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ADAPTIVE DENSITY FLATTENING—A METRIC DISTORTION
PRINCIPLE FOR COMBATING BIAS IN NEAREST
NEIGHBOR METHODS'

By IAN S. ABRAMSON

University of California at San Diego

With a wide variety of approaches to density estimation, it is profitable

to perturb the data so as to make 2nd order derivatives of their density vanish.

* An adaptive transformation to local uniformity for instance will (for un-

changed variance) lower bias to a vanishing fraction of what a Rosenblatt-

Parzen or nearest neighbor estimator on the raw data yields; fractional pilot

sampling, a common technical device of little practical appeal, can be shown

by an embedding argument to be dispensable. An upshot is that MSE can be

lowered by attacking the variance directly through extra smoothing, without
the usual penalty from inflated bias.

1. Introduction. Consider a nonparametric density estimation problem.
Many estimator forms and loss conventions indicate somehow balancing (through
a smoothing parameter) two measures: one of bias and one of variability. This
can impose a disappointing ceiling on the performance available; certainly error
rates fall short of the regular parametric ones.

Mack and Rosenblatt (1979) point out that bias decay can be particularly slow
in regions of low density or in high dimensional problems, and the practitioner’s
experience bears this out; high dimensional spaces are hard to sample represent-
atively with samples of familiar sizes. Friedman (1981) spoke of a tendency rather
for the near neighbors of a point to string themselves out along the line of
steepest ascent of the density.

A transformation to uniformity is at the heart of our proposal; it springs from
an observation that for many approaches to the problem, the bias is locally driven
by the curvature of the density (or a combination of second partials when working
in several dimensions).

The method is not claimed to bring about any strong uniform optimality (in
the sense of Stone, 1980, say). Simply, given a user’s naive procedure of a rather
general kind, fully specified even down to choice of smoothing parameter, this
data transformation will improve performance by reducing bias. Some degree of
extra smoothing could then lower variability too, but we advance no rigorous
guidelines for doing this optimally. ‘

The nearest neighbor framework makes a particularly natural one for applying
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these ideas—it enjoys a certain closure property when the transformation and
estimation phases are put in tandem—the notion of metric distortion is intro-
duced for this purpose.

The theoretical aspects are complicated by admitting two-pass methods—
reusing the data on which the adaptation is based. Path analysis of an error
process resolves the difficulties, but our findings are incomplete for higher
dimensions.

Work is underway on how analogous ideas can indicate optimal design trans-
formations in regression studies.

2. The problem and the transformation. A Lebesgue density f on R
gives rise to a sample Xj, - - -, X, on which to base a point estimate of f at 0, say;
we impose familiar local smoothness requirements on f, viz. continuous second
order partial derivatives D;.f near 0.

Assume | Dy, f(x) | = U and f(0) = L, where U, and L, are positive user-chosen
constants. This implicitly defines upper bounds U, and U, on f(x) and the
| Dif(x)| respectively. Call the Sobolev-like class of permissible densities
F 5 (Uz, Ly), or simply .

We adopt (with little loss) squared error loss at 0. For a wide variety of popular
estimation methods, each indexed by some “smoothing parameter” A\ say, we can
abstract a common form for the MSE:

E[fn(0) — f(O)F = A*(f(0))a*(n, \) + B*({Duf(0)})8%(n, N)

(1)
+ o(e?(n, \)) + o(B%(n, \)) as n — oo,

a sum of a variance and a squared bias. Moreover, the functional B?is a quadratic
form in {D;.f(0)}, vanishing when they do, and the indexing by A\ may be arranged
to make o2 decrease and (2 increase in \, as if, for instance, A were a kernel
bandwidth.

Wahba (1975) has assembled results to this effect in one dimension at least,
for spline based methods, orthogonal series estimators, and kernel estimators of
the Rosenblatt-Parzen type. Nearest neighbor methods share the property too,
as we see.

Asymptotic minimization of (1) in A leads to a balancing of decay rates in
o%(n, \) and 8%(n, \), determining a dependence of A on n up to a proportion; the
optimal multiplier depends on f, but two-stage adaptations can often be justified
(Woodroofe, 1970; Krieger and Pickands, 1981; Abramson, 1982a).

While the variance term in (1) seems generally unassailable, there are several
ways of eliminating the bias term. This allows balance to be struck at a smaller
value of the variance, but not knowing the precise rate in the remainder
o(B%*(n, A\)) may prevent an improvement uniform over <.

Two such methods, which are documented, are specific to kernel methods: the
technique of bandwidth variation (Abramson, 1982a) is one; the other requires
vanishing second moments of the kernel, and, untruncated, entails nonpositive
curve estimates. Density flattening is a third approach, and the focus of this
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paper. The rationale is as follows:

An estimator with MSE properties (1) would have bias o(8(n, \)) if applied to
data without local curvature in their density function. Restricting ourselves to
one dimension, consider an approximate probability integral transformation of
the {X,}; i.e., if g is a pilot estimate of f near 0 (consistency requirements to be
imposed as necessary), define

G(x) =j; &(£) dt

an estimate of the cumulative distribution F(x), but shifted for convenience to
fix 0.

Let Y, =g(0"'G(X); i=1,---,n.

{Y;} is a sample from an approximately uniform distribution.
If {X.} is independent of the pilot data used to construct g, then conditionally
on the pilot sample, the {Y}} are distributed according to density

u(y) = g(0)g(G™(8(0)y))'f(G™((0)y)) = (at y = 0) f(0) exactly.

We now estimate this quantity by sending the {Y;} through the original routine,
to which their near uniformity tailors them particularly well. This estimate,
f(0) say, is our proposal for a refined estimate of f(0). There is a version of the
theorem below, which would assert its superiority, but in the interest of simplicity,
we formulate it for a less transparently chosen transformation—one that achieves
a vanishing second derivative without constraining the first, or a density straigh-
tener rather than a flattener.

We first introduce the following notion to keep calculations tidy.

DEFINITION. A sequence of estimators T, based on samples of size n is said
to be determined on b,-neighborhoods of 0 iff there exists 2 > 0 such that
Thlx1, - -+, x,] = (1/n) ¥, ta(x;) with t,(x) supported on | x| < kb,.

In the sequel, we take b,t, and b3t; to be even and bounded. Regular delta-
type estimates are the natural examples, but other nonparametric estimators will
usually acquire the property on an innocuous modification.

THEOREM. Let T,:R" — [Lo, U] be a sequence of functions. Suppose there
exist A: [Ly, Uy) = [0, ), B = 0, B(n) — 0 with nvp(n) — «, such that: (i) T, is
determined on ~(B(n)-neighborhoods of 0, (ii) whenever x,, ---, x, is a random
sample from a density h€ &7,

lim sup,—..8(n) ™ | ET\[x1, - - -, x,] — h(0) | < B| h”(0) |
and
lim sup,_..B(n) 2var T,[x,, - - -, x,] < A(h(0))%

Let f € 1, and 6, be a bounded consistent sequence of estimators of 6 =
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Yef”(0)/f(0). Independently, let X,, X,, --- ~ f i.i.d. For each n, define Y,; by
Xi =Yy — 0,Y3, i = n. Then lim sup, ..0(n)™ | ET,[Yn, -, Yu] — f0)]
=0, and lim sup,_.B(n) 2var T,[Y,1, - - -, Y] < A(f(0))>

PROOF. Let T,[x1, ---, x,] = (1/n) ¥ t.(x;) with t, supported in [—kB(n)Y?,
kB(n)Y?]. Define a transformation D,: R — R implicitly, by x = D.(x) — tD,(x)?;
t real. D, is invertible, and Y,; = Dy (x;); i = 1, - - -, n. Let u,(y) be the density of
Di(x,), so that verifiably, u,(y) = f(y — ty®) |1 — 3ty?|, and u/(0) = 0. Letting
%, denote the o-field of 6,, the absolute conditional bias of T,[Y,, -+, Y]
may be written | E . t,(Y,:) — f(0) |, and bounded above by | Et,(Y;) — f(0) | +
| E (tn(Yn1) — t.(Y1)) |, where Y, denotes the unobservable Dy(X;). The second
term is at most

b

f () (s, (3) = uol¥)) dy
|y =kp(n)/?

and since u, and u, agree at the origin, and ¢, is an even function, we have in
turn a bound of

1
5 | f (VYA (W (en3) = Ui () dy |
|y <kpn)1/2

where | e, |, |¢| = 1, but vary with y, and are random through 6,. By explicitly
computing the second derivatives appearing, we readily find a constant M > 0 so
that

[E TalYni, -+, Yan] = f(0) | = | Eta(Y1) — f(0) | + MB(n) |6, — 0].
Finally,
lim sup,.B(n) ™ | ETa[ Y1, - -, Yan] — f(0) |
< lim sup,.=B(N) 'E| E +nTu[Yn1, -+, Yan] — f0) |
< lim sup,_...4(n)7'[| Et,(Y1) — f(0) | + EMB(n) |6, — 0]]
< lim sup,~.8(n)™' | Et,(Y1) — f(0)| + M lim,_..E |6, — 8|
= 0, as required.
As for the variance,
lim supn_.B8(n) 2var To[Yni, - -+, Yunl
< lim sup,—«B(n)2E var n To[Yn1, -+, Yan]
+ lim sup,_.B(n)2var E -, Tu[Yn1, -+ Yunl-

The second term is no larger than the limiting expected square of the scaled
conditional bias, which is zero as before; conditional independence among {Y,}
allows the first term to be written as

lim sup,_..n”'B(n)°E var ;[t,(Y1) + (t,(Ya1) — ta(Y1))],
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and since Y, has density f(0) at 0, it is thus sufficient to show that
lim sup,...n ' B(n) 2EE s p(ty(Yn1) — ta(Y1))? = 0.

The conditional expectation may be written in the form

2kB(n)1/2 P
— 2 24m N 2 o 2
6, —0) J: st tn(Dj (enx)) 20 Dj (x)* dx
where 6§, = 6,(x) lies between 6 and 6, and | ¢, | < 1 as before.

From the nature of the transformation D, and the bound laid down on
B(n)*?t!(.), this is bounded in turn by a multiple of (6, — 8)?>n3(n)*? and mean
square convergence of 6, to § completes the proof.

3. Nearest neighbors. When T, has the kernel format, the transformation
involved destroys one of the appealing features of the methods: the curve
contributions of which fn is a pointwise average are no longer identical, even up
to scale. We can argue, however, that nearest neighbor methods present no such
drawback. (Loftsgaarden and Quesenberry, 1965, gave a prototype without the
option to let the influence of the more distant near neighbors fade away rather
than be truncated at a sphere boundary.) Moore and Yackel (1977) proposed an
estimator

f2(0) = n7'R:P Yoy w(R:'X)),
where R, denotes the Euclidean distance to the kth nearest neighbor of 0, and w
is an even kernel function which we take to be compactly supported. Mack and
Rosenblatt (1979) investigated the asymptotic properties of £,(0).

We make a natural extension by observing that there is nothing sacrosanct
about the Euclidean metric, and admitting a locally invertible componentwise
distortion of the data:

X d(X) = [di(Xy) -+ dp(X)]T
where X,; denotes the rth component of X;, and d,.(0) = 0; d/(0) = 1, for close
local agreement with the original data.
The metric by which we gauge and order the nearest neighbor distances is

then Euclidean on the transformed data, and setting R;, = kth such distance,
we define

fa(0) = n7'RZE Y, w(RFAA(X)).

Mack and Rosenblatt (1979) have found the MSE for the Moore-Yackel form,
and our extension is narrow enough for their findings to carry over:

THEOREM. In the present context, the bias and variance of fn(O) are given by:
Bias(/,(0)) = (2m)'T(1 + p/2)#f(0)"*Q[£.)(0) (k/n)*"

+ 7P2T(1 + p/2)7f(0) J"‘"_ w(w) ¥ (du)k™
+ o((k/n)*?) + o(k™),
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where ¥, is uniform distribution on the surface of the unit p-sphere, and f, is the
density of the transformed data {d(X)};

Var(7,(0)) = =”2T(1 + p/2)"'f(0)? J;,, w(w)?® du k™' + o(k™?).

For proof we note merely that the transformed data has density given by

w(2)
dy

=fd ()1 +0(1) as [yl —0,

agreeing as needed with f(0) at 0.

The results are immediate from the corresponding expressions of Mack and
Rosenblatt (1979).

The smoothing parameter (earlier \) is of course k here. There is an unfamiliar
term in the bias which stems from forcing the kth nearest neighbor to lie exactly
on the skin of the near neighbor sphere, but the MSE expansion will still conform
to our prototype (1), so long as the other term dominates, i.e. k™ = o((k/n)*?),
or k™' = o(n™¥**?)), Violations of this may be excluded without loss, since
generally, k! « n~%P*% gives the optimal rate.

In one dimension, £,(0) and fn(O) will be related to each other as T,,[X;, - - -,
X,] and T;,[ Y1, - -+, Yan] in our theorem, provided d is a density straightening
distortion in the sense that y — fy® — y was one in that context.

fa(y) = f(d7(y)

4. On atwo-pass method with matching asymptotic performance. The
apparent need for an independent fractional sample to implement our proposal
is a shortcoming, but to admit arbitrary consistent forms for the pilot estimate
raises some daunting technical difficulties, and fully relaxing the independence
assumption seems to necessarily entail a weakened conclusion. By modifying the
notion of risk, the problem of justifying data reuse has been solved in one
dimension by path analysis of an error process. Details are available from the
author.
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