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A SHARP NECESSARY AND SUFFICIENT CONDITION FOR
INADMISSIBILITY OF ESTIMATORS IN A CONTROL
PROBLEM'

By C. SRINIVASAN

University of Kentucky
Suppose x = (xy, - - -, X,)' is an m-variate normal random variable with
mean vector 8 = (6, - - -, 0,,)' and identity dispersion matrix. We consider the

control problem which, in canonical form, is the problem of estimating 8 with
respect to the loss

L(6, 8) = (1 - 6'%)?

where 8(x) = (8;(x), ---, 6(x))". A necessary and suffcient condition for the
admissibility of spherically symmetric generalized Bayes 6(x) is given in terms
of a Dirichlet problem. This condition is also equivalent to recurrence of a
diffusion process and insolubility of certain elliptic boundary value problems.

1. Introduction. The control problem, which arises in economics, deals
with the choice of the levels of certain input factors in a system so that the
“yield” (or output) of the system is at the desired control level. Basu (1974) and
Zaman (1981) consider a standard normal model of the control problem, in which
the output, Y, occurs as a linear function

Y=02+c¢

where 0 is an m-vector of unknown coefficients (factor levels) of the system and
z is an m-vector of nonstochastic control variables to be chosen so as to achieve
some desired output Y*. Suppose the loss in achieving output Y is measured by
(Y — Y*)? and an estimate 8(x) = (6,(X), - -+, 6n(x)) of 0 is available from past
multivariate normal data x = (x4, - - -, x,,,)%, then this problem can be transformed
(in the simplest situation) into a problem of estimating the inverse of the mean
of an m-variate normal random variable with unknown mean 6 = (84, -- -, 0,,)°
and identity dispersion matrix, in which it is desired to estimate § with respect
to the loss

(1.1) L, 6) = (1 — 0%)%

The appropriate parameter space for this problem turns out to be 8* = R™ — {0}.
See Berger et al. (1982) for a decision theoretic explanation. Also, it seems natural
to exclude § = 0 because it would correspond to the case where the input factors
have no effect on the yield, thus reducing the original problem to a meaningless
situation.

An estimator 8, as usual, will be evaluated by its risk function R(#, §) and will
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928 C. SRINIVASAN

be called inadmissible if there exists an estimator 6*, such that R(6, 6*) <
R (6, 6) for all § with strict inequality for some 6. Otherwise, é is admissible. Of
course, the range of a decision rule §(x) is ®* = R™, the closure of ®* under the
natural topology.

In this paper we confine our attention to orthogonally invariant nonrandom-
ized decision rules. It is shown in Berger et al. (1982) that nonrandomized rules
form a complete class for this problem. It is well known that spherically sym-
metric nonrandomized rules can be written as

12 o(x) =o(lxx/|x].

In particular, the generalized Bayes estimators with respect to spherically sym-
metric priors have the representation (1.2).

The main results of this paper are concerning the admissibility (or inadmis-
sibility) of estimators of the form (1.2). Subject to mild growth conditions on the
prior, we obtain a necessary and sufficient condition for the admissibility of a
generalized Bayes estimator with respect to a spherically symmetric prior. See
Theorems 3.1 and 4.1. The first theorem gives the necessary condition and the
second the sufficient condition. The necessary and sufficient condition (modulo
the growth conditions on the prior) is analogous to the one given by the
fundamental paper of L. Brown (1971) (also see Srinivasan, 1981) for estimating
the mean of multivariate normal distribution under quadratic loss. It is appro-
priate here to mention that there are two important papers which deal with
admissibility of spherically symmetric estimators in a control problem. Berger et
al. (1982) have obtained a necessary condition for the admissibility of an esti-
mator of the form (1.2). Their approach is different and their conditions are
relatively harder to verify. Berliner (1980), in a notable work on the control
problem, has obtained among other results, sufficient conditions for the admis-
sibility of a generalized Bayes estimator with respect to an absolutely continuous
spherical-symmetric prior. His conditions are more stringent than ours. For a
comparison of our results with that of Berger and Zaman, and Berliner, see
Section 5.

As mentioned earlier, the necessary and sufficient condition for admissibility
given here is similar to the one given by Brown (1971) in estimating # with
respect to the quadratic loss (i.e. L(6, t) = | 8 — t|?). One might wonder whether
the similarity is due to the fact that both problems have the same probability
model, the multivariate normal distribution. We want to point out that this is
not the reason for the similarity and, on the contrary, the common underlying
model has very little role to play. The explanation lies in the fact that for § =
(64, 0, - - -, 0) with 6 large, and for 60(x) = X + v(x) where vy(x) is bounded

_ 0, >2=(X1+71_01)2z|50(x)_0|2
X + vi(x) (X1 + 71(x))? 16]2

L9, o) = (1

Thus for large 6, L(6, &) is a weighted quadratic loss. Brown, in his heuristics
paper (Brown, 1979), argued that in regular problems the admissibility (or
inadmissibility) of an estimator is governed by the loss function and not by the



ADMISSIBILITY IN A CONTROL PROBLEM 929

underlying probability model, and two distinct estimation problems would exhibit
similar admissibility phenomena if their loss functions are similar. These heuris-
tics of Brown explain the similarity between results on control problem and
normal estimation problem.

2. Preliminaries. Let x* = (x, ---, x») be an m X 1 random vector
distributed according to an m-dimensional normal distribution with mean vector
6 = (61, ---, 0,,) and dispersion matrix identity. The corresponding normal
density will be denoted by p,(x). Let ®* = R™ — {0} and F be any ¢-finite measure
on ©* such that f(x) = exp(¥2|x|?) [ po(x)F(df) < o for all x € R™. Here | x|
= (¥x?)'2, i.e. the usual Euclidean norm. Let V/(x) and V2f(x) denote the first
derivative vector and the second derivative matrix respectively. Then the gener-
alized Bayes estimator of § with respect to F under the loss (1.1) is given by 87(x)
= (V% (x))"'Vf(x) (assuming V3 (x) is invertible). In the case of spherically
symmetric F, éz(x) can be written as ¢r(|x|)(x/|x|) where

_ J& (1/v)sinhw | x| pr(dv)
JG coshw | x| up(dv) ~

(2.1) or(lx|)

Here
ur(dv) = v2exp(—Yer®)F.(dv)

and
Fi(dv) = f exp(—% Y7 6?)F (dv, d6).

See Zaman (1981) for details. In the same paper, Zaman has shown that any
admissible spherically symmetric estimator has the above representation (2.1)
for some finite measure u on [0, ©).

Since we are concerned only with spherically symmetric estimators, in what
follows the measure F will be orthogonally invariant. Also, because priors with
compact support trivially yield admissible procedures, we will assume the support
of F is unbounded.

The proofs of our main results obviously depend on the fundamental Stein-
LeCam theorem which gives necessary and sufficient condition for admissibility.
It is so well known that we will not pause to state it. However, to fix our ideas,
we will use the version stated and proved in the appendix of Berger et al. (1982).
For other references see Farrell (1968),

The approximating sequence of finite measures given by Stein-LeCam theorem
will be denoted by G,. The necessity part of Stein-LeCam theorem, moreover,
says that there exists a compact set K C ©* such that G,(K) = 1 for all n. We
will take, without loss of generality, K to be a compact subset of S; = {#: | 0| <
1}. Note that since F is spherically symmetric it suffices to assume that so
are G,’s. Also, without loss of generality, assume F(S; N ©*) > 0 where S, =
{x: | x| = 1} (since F is a nontrivial measure on 0*, there exists r > 0 such that
F(S, N ©*) > 0 and the proofs of the results in this paper go through for any r;
so we will take r to be 1.)
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As indicated in the introduction, our necessary and sufficient conditions given
in Theorems 3.1 and 4.1 are in terms of a variational problem similar to the one
considered by Brown (1971), Srinivasan (1981) and Johnstone (1981). Naturally,
our proofs (especially the sufficiency part) depend on smooth minimizing func-
tions of this variational problem and certain technical lemmas involving the
multivariate normal density. The needed technical results are available in Brown
(1971) and Srinivasan (1981). For the sake of completeness, we state them below
without proofs. Through the rest of this paper let f (x) = [ p,(x) F (d8) and define
the set J to be

I the set of nonnegative real valued piecewise differentiable
J = 1 functions j(x) defined on R™ such that
lj(x) —0as |x| >andj(x) =1 for |x]| = 1.

Moreover, since the proof of the sufficiency part is in many respects similar to
the arguments in the main theorems of Brown (1971) and Srinivasan (1981), we
will not give all the details. Instead, we will carry out the computations up to a
stage from where one can complete the proof of sufficiency by following the
arguments of the main theorems of Brown or Srinivasan.

For the proofs of the following three results (Lemmas 2.1, 2.2 and 2.3) see
Brown (1971).

LEMMA 2.1. Let F be a nonnegative measure on R™ such that the closed convex
hull of the support of F is R™. Then for every measure G with compact support in
Rm

1' x| A, L =
1m x| o
LEMMA 2.2. Let F be a measure satisfying the condition |V log f (x)| < B for

all x in R™. Then given a constant K > 0 there exist constants K; > 0, K, > 0
(depending only on m, K and B) such that

i) f eX1==0p (x)F(df) < K,f(x) forall x € R™

ii) f e K1x=0 p,(x)F(df) = Kof (x) forall x € R™

We also need the following consequences of Lemmas 2.2 and 2.3. For a proof of
the next result see Srinivasan (1981).

LEMMA 2.3. Let F be a measure on R™ satisfying the condition |V log f (x)]
< B for all x € R™. Then there exists a constant B, > 0 (depending only on B and
the dimension m) such that

|Alog f(x)| < B, forall x€R™
where f(x) = exp(¥2| x|?) f (x) and “A” is the Laplacian.
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The following deep result, due to Brown (1971), plays a crucial role in the
proof of the sufficiency part (Theorem 4.1). One can give an alternative proof to
Theorem 4.1 using Poincare inequalities. However, we have chosen to use Brown’s
result because the alternate proof is not any easier than the present approach.
The version of Brown’s result given below is for the spherically symmetric case
and is tailored to our needs.

_ LEMMA 24. Let F be a spherically symmetric measure such that |V log
f(x|)|<Bforall x € R™. Suppose

2
1 .
(2.2) infjle ’ Vj(x) mx—lzf(lxl)dx=0.

Then there exists a constant B; > 0 (depending only on B and m) such that for a
given ¢ > 0 there exists a spherically symmetric function h € J satisfying

2

. 1 A

(i) f Vh(x) 1+|x|2f(|x|)dx<e

(ii) h(x) = B1h(y)exp(B;|x — y|)

(iii) there exist a family of probability densities {u(x, y): x € R™}

such that u(x, y) < B, for x, y in R™ and

h(x) = f h(y)u(x, y) dy

Moreover, u(x, y) =0if |x —y| > 1.

(iv) f h*(0)F(df) < .

There is a slight difference between Lemma 2.4 as stated in this paper and the
version stated and proved in Brown (1971; Lemma 5.4.1). The difference lies in
the appearance of the term 1/(1 + | x |?) in the integral

f l Vj(x)

but this does not cause any problems and the proof of Brown goes through.

|
mf(lxl)dx,

LEMMA 2.5. Assume F is a measure satisfying the conditions of Lemma 2.4.
Let h € J be the spherically symmetric function given by Lemma 2.4 for some
¢ > 0. Then there exists a constant C > 0 (depending only on B and m) such that

g (UxD) _ f (1))
six1) > =D
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where

fQx)) = f eh1*1 217 B (dg),

gllxl) = | enremha oy an)

and, f” and g” are the second derivatives of f and g respectively.
The proof of this lemma depends on Lemmas 2.1 through 2.4 and is given in
the appendix.

3. Necessary condition for admissibility. In this section we present the
necessary condition in terms of a variational problem involving the function

f(x).

THEOREM 3.1. Suppose | V log f(x)l < B Vx € R™ Then a necessary
condition for the admissibility of 6r(x) is

. . 1 N
(3.1) lnfjeJ lel |V] (x)2| m f(x) dx = 0.

Before we proceed to prove the theorem, we would like to make a remark
about the condition | V log f (x) | < B. This condition is same as the one in Brown
(1971). We are not aware of any statistical interpretation of this condition in the
present problem. The only interpretation we can give here is that it is a growth
condition on the measure F. In what follows we will drop the subscript F in 8.

PROOF. Suppose 6(x) is admissible. Then by Stein-LeCam theorem (see
Berger, Zaman and Berliner, 1981) there exist a sequence of spherically symmetric
finite measures {G,} with compact supports on ©* such that

(1) [ps(x)G.(d) = 1 for | x| < 1, for all n.

(ii) R(Gn, 8) — R(G,, 6,) = [ (R(6, 6) — R(0, 6,))G.(df) — 0 as n — o, where 5,
is the Bayes estimator with respect to the measure G,.

Now, formula (2.1) and routine calculation yields

R(G,, 6) — R(G,, é,) = f (6(x) — <3n(x))‘<V2 f e”‘e’l/Q'”'an(d0)>
(3.2) - (8(x) = 8,(x))e V2151 gy

=f ‘ fUxD _ gdlxl)
F(xD)  gallxl)

2
gh(lx| )e.—(l/2)lxl2 dx
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where

f(x]) = j; (% sinhu|x|>u2e—l/2ﬂpl(du).

f'(Ix])=(d/d|x])f([x]) and, g.(] x|) and g/(| x|) are similarly defined. The
rest of the proof involves constructing a smooth sequence of functions which give
lower bounds of (3.2). Towards this construction, define a sequence of nonnega-
tive piecewise differentiable functions {q,(z)} as follows. Let C > 1 be a constant
such that g/ (z)/g.(z) < C(f’(2))/f(z) for z = 1. Set q,(z) = g.(2) for z <1 and
define

. |d d
log ¢.(z) = fl min {3; log g.(y), C dy log f (y)} dy

+ log g,(1) forz = 1.

(3.3)

Then g, has the following properties.
(i) Since (d/dz) log q.(z) = (d/dz) log g.(z) for z > 1,
(3.4) log gn(z) — log n(1) < log gn(2) — log g,(1) for z>1,
and so q,(z) < C,g,(2) for all z for some C; > 1.

(i) gn(2)/8.(2)
qn(2)/qn(2)

i) g,(2) =nm(g,fn(z) 1 fﬂ)
74 (2) g.(2)" Cf'(2))

0.(z) _ f(2) 2<‘gn(2)_f(_2)
a:2) f@) | T | f)

Denoting | x | by r, we thus have from (3.2) and (3.4) (iv)),

f ‘ [0 _ &(r)
f'(ry  gn(r)
(3.5)

=1forz>0,

2

(iv)

2

gn(r)e?" dx
gl 1)

Zf 0.0 ()

Now, let jn.(r) = q.(r)/f(r). We can assume without loss of generality that
Ja(r) = q.(r)/f(r) =1 for r<1.

2
gL (r)e= /2" gy

Moreover j, satisfies the following conditions.

a) jn(r) < gu.(r)/f(r) for r = 1;

b) By Lemma 2.1, j,(r) — 0 as r — « for all n.

(3.6)
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Substituting j,(r) for g,(r)/f(r) and using polar coordinates, we get

f 0a(r) _ f(r) |?

qn(r)  f'(r)
= ) 4 - q’ 2 _—.g'lz(r) —(1/2)r2,.m~1
$1 J; 1 gn(r)f'(r) = qn(r)f(r) | @ rmt dr

gn(r)e™/2r" dx

@87 = slj; Lin (M (P (r) = Ga(r)F(r)) f(r) |2

g'/’ (r) -(1/2)r2rm—1 dr

@O )
s OB o
“u ], o P R EA

where s, is a constant. Invoking now the property (ii), g/, (r)q.(r)/g.(r)g,(r) = 1,
of (3.4) we have therefore

S iy 2 f4(") 1 —(1/2)r%,.m-1
(3.8) 3.7 = C) f [7a ()| Tz (r))2 0 e~ WA pm=L dp,

Appealing now to property (iii), g.(r)/q.(r) = 1/C (f(r)/f’(r)), of (3.4)

6912 ¢ [ i L0 i

=Cs | |ha(r)]? &- e~ (1/2rm=1 1.
(f'(r)?

where h, (r) = j}*(r). Recalling the definition of f(| x| ), observe that

(3.9)

f(x]) = f ve'|*lg=W/2”F (dy) = ﬁ e'1*le=/27F (dy).

Therefore, setting f (1z]) = [ e"1¥le” 2"\ (dy), it is easy to see that the
assumption | V log f(x) | < B is equivalent to

LFUx/f(lx)) = |x|] <B.
Moreover, by Schwartz inequality
FaxD/fdx)) = (FUxD/FU x>

Combining these facts along with Lemma 2.3 we have, for all large r > 0

fi(r) f(r)) Y

(3.10) FrE = (f(r))’ (f( ) ,(r)> = Cu(f(r)*.
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Therefore, using the estimate (3.10) in (3.9) and by Lemma 2.3 we get

f(r)e —(1/2)r2rm—1 dr

’ 2 1
(3'9)20"f NIy t)

- ’ 2 1 _ rd —(1/2)r2 . m—1
_cﬁflhnml G ey e dr

Finally, recall that | f(|x|)/f(|x])|?=< 2| x|?+ 2B and, note j, and hence h, =
7./ belong to the class J. Therefore,

(3.11)

(312)  R(Ga, 6) = R(Gn, 5,) = Cinfje,,fll>l G =) 7 fx) dx

1+ |x
for all n. Appealing to the Stein-LeCam Theorem now, we have that 6r is
admissible implies the right side of (3.12) is zero. This completes the proof.

A few comments are in order at this stage. A necessary condition for the
admissibility of 6 can be obtained without the growth condition |V log f(x) | <
B. We stated our Theorem 3.1 with this condition mainly because it gives an
elegant as well as easily verifiable necessary condition for admissibility (what
can be easier than convoluting a measure with the normal density and obtaining
estimates for its tail behavior!). Below, we give a version of Theorem 3.1 without
any assumption.

Let 6-(x) = ¢(]x|) (x/| x|) be the generalized Bayes procedure with respect
to a spherically symmetric measure F' with unbounded support. Then we have
the following result.

THEOREM 3.2. A necessary condition for the admissibility of 6r(x) = ¢(|x|)
(x/] %) is

C e . : _ 1 m— _
mf,leU (r)|2¢q(r)eXp< f(r ¢(r)> dr>r ldr=0

where, [ (r — 1/¢(r)) dr is the usual indefinite integral and J = {j € J: j is
spherically symmetric}.

ProOOF. The proof follows from the Stein-LeCam theorem, step (3.9) of the
proof of Theorem 3.1 and the fact that ¢(|x|) =f(|x[)/f (| x]).

We conclude this section with a result which gives a necessary condition for
the admissibility of a spherically symmetric procedure which is not generalized
Bayes. Many of the procedures proposed for the control problem in the past are
not generalized Bayes (they are, however, approximately generalized Bayes; see
Berger, Zaman and Berliner (1982) for details). Indeed, the complete class
obtained by Zaman (1981) contains, in addition to all the generalized Bayes
procedures, a plethora of nongeneralized Bayes procedures. In view of this, it is
important to know whether a given spherically symmetric procedure (procedure
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belonging to Zaman’s complete class) is inadmissible. The following theorem
gives a necessary condition for admissibility of such estimators.

THEOREM 3.3. Let 6(x) = ¢(|x|) (x/|x|) be a spherically symmetric esti-
mator. Let J be as defined in Theorem 3.2. Assume, for every K> 0

(%) lim,.wexp<Kr - f m dr) = 0.

Then a necessary condition for the admissibility of 6(x) is

inf;c; J;l |7/(r) | 203(r) <exp<f ——dr - r2/2>> m=1 gr = 0.

PROOF. Suppose 6(x) = ¢(|x|) (x/] x|) is admissible. Then, by the complete
class theorem of Zaman (1980), ¢ (r) = f(r)/f'(r) where f(r) = [ 1/ sinh nru(dy)
for some finite measure u. Therefore,

fzl) = f_
) = (Tep) Txy WReTe f) = oGy A

Also, for any finite spherically symmetric measure G with compact support, g(r)
< Ke™ for some K > 0 where g(|x|) = [ 6,e"!*le=/21*"G(dg). Combining the
above two facts with the assumption (), it follows that lim,_.(g(r)/f(r)) = 0 for
every g(r) given by a finite measure G with compact support. With this obser-
vation, one can easily adapt the proof of Theorem 3.1 to the present situation
and the above theorem would follow from step (3.9) of Theorem 3.1.

4. Sufficient condition.

THEOREM 4.1. Let 6r(x) be a generalized Bayes estimator with respect to a
spherically symmetric prior F. Assume
(4.1) |V log f(x)| < B.

Then a sufficient condition for 6 to be admissible is
(%) inf; f | Vj(x) |* 1 f(x)dx =0
g [x]=1 J 1+ |x)? ’

PROOF. Assume (*) holds. We shall exhibit, for a given ¢ > 0, a finite measure
G on ©* such that

(4.2) f (R(0, 6r) — R(6, 6¢))G(dF) < e.

Then it would follow from Stein-LeCam theorem, since ¢ is arbitrary, that & is
admissible. Towards this, let n > 0 (to be chosen later) be fixed. Then, by Lemma
2.4 (note the conditions of the lemma are satisfied here) there exists a function
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J € J such that

N | 5
lel | Vj(x) | —1+|x|2f(x) dx <7

and possessing the properties (ii), (iii), and (iv) listed here. We can take, without
loss of generality, j(x) to be spherically symmetric. Define the measure G by
setting G(df) =j(| 0| )F(df). Plainly, G is a spherically symmetric finite measure.
Set #(|x|) = [ pi(x)G(d6) and g(| x|) = e**I"4(| x|). Let g’(| x|) and g”(| x |)
denote the first and second derivatives of g. Define §’(|x|) and g”(|x|) by
setting

&'y )—i<(;>) f hree”IG (d)/g(y)

~,,( ) = g"((y)) f 0%8””8"””'”'2G(d0)/g(y).

F'(1x|) and f”(| x|) are similarly defined. For the rest of the proof, x appearing
as an argument of a function should be interpreted as | x |. Thus f(x) = f(] x|),
f'(x) = f’(Jx|) and so on. Also, the constants that appear in the proof that
follows are absolute constants depending only on the dimension m and the
constant B in (4.1). Then it is easy to show that

R(G, 6r) — R(G, bc) = f (R(8, 6r) — R(0, 66))G(d0)

_ gx)  fx)
(45) _f‘é”(x) f"(x)
<2”§'(x>_f'(x>
B g'(x)  &"(x)
o) F@|?

t44) +2f e ar)

where po(x) = e¥/21=1”. We shall obtain below upper bounds for the right side of
(4.4). Consider the first term. By Lemma 2.5,

f ) [
&) &'

2

8" (x)g(x)po(x) dx

2

8" (x)g(x)po(x) dx

8”(x)g(x)po(x) dx

8"(x)g(x)po(x) dx

= f 18" (x) = [ (x) |” ;%x—) g(x)po(x) dx

(45) <Cf|g<x> P 7
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(46) <c| 7 | Gy = s, - Penpora as

by Schwartz inequality. Now consider the 2nd term of (4.4). By Lemma 2.5,
2

L - __l__ Fr 25nm
f é//(x) ]'Z//(x) (f (x)) 14 (x)g(x)pO(x) dx
~n ” 2 (f (x))2 1
4.7 flg x) = f"() | F )2 (= )g(x)po(x) dx
= Cf 18"(x) — f(x)|? (; (( ; g(x)po(x) dx.

Observe now,

48)  §"(x) - f(x) = f 03 = 7)) (P0) — j*(x))pe(x)F(dh)/§(x)

and therefore

(4.7) <Cf

. (}f’(x))2 fz(x)

(f"(x))? g(x)

since £(x) = po(x)g(x) and f (x) po(x)f(x). It is easy to see, by assumption (4.1)
and Lemma 2.3, f”(x) — (f’(x))? < B,. Using this estimate, we have

Po(x

)F(df)
fx)

f 03 = F/@)GA0) - ) 5

4.9

Po(x) dx,

— (F/(x)ADGHO) — j2(x))po(x )f(—

(f (x))? fz(x)

(4.10) TP 2) po(x) dx
+Cf I f(ﬂ(ﬂ — j*(x))pe(x) Z0)
(f'(x))* f(x) .
@) g P 9

call the two terms in the right side of (4.10) as I and II respectively. The term II
can easily be bounded as follows. Using Schwartz inequality

- 2 pa(x)F(dl?))
Il_f<f<;(o>+;< Dl

oy oo PAOFED) (@) F)
(f S (& )(f”(x ) P

(4.11)
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Lemma 2.4 (ii) along with Lemma 2.2 implies

f(](ﬁ) + j(x))ps(x) f( )< Cj*(x)

and

f(x)/g(x) = Cj*(x).
Combining these two facts along with (4.11), we have
(4.12) I<cC f f (J(0) = j(x))’pe(x)F(dO) ———; (f”( ))2

because, by Schwartz inequality, f”(x) — ( f'(x))? = 0. Consider now the term I
on the right side of (4.10); writing 6% — (f'(x))? as (0, + F/(x))(6, — F’(x)) and
J3(0) — j*(x) as (j(0) + j(x))(j(8) — j(x)) and using Schwartz inequality we have

(f (03 = (7 @) I(20) = *(x) %ﬁ@)
mnwv
f(x)

X<Jxﬁ—f%wﬁuw>—ﬂ>V&%¥%ﬁ§

(4.13) (f(m+f<wﬁuw)+n>vp”

Now recall that x = (| x|, 0, - - -, 0) and therefore

O+ F(x)? = (O = |x| + | 2] + f'(x))?
=200 —x|*+2(]x| + F'(x))>

But, by assumption (4.1), lf'(x) +|x||=B+2 lf'(x)l and hence

(4.15) 0+ f(x)2=2|x—0|2+2B2+ 4|f'(x)|2

Using this estimate along with Lemma 2.2 and Lemma 2.4 we can bound the
first term on the right side of (4.13) as follows:

(4.14)

2 - . \vo Do(x)F(df)
(0 + £ (x))*((0) + j(x)) T @)

Clx—0| pﬁ(x)F(dO)

fx)
Combining (4.16) and (4.13), and using Lemma 2.2 and the argument leading to
(4.12) we have

Fr 2
(417 Ist}1+fmm2%%%%j}ﬂm—qu

— f'(x))py(x)F(db) dx

(4.16) ,
= Cj%x)(1 + (f'(x))?) f e
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418)  =C f 7 f (J(0) = j(x)*6: = F'(x))*po(x)F(d6) dx.

Thus (4.7) can be bounded by (4.12) and (4.18) via (4.8) and therefore we have

(419 @M =C f o f [0 = F'(x)* + €1 ((9) = j(2))*po(x)F(db) dx.

In obtaining (f1.19), we have used the fact f'(x) > 1 if |x| > B+ 1 Dby (4.1) and
therefore inf f”(x) > 1/C > 0. Now, going back to (4.6) and combining it with
(4.17) we therefore have

(4200 R(G, 5) = R(G, 60) = C f 5o f [0 = F'(x)? + C]

- (J(0) — j(x))’py(x)F(df) dx
1 f Clx=0|¢ ; — 1 2

(4.21) <C f ) e (J(0) — j(x))

- po(x)F (df) dx
since |6, — f'(x) | < |9 — x| + |x— f'(x)| = |6 — x| + B. Observe now that by
Lemma 2.2 and the assumption (4.1), we have for | x| > B + 1,
(0 C+|6’|2<C+2|x|2+2|x—6’|2
"(x) T |x|*-B "~ x*— B

Fo
) =

(4.22)
C+2B+1)
=y

B
and therefore, using (4.22) in (4.21), we get

2|x—0|1>’<C+Clx—10]?

(4.23) (421) =C f f—to—) f el () — j(x))%ps(x) dx F(d6).

The inner integral in 4.23, using the property (iii) of j listed in Lemma 2.2 and
following the argument of Brown (1971), can be shown to be bounded by

(4.24) C f f f | Vj(x) |2~ W/2Nx+e+W=01 gy de W
|£]=C+1 ‘

|W|=C+1

(for details see Brown, 1971, page 895). Substituting (4.24) in (4.23) and using
(4.22) again, one gets

1
: - V. 2 F f f f
(4.21) = Cfl )| f7(x) Jigi=c Jigi=c Jig1=c

X p(,(x + El + EQ + E3)F(d0) dx dEl dEQ d£3

(4.25)
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. R
(4.26) = Cf | Vj(x) | ) f(x) dx
. 1 A
(4.27) =C f | Vj(x) |2 m f(x) dx.

In obtaining (4.26) and (4.27) we have used (4.1) repeatedly. Thus we have shown

- R(G, 6r) — R(G, 6¢) = Cf | Vj(x)|? E f(x) dx < en

1+ |x
where C is an absolute constant. Finally, by choosing n = ¢/C the proof is
completed.

REMARK. The above theorem can be generalized by weakening the condition
(4.1) along the lines of Srinivasan (1981). Such a weakening of condition (4.1)
would result in a weakened version of the Harnack inequality, Lemma 2.4 (ii)
(i.e. the constant B, which appears in Lemma 2.4 (ii) would depend on f(x) in a
nontrivial way) and mean value property (Lemma 2.4 (iii)).

5. Applications. A look at the statements of Theorems 3.1 and 4.1 clearly
indicates that, modulo certain growth conditions on the spherically symmetric
prior, the necessary and sufficient condition for admissibility of a generalized
Bayes estimator is that the infinum of a certain variational problem be zero. It
is well known (see Brown 1971, Srinivasan 1981) that this latter condition is
equivalent to certain nice behaviour of the tail of f(x) = [ pe(x)F(df). The
following theorem, stated without proof, summarizes this fact.

THEOREM 5.1. Assume the condition |V log f (x) | < B. Then a necessary and
sufficient condition for the admissibility of 6 is

14 r?
(5.1) J: rm—_l—fmdr=oo

The conditions of the above theorem are easily verified for all reasonable
generalized priors. In a given situation, all one has to do is to compute or obtain
estimates for f(x) and its first two derivatives. As an example, we consider below
the class of spherically symmetric priors given by the density | 6] df, ¢ >
1 — m. This family of priors was treated by Berger and Zaman (1980) and they
have shown that the corresponding generalized Bayes estimator is given by &.(x)
=(|lx|*+c)x+ | x| *W(]x|)x where W(|x]|) = O(1) (as | x| — ) and this
class of generalized Bayes estimators contains most of the estimators proposed
for the control problem. A

Let fc(x) = [ py(x) | 0| df. For ¢ > 1 — m, f.(x) is finite for all x and, since
| (d/dr) log r™'| < B for large r, it follows |V log f.(x)| < B for all x and ¢ >
1 — m. Moreover, f.(x) = O(| x|°™) for large | x|. Therefore an application of
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Theorem 5.1 would imply 6.(x) is admissible if and only if

71+ |x|?
I lxlm—llxlc—ldlxl_oo,

i.e. 6.(x), is admissible if and only if m + ¢ — 4 < 1 or m + ¢ < 5. In particular,
the generalized Bayes estimator with respect to the Lebesgue measure 6(x) =
x/(1 + | x|?), which is obtained by setting ¢ = 1 above, is admissible if and only
if m < 4. It is appropriate to point out here that the inadmissibility part of the
above example (i.e. 6. is inadmissible if m + ¢ > 5) was first obtained by Berger
and Zaman (1980) by a different argument. Stein and Zaman (1980) proved the
admissibility of 5(x) for dimension m = 4 and its inadmissibility for m = 5. There
have been other spherically symmetric procedures, which are not generalized
Bayes, proposed for the control problem. Takeuchi (1968) considered procedures
of the form 6°(x) = (1/(c + | x| ?))x, for ¢ > 0 and has obtained certain asymptotic
efficiency results for them. These procedures are not generalized Bayes. The
following result, a consequence of Theorem 3.3, shows Takeuchi’s procedures are
inadmissible for dimension m > 5.

THEOREM 5.2. The spherically symmetric procedure 6§(x) = (1/(a + 8| x| ?))x,
a>0,8>01isinadmissible if 3>1orB3=1and a + m > 5.

PROOF. It is easy to check that Theorem 3.3 is applicable here. Therefore,
to prove the result, it suffices to show

(< ) L
(5.2) J: GIE exp<2 5() dr = dr

is finite, where ¢(r) = r/(a + Br?). Since [ (1/¢(r)) dr = a log r + 8(r?/2),

m—-l-a

(5.3) (5.2) < f Ll euem g <o
1 rr

if3>1orB8=1and a + m > 5. Hence, 65(x) is inadmissible when 8> 1or 8 =
land o + m > 5.

There is yet another spherically symmetric estimator which has been treated
in great detail by econometricians (Anderson and Taylor, 1976; Basu, 1974). It
is the so-called certainty equivalence estimator given by 6,(x) = x/| x|% For
obvious reasons, 6o(x) is the most natural estimator to be considered for a control
problem. §,(x) has some very nice asymptotic properties including asymptotic
normal distribution. Since 6,(x) has infinite risk in low dimensions (for m < 2),
a truncated version of it, 6x(x) = min(K, 1/|x|) (x/| x|) has been recommended
by Anderson and Taylor (1976). It follows from Theorem 5.2 that either of these
estimators is inadmissible if m = 6.

We conclude this section with a few remarks of general nature. One could
propose scores of nonspherically symmetric procedures (particularly, generalized
Bayes procedures) for a control problem. The interesting ones would be radial
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inverses of the known admissible estimator of 6, especially the inverses of (i)
linear shrinkers considered by Cohen (1966), (ii) the linear estimators treated by
Lindley and Smith (1971) and the ones developed and recommended by Rao
(1976) from compound decision theoretic considerations. It would be of great
interest to know whether any of the above procedures are admissible, and if not,
how far are they from being admissible. Though we do not have answers to all
these questions, we have a generalization of Theorem 4.1 to general priors. As
for an analog of Theorem 3.1, we have only partial results. These generalizations
and their applications, hopefully, will appear elsewhere.

APPENDIX

PROOF OF LEMMA 2.5. Let j € J be the spherically symmetric function given
by Lemma 2.4 satisfying the Harnack inequality j(x)/j(y) < ce¢'*™!. Let G(df)
= j%@)F(df) and §(x) = | ps(x)G(dB). Assume, without loss of generality x =
(]x],0 ---0). Then, by Lemma 2.2

(A1) &(x) = c%*(x) f e*1*'Ip, (x)F(df) < ¢1j*(x)f (x)

where, of course, f(x) = [ py(x)F(df). Now, setting f”(x) = f"(x)/f(x), f'(x) =
f(x)/f(x), it follows from Schwartz inequality and Lemma 2.3
(A2) 0<f"(x) = (f'x)’=<c and |f'(x+¢&) —fx)]|=<clx—¢l|
Therefore, for any £ such that | £| < B, and | x| large (say | x| > (B; + B + 1)?),
we have
ffatd) _c+|f'x+8))
") (f"(x))*
c+ctlx—¢]2+ (|x| + B)?
(x| = B)®

(A3)

<B1<°°.

Consider now g”(x)/g(x). By the Harnack inequality and (A1), it is easy to see
g"(x) _ [ 0ipy(x)j*(6)F(dh) o J0ips(x)e”**1F(df)

= — = ¢y =
g(x) 8(x) f(x)

Now, by (A3), Lemma 2.2 is applicable for the measure u(df) = 63F(df) and
therefore we have ‘

(A4)

f 03py(x)e > 1*"1F(df) = c3 f 03Py (x)F (df)
for all x. Using this fact in (A4) we get

g'x) [ 0ip@F(do) _ ")
gx) — f(x) ffx)

This completes the proof of the Lemma.
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