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OPTIMAL DESIGNS FOR TRIGONOMETRIC AND POLYNOMIAL
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Dedicated to Professor J. Kiefer

Consider a trigonometric regression of order m or a polynomial regression
of degree m. Explicit D,-optimal designs are given for some subsets of the
coefficients. Lauter type optimal designs are given for various models involv-
ing the order or the degree. The designs are calculated using canonical
moments.

1. Introduction. Consider the standard regression model where for each x
orlevel in 2 an experiment can be performed. The outcome is a random variable
Y(x) with mean Y%, 8;f;(x) and variance ¢, independent of x. The parameters
Bi,i=1, ---, k and ¢ are unknown while the vector of regression functions
" = (f1, ---, fr) is known. An experimental design is a probability measure £ on
. If N observations are to be taken and £ concentrates mass £; at the points x;
where N¢; = n; are integers, the experimenter takes N uncorrelated observations,
n; at each x;. The covariance matrix of the LSE of the parameters 8; is given by
(62/N)M1(£) where M(£) is the information matrix per observation of the
design ¢ with elements m;; = [f;f;d¢. For an arbitrary probability measure or
design, some approximation will be needed in applications.

One of the more commonly used criteria for choosing a design £ is the
D-optimality criterion which maximizes the determinant | M (£)|. This criterion
was developed largely by Kiefer (1959, 1961, 1962) and Kiefer and Wolfowitz
(1959, 1960) and many others. The justification for it rests, to some extent, on
the celebrated Kiefer-Wolfowitz Theorem. This result states that the criterion
of maximizing | M (£)| and the criterion of minimizing sup,f(x) M ~'(£)f(x) are
equivalent. The quantity f(x) M ~'(£)f(x) is proportional to the variance of the
LSE of the response, or the regression, at the point x. If only a subset of the
parameters is of interest, the corresponding design is usually called a D,-optimal
design. This corresponds to splitting the information matrix M into blocks

. _(Mu M,
- M <M21 Mzz)

where My, is s X s. The parameters 3 are correspondingly split into 8 = (81, 82)
where 8, contains the parameters of interest. The lower-right block of M~ is the
inverse of ¥ = Mgy — My M1t My, The D,-optimal design for estimating the
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384 LAU AND STUDDEN

parameters 8, maximizes | Z|. Since | M| = | M| | 2| this corresponds to
maximizing the ratio | M |/| My |.

When the regression function is a polynomial on an interval, say [—1, 1] the
matrix M (£) becomes the classical Hankel matrix with elements m;; = b;.;, where
b, are the ordinary moments b, = [1; x°d£(x). In the papers of Studden (1980,
1981, 1982) and Lau (1983), it was shown how explicit solutions could be found
for the D or D,-optimal criterion. This was done using orthogonal polynomials
and certain canonical moments. To accomplish this the determinants | M| or
|M|/| M| were expressed in a very simple way in terms of the canonical
moments, allowing obvious maximizations. The more difficult part was recovering
the design for a specified set of canonical moments. This was relatively straight-
forward but somewhat intricate.

The present paper is a sequel to the papers mentioned in the last paragraph.
Here, attention is focused both on the polynomial regression on [—1, 1] and the
trigonometric case. The latter situation has regression function

(1.1) g=(,cos 8, --- cosmb,sinf, --- sinmb), -7 <0<

Canonical moments will again be used to analyze certain aspects of trigonometric
regression on the circle —r < 6 < 7 and to show the intimate relation between
the trigonometric regression on the circlé and certain polynomial models on
[-1, 1].

The emphasis throughout the paper is more on theory than on application.
Polynomials, especially linear and quadratics, are in common use in simple one-
dimensional regression settings. Applications of low order trigonometric poly-
nomials are given in Mardia (1972). No specific applications are given here and
some of the examples may seem artificial. It is hoped that some study of the
designs and examples presented will provide some insight into the structure of
the D-optimal designs for the trigonometric settings and show the relationship
between the polynomial and trigonometric cases.

In Section 2, some results concerning canonical moments for polynomials are
described and reviewed. Section 3 introduces the canonical moments for the
circle and discusses some simple properties and related material. Section 4 gives
a different proof of the D-optimality for certain uniform designs on the circle
and gives D,-optimal designs for the cosines or sines and indicates the relationship
between these two sets of functions and the classical Chebyshev polynomials of
the 1st and 2nd kind. An analysis, originating with Lauter (1974), which provides
for a sort of prior to be put on the cosines and sines, is also discussed in Section
4. In Section 5 the Lauter type analysis is carried further in discussing certain
robust type designs for the order in the trigonometric model or the degree in the
polynomial model. Section 6 contains some very brief remarks on further results.

2. Polynomial regression. Before starting a discussion of the trigono-
metric regression in (1.1), the canonical moments for the ordinary powers are
described and some material needed in latter sections is reviewed.

Let f(x) = (1, x, - - -, x™), x € [—1, 1]. For an arbitrary design or probability
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measure £ on [—1, 1] let b, = [x*d&(x), k=0, 1, - - - denote the ordinary moments
of £. Let b} denote the maximum value of the ith moment for fixed bo, by, bo,
-+, b;—;. Similarly let b; denote the corresponding minimum. The canonical
moments are defined by

(2.1) pi=(b; =)/ = b7), i=12,---.

Note that 0 < p; < 1. By convention the canonical moments are left undefined
whenever bj — b; = 0 and the sequence is terminated. It was indicated in Studden
(1980) and shown in Lau (1983) and Skibinsky (1967) that the determinant
| M(£)| could be evaluated in terms of the canonical moments. This value was
given by

(2.2) Dop = | M(£)| = kn [T (.(2i—1.(2i)m+l_i

where kn, = 2™, go = {o =1, {1 =py, §i = qipi, i = 2 and p; + ¢; = 1. An
inspection of (2.2) shows that the D-optimal design maximizing | M(£)| has
canonical moments.

D2iv1 = 3, i=0,1.-.-,m—1
m-—i+1
2. =, 1=1,2, ..., m—
23) P om—girr (T hEomol
p2m=1-

We have used the fact that the canonical moments p; range “independently” over
[0, 1]. The odd moments equal to % correspond to measures symmetric about 0.
The sequence (2.3) is a basic sequence; the even moments starting from the top
are simply 1, 2, %, ¥, etc. It was indicated in Studden (1980) that these are
closely related to Lebesgue measure on [—1, 1] which has odd canonical moments
equal to one-half and even canonical moments given by Y5, %, %, - - -

Standard procedures are available for recovering the measure or design cor-
responding to (2.3) or any sequence where p,, = 0 or 1 for any n. Some of the
procedures are described in Studden (1982) and Lau (1983) and will not be given
here. For the D-optimal moments in (2.3) the measure £, as is well known, has
equal mass on the roots of (1 — x?)p,(x), where p, is the mth Legendre
polynomial orthogonal to Lebesgue measure on [—1, 1].

The case where estimation of only the highest s coefficients 8,4, ---,
Bn(r + s = m) is of interest was considered in Studden (1980). The canonical
moments in (2.3) then change so that py; =% fori=1,2, ..., r.

Certain weighted regression situations were considered in Studden (1981).
Here, the regression vector f(x) = (1, x, --- x™) is replaced by f(x) =
Vw(x) (1, x, - -+, x™). The weighted regression is easily shown to be equivalent
to letting the variance depend on x through o%(x) = ¢%/w(x). Special cases of
w(x) will be used in the analysis of the trigonometric regression, so the determi-
nants corresponding to (2.2) are listed here. The proofs are given in Lau (1983).
If f(x) = Yw(x) (1, x, ---, ™) and w(x) = 1 — x* the determinant (2.2)
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interchanges p; and g;. That is
(2.4) Dom = | M(8)| = Bm [121 (yaicaye:)™

where v; = q1, v; = pj-1¢;,] = 2, 3, - - - and k, is given in (2.2). If f(x) = Vw(x)
1,x,---,x™) and w(x) = (1 — x) or (1 + x) then the corresponding determinants
are respectively given by

(2.5) Doms1 = bm T %0 ($2i$2in)™
and
(2.6) Domir = lm TI%0 (yaivaie)™

where In /,, = (m + 1)®In 2.

Some robust type D-optimal designs were considered in Studden (1982). Here
one is interested in getting close to D-optimality for regression of degree r while
guarding to some extent against the coefficients 3,1, - - -, B being not zero.

In Lau (1983) a rather extensive investigation of the canonical moments was
undertaken. These results allowed for some simplification of the proofs of earlier
results and provide many new applications.

The canonical moments for the powers can be generalized to the Fourier
coefficients on the circle, where analysis is actually much simpler. This is
discussed in the next section.

3. Canonical moments for trigonometric functions. Here we are deal-
ing with the vector of regression functions g given by (1.1). For certain questions
it is easier to work with the complex form using

(31) h = (e—im{), e—i(m—l)o, e, 1, ei{)’ ceny, eime)

The functions in g are simple linear combinations of those in (3.1) so that we
may write g = Sh where S in a nonsingular square matrix of size 2m + 1. The
information matrix M, = [ gg’ do, for a given design on —= < § < =, can then be
written as

M,(s) = SMy(a)S’ = ST(a)JS’ = ST (s)S.

The matrix J has ones down the diagonal from the upper right to lower left and
zero elsewhere and the bar on S denotes complex conjugate. The matrix T is the
classical Toeplitz matrix of size m +1 X m + 1.

1.

(3.2) T = Tom = (ci-j) =0

where

Cr = f e ™ dg(), k=0, *1, +2, ..., +2m.

The determinant of T, will be denoted by A, = | T} |.

It is fairly well known that a given sequence co, ¢i, - - -, €141 iS a trigonometric
moment sequence iff A, =0, k=0, 2, ---, ]+ 1. In this case, if ¢y, ¢1, - - -, ¢; are
given, the inequality A;4; = 0 provides limits on c¢;4+1. It can be shown that the
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value of c;4; is contained in a specific circle depending on ¢, ¢, ---, ¢;. For
example c; can be anywhere in the unit circle so that the first canonical moment
is given by a; = ¢;. If ¢, is fixed then A, = 0 if and only if | c; — ¢} |* = A}. Thus
¢, lies in a circle of center c? and radius A;. The second canonical moment is
therefore given by

_|€ C2
. e cf G
TA A,
In general the (I + 1)th canonical moment is given by
C
(3.3) = (1) =2 1=0,1,2, -
A
where
Ci1 = lciijn |f',j=0-

The a;, are defined only as long as A, > 0. A discussion of the ¢; and some of the
material below can be found in many sources. The best for our purposes seems
to be Geronimus (1948). He shows, among many other things, that

(3.4) A= [ (1 — |a|®)F

If the measure ¢ is symmetric about zero there is a close connection between
the quantities a; defined in (3.3) and the quantities p; defined for the polynomial
case in (2.1). If ¢ is symmetric about zero then [ sin k0 do () = 0 and the a, are
real. There is a 1-1 mapping between symmetric ¢ on the circle and measures £
on [—1, 1] defined by projecting o on [—1, 1] by the mapping x = cos 6. The
function cos k8 = Ti(x) is a polynomial in cos § of degree k which is the classical
Chebyshev polynomial of the first kind. In this case ¢, = [1; Tk(x) d£(x). Using
the fact that the highest coefficient of T} is positive, we can argue from the
geometrical definitions of @, and p, that we have

(35) a = 2pl - 1.

That is, p; is the normalized distance of b, from the lower end of its range while
a; 1s measured from the center.

Some simple properties of p, can be derived readily from more accessible
properties of a;. For example, if we rotate (counter-clockwise) the measure o
through angle 6, to give du(8) = da(6 — 6,) then the resulting moments c}, satisfy
¢l = e *%¢,. Writing down the definition of a/, one can extract factors of e*®
from various rows and columns in the determinants involved to show that

(3.6) al =e g, k=1,2,---.

Using (3.6) with 6, = 7, we can immediately see the result on the p; of reversing
a measure £ on [—1, 1]. That is, if £ is on [—1, 1], and d{’(x) = d&{(—x) the
resulting transformation on the circle rotates  through an angle 6, = =, in which
case a} = (—1)*a.. The corresponding p;. then satisfy ps; = ps; and psis1 =1 —

D2i+1.
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In most of the applications below, determinants related to A, or | M, |, etc.
will be maximized. The resulting answers then appear in terms of the a; or p;. As
in the polynomial case, the problem arises of how to recover the resulting design
o. In most cases the problem will involve a design ¢ symmetric about zero in
which case the corresponding ¢ can be found and projected symmetrically back
onto the circle. To find the £, as mentioned previously, we shall appeal to results
in Studden (1982) or Lau (1983). The procedure in obtaining £ is based on the
fact that the support of £ consists of the zeros of certain orthogonal polynomials
which are written recursively in terms of the canonical moments. The weights or
mass on the support are then obtained by solving certain linear equations. The
general trigonometric case is available. In certain limiting cases where we have
an infinite number of | a;| < 1, the corresponding density is of some interest. For
completeness we therefore describe some of these results.

Given the values cy, ¢, - - -, the canonical moments a,, a,, - - - are defined by
(3.3). The canonical moment a; will satisfy |a;| < 1 as long as A; > 0. The
corresponding orthogonal system of polynomials is defined by

Co C -+ Cp— 1
C.1 Co -+ Cpg 2
1
(3.7 Pu(2) =
k Apy :
C—k e zk

These are orthogonal with respect to ¢ in the sense that

f Pi(2) Pi(2) do = duhy

where h; = Ap/Ar-1 and z = e”. Define P}(z). = 2*P(2™") where P denotes that
only the coefficients have been changed to complex conjugate. The polynomials
Py, satisfy

Po(z) =1
(3.8) Ppi1(2) = 2Pp(2) — @p1 PE(2), K=0,1, ---.
If the sequence q; is such that |a;| < 1,i=1,2, ---, n and |a,+;| = 1, the

corresponding ¢ is unique and supported on the zeros of P,.1(z) = 0. These roots
are all distinct and all on the unit circle z = e”. This follows since A,,; = 0 and

f |Pn+1(z) |2 dO' = An+1/An = O~

The weights can be found in simple cases by solving certain linear equations.

There are also general formula for the weights. If z;, - - -, 2,4+, are the zeros of
P,.1(2) = 0 then the corresponding weight is given by
Qn+1(zk)
(3.9) —
22, P 11(21)

Here P/, denotes derivative and the sequence  is defined as in (3.8) except ax
is replaced by —ax.
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The simplest case of the above is whena,=0,k=0,1, ---,nand | a,+:1| = 1.
The support of ¢ is then on the zeros of

Pn+l(z) = zn+1 - dn+l =0.

These are the n + 1 roots of unity if we take a,+; = 1. The corresponding weights
can be checked, using (3.9), to be equal.

Another interesting situation arises if we consider a sequence a,, as, - - -, a,
and then take the infinite sequence by letting a, = 0, & > n. The corresponding
o has density given by

h,
3.1 —
( O) 21I' I P:(ew) |2
where h, = A,/An—1 = [[ %1 (1 — | a;|?). For example if a, is real the sequence a;,

0, 0, - - - has corresponding density
1- |(11

T =<0=<nm.
27(1 + a? — 2a;,cos 0)’ T T

(3.11)

Note the case a; = 0 gives the uniform measure. Densities of the type (3.10) arise
as limiting cases of some of the results considered in previous papers. For example,
in Kiefer and Studden (1976) the problem of extrapolating to xo, & [—1, 1] for a
polynomial regression of degree m was discussed. As m becomes large, it was
shown that the corresponding sequence of optimal designs converged to a measure
with density
(a8 — D2

71 — x)Y2|xo — x|’

(3.12) lx] < 1.

This can be seen to correspond to the density in (3.11) where

a_jxo—s/x%—l if x>1
1_]x0+~/x%+1 if xo<—1.

4. D-optimality and designs for cosines and sines. In this section some
simple design considerations are discussed for the trigonometric regression given
by (1.1). The D-optimal design is well known and is usually described as
distributing at least 2m + 1 points uniformly on [—, 7 ]. The usual proof involves
an argument to the effect that a rotation invariant D-optimal design must exist.
The uniform nieasure is therefore D-optimal. Since the D-optimal design is
determined only up to the values of ¢,, k. = 0 ---, 2m and the corresponding
information matrix is unique, a design is D-optimal iff ¢, =0, k=1, ---, 2m,
these being the values for the uniform design. This result is also immediate from
the fact that | M, | is proportional to

(4.1) Ao = m (1 — |a,~|2)2"""+1.

This is clearly maximized by a; =0, =1, 2, ---, 2m. In view of (3.3) this is
equivalent to ¢; =0, i =1, - - -, 2m. If the next moment asn.1 is specified with
|asm+1| = 1, the corresponding design is on 2m + 1 equally spaced points with
equal weight, the exact location depending on azn,+1. Many nonuniform type
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designs can be found by the method described in Section 3. It should be noted
that the class of D-optimal designs is very large, some being of a singular nature.

It is well known that D-optimal designs for degree m are also D-optimal for
any lower order. Further, the D;-optimal design for the highest s pairs of
coefficients also has a; = 0,1 =1, 2, - - -, 2m. These two statements are immediate
from (4.1).

Our next interest is in obtaining D,-optimal designs for the sines or cosines
separately. In analyzing these cases, considerable use is made of the relationships
between the trigonometric functions and the ordinary polynomials. Experimen-
ters often use the fact that for certain types of analysis, the straight cosines
series on [0, w] or [—m, w] and the ordinary polynomials on [—1, 1] are equivalent.
This is due to the fact that

(4‘2) (1’ Ccos 0’ -+, COS ma) = (17 Tl(x)’ ] Tm(x))

where cos kf = Ti(x), x = cos 0, is the Chebyshev polynomial of the first kind.
Less often used are the Chebyshev polynomials of the second kind. These
correspond to the functions

M = Ui(x), x = cos¥.
sin 0

These are also polynomials of degree k, as indicated. We thus have

(4.3) (sin @, - - -, sin mf) = =(1 — x2)2(1, Uy(x), - - -, Upn—1(x)).

It is seen that these correspond to linear combinations of the functions f =
, x, ---, x™ and *(1 — x®)V2(1, x, -- -, x™!) respectively. Since the highest
coefficient of Ty(x) is 2¥7! it follows from (2.2) that the determinant of the
information matrix corresponding to the vector (4.2) is given by

(4.4) | M.(a)]| = 9(m—1)m | Mf(g)l =dp 121 (foic1 $22) m+1—i

where log d,, = m?(m? — 1)log 2 and the design ¢ is the projection of & onto
[—1, 1]. Similarly one has from (2.4) that

(4.5) | My(o)| = dm [IT (vaicryz) ™ *L

Now if ¢ is symmetric about zero, then terms involving a product of a sine and a
cosine will vanish so that the determinant of the full information matrix | M, |
splits into two parts. We have thus proven the following result.

THEOREM 4.1. If ¢ is symmetric about zero then
| Mg(a)| = | Mc(o)|| M(o)|
where | M.(c)| and | Ms(c)| are given by (4.4) and (4.5).

COROLLARY 4.1. The D,-optimal design for (1, cos 0, - - -, cos mb) in the full
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trigonometric model has canonical moments

a;=0 i odd
(4.6) 1

% om—gir1 LT hB™
COROLLARY 4.2. The D,-optimal design for (sin 6, ---, sin mf) has canonical
moments

a=0 i odd
(4.7) B -1
= om— 2+ 1

The two corollaries follow from the theorem, by showing that the design in
question must be symmetric and then maximizing either | M, | or | M, |, or using
(2.3) and (3.5). To force the symmetry, note that du(6) = do(—6) has the same
determinant as dg for | M,|, | M.| and | M;|. By concavity of the log of the
determinant, the symmetrized measure then has a larger determinant.

ExAMPLE 4.1. If m = 1, we estimate the coefficients of 1, cos 6 with a design
having a; = 0 and a; = 1. This has equal mass on § = 0 and =. The coefficient of
the single term sin 6 is estimated with a; = 0 and a2 = —1, which has equal mass
on x£w/2. If m = 2 the set 1, cos 6, cos 20 is estimated using a; = a3 =0, a; = ¥
and a4 = 1. This corresponds to masses Y3, Y, Y5, 6 on the values 6 = 0, 7/2, ,
3w/2. For sin 6, sin 20 we use a;, = a3 = 0, a, = —% and a, = —1 which has equal
mass on the 4 points corresponding to cos § = +1/+/3.

The proof of Corollary 4.1 shows that the D,-optimal design for (1, cos 4,
..., cos mf) in the full trigonometric model is the same as the ordinary
D-optimal design for (1, cos 6, - - -, cos mf). Thus, gaining maximal information
about the cosine terms in the full trigonometric model will ignore the sine terms.
This is further indicated by the fact that the D,-optimal design o, for the cosines
has | M,(s.)| = 0. Similar remarks hold if the sines and cosines are interchanged.

If the relative importance of the sine and cosine terms can be ascertained,
then the designs from the following theorem might be useful.

THEOREM 4.2. The design ¢ maximizing | M. |*| M,|? where a = 0, a +
B8 = 1 has canonical moments

a,‘=0 i odd

200 —1

Tom-gi+1 LT LB

Qg

Note that the a;in Theorem 4.2 are a convex combination of the corresponding
values from Corollary 4.1 and 4.2. The D -optimal design, of course, has a = 8 =
Y. The design in Theorem 4.2 is not unique and in this respect is similar to the
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D-optimal design. To find a concrete example, we can again let as,+; = 1. For
m = 1, the first two moments are a; = 0, a; = 2o — 1. If we let a3 = 1 we find
a 3-point design on 6, = 0 and the two values 6, and 6, where cos § = —a. The
corresponding weights are o/(1 + ), 1/[2(1 + a)], 1/[2(1 + «)]. A simple 4-point
design can be found by setting a; = 0 and a, = 1. This has mass «/2 on 6 and =
and (3/2 on 7/2 and 37/2.

5. Lauter type designs. In this section the analysis used in Theorem 4.2
is developed further. This type of criterion was introduced by Lauter (1974). For
a similar analysis using a linear criterion, the reader is referred to Cook and
Nachtsheim (1982). The idea is as follows: Suppose the experimenter has different
possible models for his regression function which are indexed by k. If a prior is
put on the different models, say uz, (3 ur = 1) then a possible criterion for
maximization might be

(5.1) 2 wn | My(o)|.

Léauter proves a Kiefer-Wolfowitz type equivalence theorem for (5.1). Thus if f;
denotes the regression vector for the kth model and d.(0, £) = f;(0)M5i*(c)f(6)
then o maximizes (5.1) if and only if o also minimizes

(5.2) supy ), ux dr(0, o).
We have used the symbols 6 and ¢ here. The arguments, of course, are quite
general.

For the trigonometric case, the solution can be easily written down using
canonical moments. Let «, and (3, denote the prior corresponding to the
terms (1, cos 6, ---, cos kf) and (sin 6, .-, k) where k =1, 2, --., m and

Yie1 (o + Br) = 1.

THEOREM 5.1. The design maximizing

(5.3) Yher apln | Me(o) | + Xier Beln [Mg(o) |
has canonical moments a; = 0, i odd and
m—i+1 . L — R. A
(54) ay; 2]=1 (aj+1—-l ﬁj+1—1) l — 1, 2’ e, m.

= SmI (2 — I ejsr—i + Bje1i)

ProOF. Using (4.4) and (4.5) with m replaced by k, the expression in (5.3)
can be written as the log of products of the canonical moments. This can be
shown to be maximized by (5.4).

ExXAMPLE 5.1. If m = 3 and we set 8; = 0, the result can be interpreted as
assigning prior o, as, a3 to the degrees one, two and three in the polynomial
model on [—1, 1]. The canonical moments in the present case are a; = a3 = a5 =
0,as =1 and
as + ag _ art ag+ a3

as = , Q2 = .
4 a2+3a3 2 a1+3a2+5a3
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By using a; = 2p;—, the corresponding values for p; are p; = ps; =ps =0, ps = 1
and
(62)) + 20[3 _ (23} + 2&2 + 3(13

p4_a2+3a3’ pz_a1+3a3+5a3’

The corresponding design on [—1, 1] can be shown to have weight /2 on *+1 and
(1 — 4)/2 on Vpyqs where v = pops/(q2 + p2qs). It may be of some interest to
calculate an efficiency for the Bayes design above, obtained from Theorem 5.1;
comparing it to the corresponding D-optimal designs for each degree k = 1, 2,
.-+, m. The usual D-efficiency is defined by

( | My(£) | >“"’“’
sup; | My(n) | '

Here M, is the information matrix for degree k. The supremum in the denomi-
nator can be calculated from (2.3) and (2.2). Simple calculations show for example
that if o] = g = oz = 4 then El = 816, E2 = 909, and E3 = .975. The
corresponding values for a; = V2, ay = a3 = % are E; = .837, E, = 906 and E; =
.960.

6. Further results. A number of further results concerning related matters
can be found in Lau and Studden (1983). Two of these are very briefly indicated
here.

The first remark is that the analysis used in Theorem 4.1, where the deter-
minant | M, | was factored into two parts | M. | and | M, | for a measure symmetric
about zero, can be carried much further. For example if ¢ is symmetric about 0
and also about 7/2, then the terms | M. | and | M, | split further into even and
odd terms.

The second remark concerns the fact that in using the trigonometric model
involving (1.1), the full information matrix involves an analysis of the Toeplitz
form T, given in (3.2). The odd Toeplitz form T, arises if we use the half
angle terms

h+1 . 2k+1
2 @ 2

(6.1) cos g, k=0,1, ..., m.
Nearly all of the analysis in Sections 3, 4 and 5 carries over to these regression
functions.
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