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SYMMETRIC DISTRIBUTIONS FOR DEPENDENT UNIT
VECTORS'

By Louis-PAUL RIVEST

Université Laval

This paper introduces several notions of symmetry for the joint distri-
bution of two dependent unit vectors. Bivariate generalizations of 2-sym-
metry (Rivest, 1984) and rotational symmetry are introduced. If the joint

_distribution of two unit vectors is at least 2-symmetric the information
matrix for the parameters indexing it is shown to have a simple shape.

1. Introduction. All the standard distributions for a random unit vector
belonging to Sy, the unit sphere in R*, are to different extents symmetric. Rivest
(1984) expressed these symmetries in terms of the invariance of the distribution
with respect to a subgroup of O(k), the group of orthogonal transformations in
R*. The purpose of this work is to introduce various notions of symmetry for
bivariate directional distributions and to study their statistical implications.

Section 2 gives a general definition of symmetry for the joint distribution of
(u, v), two random vectors belonging to S;. Definitions of bivariate rotational
symmetry and bivariate 2-symmetry (Rivest, 1984) are presented. When the
underlying distribution is 2-symmetric, a simple expression is derived for p?
Jupp and Mardia (1980) coefficient of correlation defined as the sum of the
canonical correlations:

p’=1tr(T12 I T T11)

where ¥, =E(uv’')—EM@E(W’), fu=E(uu’)—E(u)E(u) and Yo =E(VVv’')
— E(v)E(v)’. The concept of cluster dependence (Rivest, 1982) is given a formal
definition.

In Section 3 the information matrix for the parameters indexing a 2-sym-
metric distribution is shown to have a simple form. As in Rivest (1984), it is
made of two blocks: one for the generalized location and one for the shape. If the
generalized location of a 2-symmetric distribution is parametrized in terms of
skew-symmetric matrices, the corresponding information matrix is shown to be
made of four diagonal blocks. For rotationally symmetric models another pa-
rametrization is investigated.

2. Bivariate symmetry. This section generalizes the notion of &‘sym-
metry of Rivest (1984) to bivariate distributions. Let u and v be random vectors
belonging to S; let f (u, v) denote their joint density with respect to the Lebesgue
measure on S, X Sy.
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DEFINITION 1.  &-symmetry. The density f(u, v) is said to be &-symmetric
if there exist P and Q in O(k) such that g(r, s) the joint density of r = P’u and
s = Q’v satisfies

(i) E(r;) and E(s;) >0
(1) (ll) E(I'QSQ) = E(rgsg) = e = E(rksk) >0
(iii) g(Hr, Hs) = g(r, s) for any H in & a subgroup of O(k).

Note that since |det P| = |det Q| =1, f(u, v) = g(P’u, Q’u); g can be seen as
a standardization of f.

The following properties are easily derived: for all H in &

(i) Hr, Hs and r, s have the same joint distribution

(2)

(ii) the marginal distributions of r(resp., s) and
Hr(resp., Hs) are the same.

Property (2) (ii) shows that if the joint density of u, v is &-symmetric, their
marginal densities satisfy conditions analogous to those of univariate &-sym-
metry (Rivest, 1984). Hence Definition 1 provides a bivariate extension of
univariate &-symmetry. As will be shown in Proposition 1, for the following
examples the matrices P and Q can be obtained from the first two moments of
u and v.

EXAMPLE 1. O(k)-symmetry. When & = O(k) the marginal densities of u
and v are uniform. For any & in O(k) such that Hr =r, g(r, s) = g(Hr, Hs) =
g(r, Hs); this shows that the conditional density of s given r is rotationally
symmetric about r. Thus there exists a function h for which

g(r, s) = h(r’s).

This is the general form of O(k)-symmetric densities. Johnson and Wehrly
(1977) presented a class of O(2)-symmetric densities. Saw (1983) discussed the
properties of an O(k)-symmetric density obtained by projecting a suitable 2k-
dimensional normal random vector on S, X S,.

Note that there exist densities with uniform marginals that are not O(k)-
symmetric. If g(r, s) is proportional to

1 +lr131/2

the marginals of r and s are uniform but g is not O(k)-symmetric for any k > 1.
EXAMPLE 2. Bivariate rotational symmetry. If

10
M={(0 H):HEO(k—l)}>

one obtains a bivariate generalization of rotational symmetry. Given r; and s,
the conditional density of (1 — r?)™*%(ry, ---, rx) and (1 — s3)™%(sy, -+ -, s8x)’ is
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O(k — 1)-symmetric. Thus a rotationally symmetric density can always be written
as:

®3) g(r, 8) = h(ry, 51, 35 risy).
The mean direction mixture model gives a rotationally symmetric density:
&(r, s) = h(r’s)gi(r1)

the marginal density of r is rotationally symmetric about (1, 0, ---, 0)’ while
given r, s has a density which is rotationally symmetric about r. Saw (1983)
constructed some rotationally symmetric densities.

EXAMPLE 3. 2-symmetry. Let

“= { (fl) diag + 1)}

A 2-symmetric density can be written as
— 2 2 2 2
g(r,s)—h(r1,31,r2,”‘,rk,32,"’,Sk,rzsz,"’,rkSk).

This symmetry is weaker than the ones presented in Examples 1 and 2.
NOTATION. Let {p;}%; and {q,}%, denote the columns of P and Q.
A straightforward generalization of Proposition 1 of Rivest (1984) is:

PROPOSITION 1. If (u, v) has a 2-symmetric density,
E(u) = p:E(r1), E(V)=d:E(s)
E(uu’) = P diag{E(r?})}P’
E(vv') = Q diag{E(s))}Q’
E(uv’) = P diag{E(r;s;)}Q’.

This implies that the matrices P and Q of Definition 1 can be defined in terms
of the moments of u and v: when E(r,) and E(s,) are positive, p; and q, are the
mean directions of u and v respectively while P and Q are eigenvector matrices
of E(uu’) and E(vv’) and left and right singular vector matrices of E(uv’).

Using Proposition 1, p% Jupp and Mardia coefficient of correlation can be
written as

p® = ¥k, corr’(p/u, q/v)

where corr denotes Pearson’s correlation coefficient. When p? # 0 Jupp and
Mardia following Mackenzie’s (1957) proposal suggested predicting v for a given
u by QP’ u. If the distribution of (u, v) is O(k)-symmetric, QP’ u is the mean
direction of the conditional distribution of v given u; it is a good predictor of v
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(Rivest, 1982). However there are situations where it is not appropriate:

DEFINITION 2. Cluster Dependence (Rivest, 1982). Two unit vectors u =
Pr and v = Qs having a .2-symmetric density are cluster dependent if given ry
and sy, (1 = r3)™Y%(ry, ---, ry) and (1 — s3)7%(s,, - - -, sx) are independent.

A cluster dependent 2-symmetric density can be written as:
g(ry S) = hl(rly S1, r%, tt Ty r%)h2(r1y S1, S%, ) S%)-
If (u, v) has a cluster dependent 2-symmetric density, given r; and s;, then
1;, s; and, r;s; have a null expectation for ¢ > 1; therefore

p® = corr’(r;, s1) E(v|u) = qE(s;| ).

For a cluster dependent distribution p? # 0 and the mean direction of v given u
is q if E(s;| r1) > 0 and —q, if not. In this case Q'Pu is a poor predictor of v
unless q; = p; and u is highly concentrated about p;.

Section 5 of Saw (1983) provides an example of a cluster dependent rotationally
symmetric distribution.

3. The information matrix. The information matrix for the parameters
indexing a Q-symmetric density is shown to have a simple form. The model is

(4) fu, v) = g(P'u, Q'v; ¢)

where ¢ is a shape parameter and P and Q belong to O(k).

Let P, and Qo be the true values of Pand Q respectively. The parameter spaces
for P and Q are made of two disjoint isomorphic subsets: O*(k), the set of
rotations and O~(k), the orthogonal transformations whose determinant is —1.
Thus P and Q can each be parametrized by a rotation and a 0 — 1 parameter
indicating to which subset of O(k) P¢P (resp., Q;Q) belongs. In calculating the
information matrix one can ignore the 0 — 1 parameter and consider only matrices
P and Q for which P{P and Q;Q are rotations.

Rotations can be parametrized in terms of skew-symmetric matrices. If R is a
rotation, there exists a skew-symmetric matrix A (A’ = —A) such that

R = exp(A) = Y%, A/l

Straightforward manipulations show that if A is 2 X 2

_ COoS A21 _Sin A21
exp(A) = (sin Ay cos Ay
while if it is 3 X 3
1—cos|lal] , sinfal
exp(A) =cos|a|I+ —-Waa + _||a|| A

is a rotation of angle | a| about a = (Aj;, — Asi, Aa1)’. There exist other
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parametrizations of R in terms of skew-symmetric matrices; for instance
R=A+{T+A)2=1+ A + 37 (?A%

where the last equality holds if the eigenvalues of A2 are in absolute value less
than one. Thus any (P, Q) in the neighborhood of (P,, Q,) can be written as:

P=PyI+0+00%}, Q=Ql+ ¥+ 0(¥?)}

where ® and ¥ are skew-symmetric matrices. Let 8 = (0, Oy, -+ -, Op, O3,
cooy Oper) and ¥ = (Yo, -0, Wy, W3, -+, Vi-1); note that (¢, 6, ¢)
parametrizes f. Let U = U(P,, Qo, ¢, u, v) = (Uj, Uj, U})’ be the score vector
evaluated at ¢, § = ¢ = O:

a
U= 36 0,9) /(0 V) lomses

and i = E(UU’) be the Fisher information matrix evaluated at ¢, § = ¥ = 0:

1so Lo loy
i=\16s 1 1gy
Iy Lo lyy

where igs = E(U,Uj) etc - -- .

The following propositions summarize the properties of i when f is
2-symmetric. The first one is an easy generalization of Proposition 2 of Rivest
(1984).

PROPOSITION 2. If fis 2-symmetric and if g(r, s; ¢) is differentiable,

iw = i¢¢ = 0.

PROPOSITION 3. If f is 2-symmetric and if g(r, s; ¢) is a differentiable
function of r and s, iy, is and iy are diagonal matrices.

PrOOF. For any m > 1 let H,, be a diagonal matrix of 1 except for the
(m, m) entry which is —1. Let

9 9
(1) -2 . (2) =2 .
g(r,s) o gr,s; ¢), gr,s) s g(r, s; ¢).

The assumptions imply that l

(5) g’(H,r, H,s) = H,g"(r,s), i=1,2

Define J;, as a k X k matrix of 0 except for the (i, j) and (j, i) entries which are
equal to 1 and —1 respectively. For i > j one can write

dJ
U(-),, = E In f(u, V) |4=y=0

(6) = —{gW(r, 8)}'Jr/g(x, s; ¢)
= —{g’(x, 9)r, — gV (x, s)r}/g(x, s; ¢)
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where r = Pju and s = Q{v. In a similar way it can be shown that for i’ > j’
Uy,, = —{g?(x, 8)}'J:;s/g(r, s; ¢).
Applying (5) and using the fact that
H,J;H, = (—1)%n*nJ,;
where 6,,= 1 if a = b and 0 if not:
—{g" (Hyr, Hys)}'J,;Hor/g(Hor, Hos; ¢)
= —gV(r, s)'H,.J;H,r/g(r, s; ¢)
= (=1)%n*mUp, .

A similar result holds for Uy,
Consider

i@,_,\l/,,j, = E( U@u U‘I’i'j' )

if (i, j) # (', j’) let m be an integer, m > 1, that is equal to one and only one of
{i,J,1’,7’}. Changing variables r; = H,,r and s; = H,.s in the previous expectation
shows that

Leu‘h'}' = _Leu\l’i'j’ = 0'

Thus iy is diagonal. The proofs for ig and iy, are similar. [0

Special cases
(i) If in addition f is cluster dependent then
iy = 0.

PrOOF. Cluster dependence implies that for m > 1, H,.r, s and r, s have the

same distribution; therefore
gV (H,r, s) = H,gV(r, s).

Changing variables r; = H;r and s; = s in E(U@U Uw,,-) shows that it is null.

(ii) If in addition f has rotational symmetry, fork=i>j>1

—i@uwu = ie,,e,, = iwi,«w,-,-

PRrROOF. By (3), g(r, s) = h(ry, s1, ’Zé‘ risi), let h®(x, y, 2) = 8/dz h(x, vy, 2).

By (6), fori>j>1

—U, =U, = (sirj = 8;r)h®(r1, 81, T 1isi)
9y vy, h(rl, s1, 25 risi)

A univariate version of Proposition 3 is easily proved: if the generalized
location of a univariate 2 -symmetric model is parametrized with skew-symmetric
matrices, its information matrix is diagonal.

If f is rotationally symmetric the rank of i(y)ey), the information matrix for
P, Q, is (k + 2)(k — 1)/2. In general if f is &symmetric for any subgroup & of
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O(k) containing 2 the rank of i)y is kK(k — 1) minus the dimension of the
parameter space needed to parametrize < . In such cases, other parametrizations
for P and Q have to be considered.

If for instance f is rotationally symmetric then ¢, P and q; parametrize f.
Without loss of generality one can assume that Q belongs to O~(k) and take

(e; — q;)(e; — qy)’
1- g1

Q=1-

where e; = (1,0, -- -, 0)’ (in what follows, e; will denote a vector of 0 except for
its jth component, which is 1) and gy, is the first component of q;. Given qo,
the true value of q; that is assumed not to be equal to e, and

(e; — go1)(e; — qoy)’
1 — gon

Q = (qo1, -+, qu) =1—

the corresponding matrix, define ¥; as q{qoi+1 fori =1,2, ...,k — 1 and x =
(0’ ‘ply Tty ¢k—1)'. Then

a = (1 - [[x]?)"*qo + Qox

01X
=qo + X + o (e1 — qo1) + O(|| x|?.
— qon1
Elementary manipulations show that
x(e; — " — (e; — x’
Q=Qam=Q{L+(l Q) = L0 = o) +owmm)
— Gon1

and

i Qlyo = Qo<ei+1(el - QO11)' — (e; — q01)ei,+1)

i — Qo1
= QoL+1.
If P is parametrized as before by § and Q by ¥, one can show that
Uy, = — {g?(r, 8)}'Li.is/g(r, s; ¢)

and H.L..H., = —L;,.

Thus with this parametrization a partial extension of Proposition 3 holds:

PROPOSITION 4. If g(r, s; ¢) = h(ry, 1, 25 1;s;; ¢) where h is a differentiable
function and if P and q, are parametrized by 0 and ¥, iy is diagonal and i, satisfies
loy, =0if i’ +1#iandi’ +1# .

Given a sample {u;, v;} from f, Proposition 2 and 3 suggest an algorithm for
the efficient estimation of the parameters:

1) maximize rig(f”ui, é’vi; #) to get an efficient estimator ¢ where P and
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Q are 0,(n"'?) consistent estimators of P and Q. For instance, one can take f’
and Q as the right and left singular vector matrices of } u,v/.

i1) To estimate P and Q let

0) — l i—l Zn é é ¢y ul; vt
¢ n R =t (P Q) ¢y u;, vl)
and 6 and ¥ be the corresponding skew-symmetric matrices. Then P = P exp

and Q@ =Q exp V¥ are obtained after one iteration of Fisher’s scoring method for

the maximization of = g(P'u;, Q'v;; #) with P and Q as starting values; they are
therefore efficient estimators (Cox and Hinkley, 1974, Chapter 9). For this
method to be valid i@y has to be of full rank; f has to be strictly .2-symmetric.
For rotationally symmetric models, a similar algorithm can be constructed with
the parametrization of Proposition 4.
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