™* + no~?). According to Corollary 5 of Goel and Rubin (1977), 62({k} | y) =
1, for y = x*, ¥x € R*, provided ¢/v, = 1/vr. Since vy, — 0, it now follows
immediately from (2.11) of Theorem 2.2 that 6% is uniformly consistent for 4 on
R*, since K? # @ implies a # {k}.

Finally, let 62 be the Bayes-procedure for /4, given by (3.4). Gupta and Hsu
(1978) showed that 6% is given by

Vii=1e X!=max;» X! or P{0;=04x|X"} = c/ci.

Clearly y# is permutation-invariant. Since 4 is not continuous in § we shall
discuss only the pointwise consistency properties of y%. Let now 0(,-1) < 0(p) =
0w, and 0 = 8*. Then fori<p — 1,

P(8; = 04| X™) < ®((0; — 6)/vnv2) —» 0,

since 6; — 6, —p 0, — 6, and 7y, — 0. Therefore Epy%; — 0 for i < p — 1. This
implies that (3.10) holds if p = &, and from the remark after Theorem 3.2, we
have shown that ¢% is pointwise consistent on Q; = {§ € R* 0 > 04—)}. If
co/cy = Yo, then P(0; = 04 | X™) = co/c; = X} = max;<,—; X! and E,¥%, —
1/(k — p + 1). Therefore, from (3.10), ¥ 2 is pointwise consistent on R*, if ¢,/c,
> 4. However, if c/c; < Y it is straightforward to show that % is not consistent
on all points in R* — Q.
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