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In Wald’s statistical decision theory, the criterion of domination (or
uniform betterness) is defined with respect to a specific loss. In practice,
however, the exact form of a loss function is difficult to specify. Hence, it is
important to study the domination criterion simultaneously under a class of
loss functions. In this paper we focus on estimation problems. We mainly
investigate the possibility of domination simultaneously under the class of
loss functions L(|§ — 6 |), where L is an arbitrary nondecreasing function. As
usual, 8 and 6 (both in p-dimensional Euclidean space. RP) are, respectively,
the unknown parameter of nature and the statistician’s estimate. Domination
simultaneously under this class of losses is called universal domination under
Euclidean error.

Several theoretical questions are resolved in this paper. In particular the
criterion of universal domination is shown to be equivalent to the criterion of
stochastic domination that compares the estimators by the stochastic ordering
of their Euclidean distances from the estimators to the true parameter.

Concrete results about universal domination relating to the usual estimator
are also established. In particular when X — 0 has a p-variate ¢ distribution,
and p = 1, 2, there exists no estimator for § that universally dominates X;
however, for p = 3, estimators (of the type of James-Stein positive part
estimators) that universally dominate X are specified. When X has a p-variate
normal distribution with mean 6 and identity covariance matrix, we show that
for any dimension p, no James-Stein positive part estimators universally
dominate X. However, under slightly smaller classes of losses, some James-
Stein positive part estimators are shown to simultaneously dominate X. These
hitherto unstudied losses are bounded and fairly practical.

1. Introduction. Incomparing statistical decision rules, many statisticians
(including Wald 1950, page 26) have proposed a domination criterion with respect
to a particular loss function. A loss function L(6, a) represents the amount by
which a statistician is penalized when 6 is the state of nature, and a is the
statistician’s action. The decision rule 4, is said to be as good as 4, if for every 6

(1'1) EOL(a’ 61(X)) = EOL(O’ 62(X))’

where X is the statistician’s observation and has a distribution characterized by
6. If 6, is as good as 8, and for some # the inequality in (1.1) is strict, 4, is said to
dominate (or to be uniformly better than) é;. The expectations in (1.1) are
functions of § and are called risk functions.
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In practice, it is difficult to specify the loss function exactly. Hence it is
valuable to know how robust a particular domination is with respect to the loss
function it assumes, that is, over how large a class of loss functions it may hold.
Even though many results have been established for domination under a partic-
ular loss, there is relatively much less work that has been done concerning a class
of losses. The Rao-Blackwell Theorem, for an estimator not a function of a
sufficient statistic, provides an estimator based on the sufficient statistic which
is uniformly better simultaneously under the class of strict convex loss functions.
Brown (1975) and Shinozaki (1980) dealt with the problem of improving upon
the intuitive estimator for a normal mean simultaneously under a class of
quadratic losses with variable weights. Ghosh and Auer (1983) also established
similar results for exponential families. Two other related articles will also be
cited in the next paragraph.

In this paper, we mainly focus on the problem of estimating a certain unknown
quantity 6 in RP, the p-dimensional Euclidean space. An estimator §, is said to
universally dominate another (nonrandomized) estimator 6, under Euclidean
error if for any loss L(|# — é[), L(-) nondecreasing, é, is as good as d,; and for
one such loss, 6, dominates ;. More generally, one can similarly define universal
domination under generalized Euclidean error with respect to a nonnegative
definite matrix D by replacing, in the previous sentence, the Euclidean error
|8 — 8| by the generalized Euclidean error | —  |p = [(§ — 6)*D(0 — 6)]"% (For
the general definition, see Definition 2.1 in Section 2.) Note that any reasonable
loss based on |6 — 8| (or |@ — 6|p) should have a nondecreasing L so that a
statistician would not be penalized less when his estimate 6 is further away from
6. Therefore, all the reasonable loss functions based on a specific generalized
Euclidean error are taken into consideration. This type of domination is hence
“universal” in L. For one-parameter monotone likelihood families, Brown, Cohen
and Strawdermann (1976) exhibited some complete classes (which consist of
monotone procedures or procedures based on a sufficient statistic) for universal
domination essentially. Rukhin (1978) discussed the prior distribution with
respect to which the “universal” Bayes estimator exists, i.e., with respect to
which it remains Bayes under all nondecreasing loss functions L(|8 — a|). Here
we are dealing with expected loss rather than Bayes risk.

Under the generalized Euclidean error with respect to D, it is shown in Section
2 that universal domination is equivalent to another criterion called stochastic
domination; i.e., §; stochastically dominates &, if roughly speaking | 6;(X) — 8 |p
is stochastically- smaller than | §,(X) — 6 |p for all 8. (The precise definition is
given in Section 2.) Therefore, stochastic domination implies domination for a
large class of loss functions.

The key question concerning these two equivalent criteria of universal domi-
nation and stochastic domination is whether these criteria can reasonably distin-
guish estimators. In many situations, both criteria fail to distinguish two esti-
mators. In particular, this is the case when the domination criterion under a
particular loss fails to do so. For example, any two estimators admissible with
respect to a particular loss cannot be compared under the domination criterion
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with respect to this particular loss. However, there are also many situations
(discussed in Section 3) in which universal domination does occur frequently. In
a linear model with a spherically distributed error, the least squares estimator is
shown to universally dominate any other linear unbiased estimator with respect
to any generalized Euclidean error. (An analog of the Gauss-Markov theorem.)
When the unknown parameter is a p-component vector and p = 1, 2, it is
shown that if the least squares estimator has finite fourth moments, then it is
U-admissible with respect to any generalized Euclidean error, that is, there exists
no other estimator that universally dominates it. When p = 3 and when the error
has a spherical ¢t distribution with arbitrary degrees of freedom, the least squares
estimator is shown to be universally dominated by a modified James-Stein
positive part estimator under some generalized Euclidean error. This linear model
has been considered by Zellner (1976) and Thomas (1970) as a generalization of
the normal linear model; since as the degrees of freédom approach infinity, the
multivariate t distribution approaches the multivariate normal distribution.

For the normal case, assume without too much loss of generality that
X ~ N(6, I). Even though the normal distribution can be approximated by ¢t
distributions, we show in Section 3 that for any dimension p no James-Stein
positive part estimators universally dominate (under Euclidean error) the intui-
tive estimator X. This phenomenon is somewhat surprising in view of the fact
that Brown (1966) has shown that under practically any bounded loss function,
there are estimators of the form similar to James-Stein positive part estimators
that dominate X when p = 3.

However, for a slightly smaller class of losses (which consists of all the
nondecreasing losses L(| # — 4 |) that remain constant when |6 — 6 | > ¢ for some
fixed c¢), a class of James-Stein positive part estimators is shown to dominate X.
One of these James-Stein positive part estimators has been shown by Hwang
and Casella (1982a) to substantially improve upon X under a particular loss.
According to their exact numerical calculations, the maximum reduction in risk
is at least 60% when p = 5. These results are reported in Section 4. Section 5
consists of some unsolved problems raised by this work.

Section 2. Universal domination and stochastic domination: Defini-
tion and connection. Assume that X be a multidimensional vector whose
probability density function (p.d.f.) with respect to a o-finite measure u is fy(x).
The parameter § € R” is a p-dimensional unknown vector and is the quantity
that one wants to estimate. We will focus on nonrandomized estimators which
are u-measurable functions from the sample space to R?. However, definitions
and theorems discussed in this paper can be extended to randomized estimators.
Consider a loss function L(| 6 — 6(x) | p) where L(-) is nondecreasing and

16— 8(x) |p=[(6 — 6(x))'D(6 — 8(x)]"*

is the generalized Euclidean error with respect to D. The matrix D is assumed to
be a known nonnegative definite matrix and is also assumed without loss of
generality to be symmetric. When D = I, the generalized Euclidean error is
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reduced to Euclidean error and is denoted by |6 — 6(x) |. The risk function of an
estimator §(X)

(2.1)  Ru(6, ) = E,L(]6 — 0(X) [p) = f L(|6 — &(x) | ) fo(x) du,

is always defined, even though it may be positively infinite.

DEFINITION 2.1. An estimator §; universally dominates , (under the gener-
alized Euclidean error with respect to D) if for every 8 and every nondecreasing
loss function L

RL(8, 61) < RL(0, 52)

and for a particular loss the risk functions are not identical.

Next we discuss the notion of stochastic domination. In what follows, for any
two random variables Y and Z, Y <, Z denotes that Y is stochastically less than
or equal to Z, i.e., for every real number ¢

P(Y=c¢)=P(Z=c).

Similarly Y =, Z (or Y #; Z) represents that Y and Z have identical (or
nonidentical) distributions. Further Y <; Z iff Y <4, Z and Y #,; Z. Now we state
the definition of stochastic domination.

DEFINITION 2.2. A (nonrandomized) estimator §; stochastically dominates .,
under the generalized Euclidean error with respect to D if for every 6

[61(X) —0|p <a|620X) —0|p

and for some 8 | 6,(X) — 0 |p <q | 6:(X) — 0 |p.

The notion of stochastic domination has attracted broad attention among
statisticians. Pitman (1938) defined a similar criterion under fiducial distribu-
tions. (See also Mood, Graybill and Boes, 1974, page 289.) Pitman called an
estimator the best (and argued that it is undeniably “the best” on page 401) if it
has a stochastically smallest Euclidean error under the fiducial distribution. Our
definition is, however, based on the sampling distribution. In estimating the
mean of a normal sample, he then showed that the sample average is “the best”
estimator. Later in the Bayesian context, the results are also extended by Rukhin
(1978 and 1984), who characterized the distribution of X and the generalized
prior distribution for which the generalized Bayes rule has a stochastically
smallest Euclidean error with respect to the posterior distribution.

Savage (1954, criterion 3 on page 224) introduced a criterion which is even
stronger than stochastic domination. Our definition seems, however, to be the
natural modification of his one-dimensional criterion for higher dimensional
problems.

Cohen and Sackrowitz (1970) had an example concerning stochastic domina-
tion. Assuming that X; and X, are two normally distributed random observations
with means 6, and 6, and with known variances, they studied the problem of
estimating 6,. If it is known that 6, > 6,, their Theorem 6.1 asserts that X; can
be stochastically dominated. This result is surprisingly strong.
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We now establish the equivalence between universal domination and stochastic
domination.

THEOREM 2.3. (The equivalence theorem). Under the generalized Euclidean
error with respect to a nonnegative definite matrix D, 6, universally dominates 6,
if and only if 6, stochastically dominates 6.

The proofs of Theorem 2.3 and many other theorems in the sequel are based
on the technical lemma below.

LEMMA 2.4. (i) Suppose that Y, <4 Y, are two real valued random variables
whose expectations exist. Then EY, < EY,. (ii) Assume in addition to the
assumptions in (i) that | EY,| < . Then Y, <; Y, if and only if EY, < EYo.

PROOF. Statement (i) follows from, say, Lemma 1 on page 73 in Lehmann
(1959). The “if” part in statement (ii) is trivial since if Y; =4 Y, then EY; = EY..
The “only if” part can be proved by considering the contrapositive statement,
and by modifying the proof of (i). O

Now we return to the

PRrOOF OF THEOREM 2.3. “If” part. Now | 6:(X) — 0 |p <4 | 62(X) — 0| p for
every 6. Hence L(]|6,(X) — 6|p) <4 L(|8:(X) — 68]p) for any nondecreasing
function L. This, together with Lemma 2.4, implies that R.(6, 6,) < R.(8, 62).
Further | 6,(X) — 6| p <4 | 62(X) — 6 | p for some 6. Let L, be a strictly increasing
bounded function, then Lo(] 8;(X) — 6| p) <a Lo(] 62(X) — 65| p) which implies,
by Lemma 2.4, that R, (6o, 6;) < R.,(6o, 6.). Hence 6, universally dominates 4.

To prove the “only if” part let L(|0 — 6 |p) = 1if | § — 6 | p> c and 0 otherwise.
By assumption, for every ¢, R.(6, 6,) < Rp(6, 6;) which is equivalent to
[6.(X) — 0 |p<a|82(X)—0|p. Toshow | 6:(X) — 0| p<a|620X) — 6 ]p for some
6, assume to the contrary | 6,(X) — 0| p =4 | 62(X) — 0| p for every 6. Then §, and
6, would always have the same risk functions which contradicts the hypothesis
that 6, universally dominates 6,. 0

Now we;turn to the discussion of admissibility with respect to universal
domination (or stochastic domination). Under a generalized Euclidean error with
respect to D, a (nonrandomized) estimator §(X) is called U-admissible with
respect to D if there exists no other estimator that universally dominates 6(X).
Otherwise 6(X) is called U-inadmissible with respect to D. A sufficient condition
for U-admissibility is provided below.

THEOREM 2.5. If 6(X) is admissible with respect to a particular loss
Lo(| 6 — 6| p) where D is a nonnegative definite matrix, Ly is strictly increasing and
Ry,(8, 6) < o for every 0, then 6(X) is U-admissible with respect to D. Equivalently,
if 6(X) is U-inadmissible with respect to D, then 6(X) is inadmissible under any
strictly increasing loss Lo(| 0 — &| p) such that Ry, (6, 6) < o for every 6.
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Theorem 2.5 will follow from the following Lemma whose proof is provided
below.

LEMMA 2.6. If 6*(X) universally dominates 6(X) under a generalized Euclid-
ean error with respect to D, then 6*(X) dominates 6(X) under any strictly
increasing loss Lo(| 0 — 6 | p) for which Ry, (6, 6) < o for all 6.

ProOOF. Theorem 2.3 implies that | 6*(X) — 6 |p <4 | 6(X) — 0| p for all § and
| 6%(X) — 0|p <4 | 6(X) — 0| p for some 6. Therefore the same conclusion holds
when comparing Lo(| 6*(X) — 6|) to Lo(] 6(X) — 6]). Lemma 2.4 then implies
that 6*(X) dominates 6(X) under L,. 0

In Theorem 2.5, the assumption that R (6, 6) is finite for all 6 is sometimes
implied by the admissibility of 6 and in which case the assumption can be deleted.
For example, when 6 is a one-dimensional positive parameter and X has monotone
likelihood ratio, then it can be shown that with respect to the squared error loss,
all admissible estimates have finite risk functions for every 6. (Special cases are
the estimation of a Poisson mean and the estimation of the noncentrality
parameter of a chi-squared random observation.) However, we do not know, in
general, whether this assumption can be removed.

One might ask if L, in Theorem 2.5 is assumed to be nondecreasing, will the
same statement hold? The answer is obviously no, since one can take L, to be a
constant loss in which case any estimator is admissible, even though many
estimators are U-inadmissible as will be shown in Section 3. Aside from the
trivial case that L, is a constant, if one takes L, to be nonconstant and nonde-
creasing, one might still ask the same question. The answer is again negative as
shown in the following counterexample.

EXAMPLE 1. To be concrete, let us take a particular p.d.f.
fx)=1- x|, |x] =1

Hence f has a unimode at zero. Assume that X is a one-dimensional random
variable with p.d.f. f(x — 6). Compare two estimators X and X + 0.1. It is
straightforward to show that, under Euclidean error, X universally dominates
X + 0.1 and hence X + 0.1 is U-inadmissible. However if one considers the loss
function Lo(]| 6:— 0| ), where Ly(t) = 0 or 1 depending on ¢t < 1.1 or ¢t > 1.1, then
the risk function of X + 0.1 is zero for all § and the estimator is admissible with
respect to Lo. 0

Example 1 can obviously be generalized to any spherically symmetric unimodal
distribution with bounded support. Does the converse of Theorem 2.5 hold?
Namely, does U-admissibility imply admissibility with respect to a strictly
increasing loss function? The answer is no as shown in the example below.

EXAMPLE 2. Let X — 6 be a one-dimensional ¢ distributed random variable
with 5 degrees of freedom. (Its p.d.f. is given in the first equation of (3.6) with N
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replaced by 5). It is shown in Theorem 3.3 that X is U-admissible. However, X
is inadmissible with respect to Ly(| 8 — 6 |), when Ly(t) = t&, since it has infinite
risk for all 6. O

One question remains unanswered, however. Does U-admissibility of §(X)
imply that 6(X) is admissible under a strictly increasing L, with respect to which
6(X) has finite risk for every 6?

Section 3. Concrete results concerning universal domination. There
are obviously questions concerning how useful is the criterion of universal
domination in distinguishing estimators. Below we establish some universal
domination results for specific distributions. The first result is an analog of the
Gauss Markov Theorem. We assume the linear model -

(3.1) X=A0+c¢ e~pas |T| fule® T e),

where X is the observation vector, A is a known m X p matrix of rank p, 6 € R?
is an unknown parameter that one wants to estimate, ¢ is an unobserved error
term with elliptical distribution whose p.d.f. with respect to a ¢ finite measure is
specified in (3.1), and Y is a positive definite symmetric matrix. Below unbiased-
ness refers to either expectation unbiasedness or median unbiasedness. (An
estimator (8,(X), ---, 8,(X)) is median unbiased for (6, ---, 6,) if for
i=12, ..., p, 6; is a median of §;(X).) When referring to expectation
unbiasedness, we assume the expectation of ¢ exists (and hence is the zero vector
by symmetry).

THEOREM 3.1. Assume that ¥, = ¢°I where I is an identity matrix and o? is
(in general) unknown. Then the least square estimator ™% = (A'A)™'A'X univer-
sally dominates (under any generalized Euclidean error with respect to a positive
definite matrix D) any other linear unbiased estimator.

PROOF. Below we assume without loss of generality that ¢ is not identically
zero. Otherwise the theorem is trivial, since S is then the only unbiased
estimator. By Theorem 2.3, we need only show that 8 stochastically dominates
any other linear unbiased estimator.

We can also assume without loss of generality that (3.1) has a canonical form,
namely, the first p rows of A form a nonsingular matrix A, and the last (m — p)
rows are zero rows. (From an arbitrary matrix A, one can obtain this represen-
tation by multiplying on both sides of (3.1) by an orthogonal matrix
0=(0y, ---,0,) where O;,i =1, --., p are p m-dimensional column vectors
that form an orthonormal basis for the column space of A;and O;,i=1, ---, m,
form an othonormal basis for R™. Such an orthogonal transformation will not
change the distribution of ¢.)

Now let (A1, -+, Ap, 0, -+ -, 0)¢ = Af. We first show that

XLS =def’n. (Xla R} Xp)t

stochastically dominates any other linear unbiased estimator of A = (A, - - -, Ap)%
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Let MX be an arbitrary unbiased estimator of A. Unbiasedness implies that M
can be decomposed as [I, M;] where [ is the p X p identity matrix and M, is some
p X (m — p) matrix. Note that the estimator A\'® is of the form MX with M, = 0.
Therefore to complete the proof, it 1is sufficient to show that
(MX — A\)‘D(MX — )\) is uniquely minimized (in the sense of stochastic ordering)
by letting M, = 0. Note

(3.2) (MX — N)'D(MX — \) =4 (Me)'DMe.

Let us assume without loss of generality that D is symmetric. By Lord (1954) or
Kelker (1970) the characteristic function Ee®* is of form ¥ (s’s) for some function
¥. Using this characteristic function and standard arguments, one can show that

(3.3) (DY*MM'D?)' 2, =, DY?Me,
where ¢, is the vector that consists of the first p components of ¢. Hence
(MX — \)'D(MX — \) =4 e,D*MM'D"?%,.

Now recalling that M = [I, M;], we have MM*® = I + MM} and consequently

e,',(Dl/zMMtDl/z)ep = |ep|p + e (DYV2MyM5DY?)e,.
The last expression is clearly minimized by choosing M, = 0. Therefore A'S is at
least as good as any other linear unbiased estimator (in the sense of stochastic
domination). However, we will next argue that A actually stochastically domi-
nates any other linear unbiased estimator.

If e{DY?*M,M5DY? ¢, is identically zero, then for any orthogonal matrix @),
eL Q'D2 M, M5D'?Q) ¢, is also identically zero (due to the fact that ¢, and @ ¢,
have the same distribution). Choosing @ to diagonize the matrix DY/2M,M5D?
and using the fact that ¢, is not identically zero, one shows that all the eigenvalues

of the matrix are zero. This implies that the matrix is a zero matrix. Consequently,
by the fact that D is nonsingular, M; is a zero matrix. Therefore if M, # 0, then

lepld + 8§D1/2M2M§D1/2cp >4 | el

This shows that A"S universally dominates any other linear unbiased estimator.

Returning to the proof of the theorem, we now show that 5 stochastically
dominates any other linear unbiased estimator. Previous arguments have shown
that for all nonsingular matrices D and all linear unbiased estimators MX # ALS

(3.4) T (RIS — \)'D(ALS — ) < (MX — \)'D(MX — A).
Using the identities A*> = A,0% and A = A0 (recall that A, is the largest
nonsingular submatrix of A), (3.4) is equivalent to
(3.5) (6 — 0)'ALDA, (6 — 0) <4 (AT'MX — 0)*A DA, (AT*MX — 0).

Note that any linear unbiased estimator of 6, say MyX, can be expressed as
AT*MX so that MX is unbiased for A (by simply letting M = A, M,). Moreover,

S £ AT MX if and only if ALS  MX. Hence (3.5) implies that §% stochastically
dominates any other linear unbiased estimator. 0
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The conclusion of Theorem 3.1 is obviously stronger than that of a standard
Gauss Markov theorem. The assumptions of Theorem 3.1 are usually (but not
always) stronger than what is needed for the Gauss Markov theorem which
assumes only the existence of second moments of . However, if ¢ has an elliptical
distribution with infinite second moment (e.g., ¢ has a Cauchy distribution), then
the Gauss Markov theorem fails while Theorem 3.1 still applies. One can
generalize Theorem 3.1 to the case of estimating a linear function of § and to the
situation involving a more general covariance matrix.

COROLLARY 3.2. Assume that ¥ = o2 Yo where Y is known and ¢% is (in
general) unknown. Consider the problem of estimating Bf (B a known matrix)
under the generalized Euclidean error with respect to a positive definite matrix.
The estimator BA™S, where 4% = (A ¥5* A)7'A* Y5! X is the generalized least
squares estimator, universally dominates any other linear unbiased estimator.

PrROOF. Multiplying both sides of (3.1) by Y52 reduces the model to that
considered in Theorem 3.1. Therefore we can assume Y, = I without loss of
generality. Still this corollary is more general than Theorem 3.1 because B is an
arbitrary matrix, not necessarily the identity. To establish this result for an
arbitrary B, one can follow the proof of Theorem 3.1, except for the following
modification and its consequential changes. When decomposing M (where recall
that M X is an arbitrary unbiased estimator), one obtains, M = [B, M,], from the
unbiasedness assumption, instead of [I, M,] as in the proof of Theorem 3.1. 0

An independent result which is similar to (but weaker than) Corollary 3.2 was
also established by Ali and Ponnapalli (1983). We now turn to the problem
concerning the U-admissibility of the least squares estimator in Corollary 3.2.

THEOREM 3.3. Under Model (3.1), assume that p = 1 or 2 and that the least
squares estimator 0 has finite fourth moments. Then 0 is admissible under the
quadratic loss (0 — 8):D (6 — 6) where D is an arbitrary fixed nonnegative definite
matrix. Hence by Theorem 2.5, 08 is U-admissible with respect to D.

PRrOOF. Without loss of generality, assume that ¥ = o¢2I. It suffices to show
that 6 is admissible under the squared error loss, since then by Shinozaki’s
theorem (appeared in Shinozaki, 1975, as well as in Lemma 3.1 of Rao, 1976),
S is admissible with respect to the quadratic loss (§ — 6)’D(6 — 6) for any
nonnegative definite matrix D. It is also sufficient to show that %S is admissible
for any fixed known ¢2, since §S does not depend on 2.

Now under a spherically symmetric distribution, the statistic (Y;, Ys) =
(6%, | X — AG™8|?) is sufficient for 8. Therefore under the squared error loss, one
only need focus on the nonrandomized estimator based on (Y;, Y;). The problem
is obviously invariant under the location transformations § — 6 + a
and Y; — Y; + a. The corresponding invariant estimator & thus satisfies
0(Yi+a,Y:)=06(Y1, Ys) + a. SinceY; has a distribution independent of 4, the
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best invariant estimator is therefore the generalized Bayes estimator with respect
to a uniform prior in §. Therefore ™S is the best invariant estimator which, by
Brown and Fox (1974), is then admissible when the fourth moments are finite. [

The conditions of Theorem 3.3 are satisfied in many situations, including
those where ¢ has a normal distribution, a ¢ distribution with N degrees of
freedom (N > 4) or a double exponential distribution. The probability density
functions of the last two distributions are given respectively by

f(le]? = constant(l + N7 | ¢|2)~¥+)/2  and
kle|

3.6
38) f(l&]?) = constant e~

where k > 0 is some fixed constant. .

Now we turn to the situations when p = 3. In this case, the determination of
U-admissibility is very difficult. Recall that, for a particular loss function, the
unique best invariant estimator is usually inadmissible when p = 3. For the
normal case and the sum of squared error loss, this is the well-known result of
Stein (1956). For general location problems, these were established in Brown
(1966). So far, we are able to obtain some results for the case when ¢2 is known.
(For this case ¢ can be taken to be one By a multiplicative transformation.) For
some distributions (including t¢-distributions), we show in Corollary 3.8 and
Theorem 3.9 that the least squares estimator is U-inadmissible. For the normal
distribution, we are unable to determine the U-admissibility of the least square
estimator. However, for the special case assumed in Theorem 3.10, no James-
Stein positive part estimator 4, in (3.7) universally dominates the usual estimator
of the norm mean.

Before considering the linear model, we first deal with the simpler case when
the p dimensional observation X has mean 6. We will apply Theorem 2.1 of
Hwang and Chen (1983) which is quoted below for convenience. Let §,(X) be the
James-Stein positive part estimator (1960), i.e.,

3.7 0.(X) =1 —a/| X|*+X where y, = Max{y, 0}.
THEOREM 3.4. (Hwang and Chen, 1983). Assume that X ~,as.f(]x — 0]?)
and f’(s)/f (s) is defined for all s, ap < s < a;, where for some ¢ > 0 and a > 0,

a =(c—va)2, and a =c?+ a.

If
’ _ — -1/
(3.8) iy <oca; ’; ((:)) 2 202)“ CInfle + (€ + a))/a"),
then for every 6,
(3.9) P8 - 8.X)| =¢)>P(]0 — X| <c).

Since 6,(X) would stochastically (or equivalently universally) dominate X if
(3.9) were satisfied for all ¢ > 0, we have the following corollaries.

COROLLARY 3.5. If, in addition to the assumptions of Theorem 3.4, there exists
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a fixed a > 0 such that (3.8) holds for all ¢ > 0, then 6,(X) universally dominates
X under the Euclidean error.

COROLLARY 3.6. Assume that f'(s)/f(s) is a continuous real valued function.
If there exists a = ay > 0 such that for c sufficiently large and for c sufficiently close
to zero (3.8) holds, then X is U-inadmissible under Euclidean error.

PRrROOF. Let a(c) be the supremum over all a > 0 that satisfies (3.8). (Such a
exists by the argument in the next paragraph.) Since the left-hand side of (3.8)
is decreasing in a and the right-hand side is increasing in a, (3.8) holds for all
a < a(c). The goal here is to establish that info<.<wa(c) > 0. This would imply,
by Corollary 3.5, that §,(X) universally dominates X for all a, 0 < a =< infy.<xa(c).

Note that as a decreases to zero, the left-hand side.of (3.8) increases and the
right-hand side decreases to —o, so that a(c) must be positive. Now a(c) is a
continuous function in ¢, and as ¢ — 0 or ¢ = ®, a(c) = ay > 0. Therefore,
infyc.<oa(c) > 0.0

Now we apply these general theorems to specific distributions.

THEOREM 3.7. Assume that X — 0 has a p-variate t distribution with N degrees
of freedom whose p.d.f. is given in (3.6). For every N and p = 3, X is U-inadmissible
under the Euclidean error. Furthermore, under the Euclidean error, the James-
Stein positive part estimator 6,(X) universally dominates X if a > 0 satisfies

N+ —2
~ P w f i (N + a)2 + (N + 2a)2)/a ).

(3.10)

PROOF. In this case, condition (3.8) reduces to

N+p p—2 2 1/21/,1/2
N+ (c— a'?)2 = ca? Inf[c + (¢* + a)'?]/a'?}.

To find a so that the last inequality is satisfied for all ¢, we consider two
separate cases: (i) c2< N + a and (ii) c2= N + a.

For case (i), (3.11) is satisfied if
N+p<p—2

N = ca'?

The derivative of the right-hand side of the last inequality with respect to c is

(3.11)

(3.12) In[(c + (¢ + a)?)/a'?].

-21
pa1/2 2 [(cz +ca)1/2 —In(c + (c2+ a)?) +In al/Q]

which is negative since, by the Mean Value theorem,
In[c + (c% + a)¥?] — ln aV? > infociecc(t? + a) V2 = c(c?® + a) V2

Therefore (3.12) is satisfied for all ¢, ¢c2 < N + a if it is satisfied for ¢ = N + aq,
which is equivalent to (3.10).
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For case (ii), (3.11) is equivalent to

_ . 1/2)2
@g13 N ; P (‘Zal,f) (1 C A‘; ) )ln{[c + (2 + a)?)/a"3).

Direct differentiation shows that [1 + (¢ — a'/%)2/N]/c is increasing in c if
¢ = N + a. This implies that the right-hand side of (3.13) is increasing in c,
when ¢* = N + a. Therefore (3.13) is satisfied for ¢2 = N + a if and only if it is
satisfied for ¢ = N + a. However, when c2 = N + a, (3.13) follows from (3.12)
which is equivalent to (3.10). Therefore the proof is complete. O

It is clear that there exists an a* > 0 so that for every a, 0 < a < a*, (3.10) is
satisfied. Therefore Theorem 3.7 is constructive. However, the values of a* which
can be found by using a programmable calculator are small and are not reported

here.
Now consider the linear model X = Af + ¢, where A is an m X p known design

matrix with full rank p and ¢/c (when o is known) has a t distribution with N
degrees of freedom. (This is a special case of model (3.1).) Note that this model
is a generalization of the usual linear model with normal error in the sense that,
as N approaches infinity, the t distribution approaches a normal distribution.
For this model, we establish the following result.

COROLLARY 3.8. For every N and p = 3, the least squares estimator 615 =
(A*A)7'A'X is U-inadmissible and is universally dominated by

ao’® LS
8(X) = (1 - I(AtA)1/2éLS|2)+ 6=,

under the generalized Euclidean error with respect to the matrix A'A, where a
satisfies (3.10).

PROOF. This follows directly from Theorem 3.7 and the fact that
(A*A)Y?)18/5 has a p-variate t distribution. 0

When we have n replicates, we can apply Corollary 3.6 to establish
U-inadmissibility results.

THEOREM 3.9. Assume that we have n independent observations X;,
Xi=A0+¢, 1=1,2,---,n

where A, 0 are the same as in Corollary 3.8 and ¢; are i.i.d. p-variate (p = 3) t
distributed random variables with N degrees of freedom. Then the least squares
estimator for 0, = 1/n Y%, (A*A)'AX; is U-inadmissible under the generalized
Euclidean error with respect to the matrix A'A.

PrROOF. By a linear transformation (similar to the one in Corollary 3.8)
corresponding to the matrix (4°A )2, one observes that the theorem is equivalent
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to the following simpler assertion. Assume that X; — 6 are independently identi-
cally distributed according to a p-variate (p = 3) t distribution. Then
X=1/n 3%, X;is a U-inadmissible estimator for § with respect to the Euclidean
error.

To prove the simpler version, it suffices to show (and will be shown below)
that S = ¥%, X;is a U-inadmissible estimator for nf with respect to the Euclidean
error. Although S has a spherical distribution, its p.d.f. g(| s — n6|?) can not be
calculated explicitly (except for the case when the degree of freedom is one).
However, it does have the following representation

(3.14) gu) = ff(lul/291 =% o = x| x2]?) - f(| %a]?) dp - - - dx,

where f is given in (3.6), e; = (1,0, - - -, 0)%, and x3, - -* , x, are all p-dimensional
vectors. To apply Corollary 3.6, we have to show that there exists an @ > 0 such
that, for ¢ sufficiently large or sufficiently small (close to zero), (3.8) holds or in
this case

. g'w) _—(p—2)
(3-15) 1nf(c—~/5)3.<u<c2+a g(u) = 20(0)112 ln[(C + (CZ + a)1/2)/al/2]9

which is equivalent to

. "(u —-(p—2
(3.16) ¢ infe—vap<u<c+a i ((u)) > (;;1 v ) In[c + (c? + a)¥*/a'?].

We consider two separate cases: (i) ¢ — o, (ii) ¢ — 0.

CASE (i), ¢ = «. Note that the right-hand side of (3.16) approaches — as
¢ — o, If we can show that

(3.17) g'(u)/gw) = -Mu™"?, Y u>0,

for some finite positive constant M independent of ¢ and a, then the left-hand
side of (3.16) is bounded below by —cM/(c — a*/?),. This approaches —M as ¢
approaches infinity. Hence (3.17) implies that for some (and in fact for every)
a > 0 (3.16) holds under case (i) ¢ — . In the following derivations, inter-
changing the order of differentiation and integration and passing the limit
inside the integration are allowed by the Bounded Convergence theorem
and by the facts that f’ and f” are uniformly bounded and the function
f(lx21?) --- f(] x,]?) integrates to one.
Now direct calculations using (3.14), we have

128 W) _ [ Desf (IDIAf(U%2]%) --- f(1%n]®) dxp - ditn

3.18 =

B18) v ) = T T FAD P mld  f(xal®) day - dan
where D = u?¢; — x5 — - -+ — x,. Further straightforward calculations establish
that

f'(UD|?) = =(N + p)f(ID|*)/[2(N + | D|?],
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and
~N+p) Des _-(N+p) |D| _~(N+p) VN
2 N+ |D|*™ 2 N+ |D|®2™ 2 2N’
These together with (3.18) show that

u'?g’(u)/g(u) = :(4N~/—LNP) for every u > 0.

Therefore (3.17) is established and we have shown that for every fixed a > 0,
(3.16) is satisfied for sufficiently large c.

CASE (ii), ¢ — 0. We first derive a representation of g’(u)/g(u) as u ap-
proaches zero. From (3.18) and some algebraic calculations, we have
g'(u)
g(u)

limu._,o

(3.19) =H61ff'(lxz+ vt 291 x2]?) <o f(12]?) dag - - day

— Hi* limu_,o%f(x2+ oo+ xn) e f (| DA f(] x2]?)
u
v f(| %)) dxz - - - dn
where
H, = ff(lx2+ v+ 2D x2]?) - f(12n]?) dxe - - dp.

It is straightforward to check that

limu—»Of(x2+ s+ ) e f (1D f(1%2]?) - f(|20]?) dxz - dxy =0

by taking the limit inside the integral. (Again interchanging the order is allowed
by the Bounded Convergence theorem and the fact that (xo + - - - + x,) %, f'(| D |?)
is uniformly bounded.) Hence one can apply L’Hospital’s rule to the second term
on the right-hand side of equation (3.19), and establish that this term equals the

finite quantity

H; =4ern 2H5! f [ + -+ + x) el (22 + -+ + xa|Df (| 22]?)
f(lxnlz) dx2 coo dx,.

Hence, we have shown that
limu_.og—(:—) = Hg' ff’(lxz + o+ 2D f(] %2]?)
oo f(| %n]?) dxs -+ - dx, — Hy,

and the limit is finite. To finish the proof that as ¢2 — 0 there exists an a > 0
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such that (3.15) holds, we look at those c, for which ¢? < a. Note that

g'(u) i g’ (u)
gu)  Mocusa ")

and info<,<,8’(u)/g(u) increases to the finite quantity in (3.20) as a decreases to
zero. Furthermore, direct calculation shows that the right-hand side of (3.15)
approaches —(p — 2)/2a as ¢ — 0. The limit then approaches — as a — 0. These
observations therefore imply that there exists an a > 0 such that for sufficiently
small ¢, (3.15) holds. Case (ii) is established and the proof is now complete. 0

inf0<u<c2+a a ¢ — 07

When X has a p-variate normal distribution with mean 6 and covariance
matrix I, there are questions concerning the U-admissibility of X. If p = 1 or 2,
Theorem 3.3. implies that X is U-admissible. When p = 3, Brown (1966) has
shown that under any specific nonconstant loss function L(|8 — 6|) so that X
has finite risk function for all , X is inadmissible and is dominated by estimators
having a form similar to a James-Stein positive part estimator 8, (in (3.7)) for
some sufficiently small a. This does not, however, imply that there exists an a
such that 6,(X) universally dominates X. Hence, the question concerning the U-
admissibility of X remains. We do not yet know the answer to this question.
However, we do know that none of the estimators (3.7) universally dominates X
as shown in the following theorem.

THEOREM 3.10. Assume X has N (0, I) distribution. For any dimension p and
for Euclidean error, d,, as in (3.7), does not universally dominate X no matter what
ais.

PROOF. Obviously, we only need to consider the case where p = 3 and a > 0.
To prove the theorem, it suffices to show that for every fixed a > 0,

(3.21) P10 = 6,(X)| =c)<P(|0—-X]|=c¢)

for some ¢ > 0 and some §. (Hence §,(X) fails to stochastically dominate X.) Let
B be the event that X satisfies both inequalities within P( ). After tedious
calculations, one can show that, as ¢ — o,

P16 — 0.,(X)| = ¢) — P(B)

cva/2 __ 1)—1'
P(l0 — X| =c) = P(B) |g=c

< constant ¢ (e

(For details, see Hwang 1984, pages 26-28). This upper bound clearly approaches
zero as ¢ — . Hence (3.21) is established. O

Section 4. Simultaneous domination under a smaller class of loss
functions when the sampling distribution is the multivariate normal
distribution. Assume that X ~ N(9, I). We have shown in the last section
that every James-Stein positive part estimators 4, (as in (3.7)) fails to universally
dominate X under the Euclidean error. In a sense, this is a negative result. In
this section, we succeed in proving that some §* can dominate X simultaneously
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under a smaller class of loss functions, .&. The class consists of all nonconstant
loss functions L. of the form

L(l6—68])=s(160—-0]) if |6—68]=<c
=K if 16-68|>c

where c is a fixed constant, Z is an arbitrary nondecreasing function, and K is an
arbitrary number for which L.(-) is nondecreasing. Therefore - consists of
nondecreasing and nonconstant losses L(]f — &|) where L(t) stays constant
when ¢t > c.

THEOREM 4.1. The James-Stein positive part estimator 6,(X) dominates X
simultaneously under all the loss L, € #, provided that a > 0 and

(4.1) 1= (p — 2ln{[c + (c® + a)*?/a ?}/(ca'’?).

The last conditions are equivalent to a € (0, a*] where a* is the unique positive
solution to (4.1) with the inequality replaced by an equality. Furthermore, unless
L. is the trivial loss LT (t) = K, or K, depending on whether t = 0 or t > 0, 6, has
a risk function smaller than X for all 6.

PRrOOF. Consider two cases: (i) L. is the trivial loss LT; (ii) L. is not L. For
case (i), the risk of 6 is K - P(| 6 — 6(X) | > 0). Hence, the risk of X is K and the
risk of §,(X) is K - Po(| X |% > a) when 6 = 0 and K if 0 # 0. Therefore ,(X)
dominates X.

For case (ii), we note first that since L, is monotonic, the points of discontinuity
of L. are countable. Hence we can construct a sequence t;, ---, t,, --- with
different ¢/s, 0 < t; < ¢, so that it contains all the discontinuous points. (In doing
s0, both the cases of infinitely many and finitely many discontinuities are unified.)
Write

Lc(t) = L¥(t) + Tn=1 (L(t3) — L(ta)) s, (t)
+ 23=1 (L(tn) - L(t;))l[tn,w)(t)

where I,(t) is the indicator function on A4, i.e., I,(t) = 1 or 0 depending on
whether t € A or t € A and L} is a continuous nondecreasing function. (In the
last equation, L(07) is interpreted as L(0).) Let us assume without loss of
generality that L*(0) = 0. (Otherwise, we can subtract L*(0) from both sides
without changing the problem.) Hence we can write L (¢) as a Lebesgue-Stieltjes
integral

L) = f T (t) AL (u) = £<u<c L) (t) AL (1)

where the last equation follows, from the fact that L.(¢) (and hence LX(t))
remains constant for ¢ > c¢. Now using the last two equations and Fubini’s
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theorem, we obtain that

EL:(]6(X) = 61) =J;

<u

P(]6(X) — 0] > u) dL(u)

(4.2) + o= (L) — LE)P(16(X) — 0] > ta)
+ Y=t [L(t) = LEDIP(18(X) = 0] = ).

Since L. is not L7, using (4.2) we could show that for all 6 the risk function of
8.(x) is strictly less than that of X, provided that we could prove for all § and for
allu,0<u=<e,

(4.3) P(|6,(X)— 0| >u)<P(|X—-0]|>u),
and .
(4.4) P(|6,(X)—0|=u)<P(|X-0| =u).

This can be shown to hold by applying Theorem 3.4 as follows. For this normal
case, Theorem 3.4 implies that for every 6 (4.3) holds, provided that

(4.5) 1< (I;a_l/zz) Influ + (u* + a)*]/a'3}.

Furthermore, it can be shown that P(|6,(X) — 6] > u) is continuous
at all u such that u # |6| and hence for such u, P(|8,(X) — 0] > u) =
P(]6,(X) — 0| = u). Therefore, (4.5) implies (4.4) foru## |6|. Now foru=]6],
(4.4) can be shown to be a consequence of (4.5) by using the proof of Theorem
2.1 in Hwang and Casella (1982b). Therefore in both cases (4.3) and (4.4) hold
provided that (4.5) can be established.

To complete the proof, all we need to do is to show that (4.1) implies (4.5) for
all u, 0 < u = c. This could be accomplished if we could show that the right-hand
side of (4.5) is decreasing in u. Similar to what we dealt with the right-hand side
of (3.12), the derivative of the right-hand side of (4.5) with respect to u can be
shown to be negative. The proof is now complete. [

For each c? the value of a* can be easily found by iteratively using a
programmable calculator. To give the reader some ideas as to how big a* can be
for a particular c2, we report in Table 1 the values of a* for selected c? and p.
Using these James-Stein positive part estimators, the improvement in risk over
the usual estimator can be quite substantial. Hwang and Casella (1982a) numer-
ically calculated the risk of the James-Stein estimator for several a, a € (0, a*],
under the zero one loss function with turning point occurring at c¢. Their findings
are startling in that the maximum saving in risk of the James-Stein positive part
over the usual one is at least 60% when p = 5. See Table 1 in Hwang and Casella
(1982a). Note that the risks are one minus the quantities they reported.

Although they focus on a single loss at a time, the results of Brandwein and
Strawderman (1980) and Bock (1983) can apply simultaneously to a class of loss
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TABLE 1
Upper bounds a* for simultaneous domination

D 3 4 5 6 7 8 9 10
c? 6.25 7.78 9.24 10.7 12.0 134 14.7 16.0
a* 0.58 1.34 2.13 2.94 3.76 4.59 5.41 6.25
D 11 12 13 14 15 16 17 18
c? 17.3 18.6 19.8 21.0 22.3 23.5 24.8 26.0
a* 7.08 7.92 8.75 9.59 10.4 11.3 12.1 13.0
p 19 20 21 22 23 24 25

c? 27.2 28.4 29.6 30.8 320 . 332 34.4

a* 13.8 14.7 15.5 16.4 17.2 18.0 18.9

functions. Their losses have to be a concave loss function of | § — 6 |2 which may
or may not be the case in practice and which could be difficult to decide. Our
losses for this normal case are not exhaustive either. However, our losses can
accurately approximate any bounded nondecreasing loss (which occurs very
frequently in practice). Such approximation, however, will sometimes require
using a very large ¢ which yields a very small a* and very small improvement
over the usual estimator. Therefore Theorem 4.1 offers significant improvement
only for the situation where moderate ¢ has been chosen.

Section 5. Comments and conclusions. We have established in this
paper that, in many situations, domination can occur simultaneously under a
large class of losses. In most higher dimensional situations considered, we prove
that the usual estimator can be improved simultaneously under all the nonde-
creasing loss functions based on the Euclidean error.

However, this paper also raised many unanswered questions. In particular, for
the case X ~ N(0, I), is the usual estimator X U-admissible for estimating 60
having at least three components? Even if X is U-admissible, it would be of
practical value to consider a smaller class of losses. For a wide class of losses,
James-Stein positive part estimators were shown here to dominate X. However,
the class of estimators exhibited here is not at all exhaustive and the optimal
choice among these estimators is not discussed. It seems to be obvious that the
larger is the class of losses considered, the smaller the improvement over X would
be. However, the relationship between the class of losses and the improvement
was not quantitatively described.

For the other distributions (primarily ¢-distributions), we have found esti-
mators that universally dominate the least squares estimator when the dimension
of the unknown parameter is at least 3. These estimators (namely, James-Stein
positive part estimators) are not expected to perform substantially better than
the least squares estimator. Therefore, the search for estimators that both
universally dominate and substantially improve upon the least squares estimator
is of great interest. Even if no such estimator exists, consideration of smaller
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class of losses (similar to what was dealt in Section 4) can lead to fruitful results.
Finally, if one simultaneously considers all the generalized Euclidean errors,
then the situation is very different. Interesting domination simultaneously under
all the losses based on all the generalized Euclidean errors becomes rare. In this
case, an estimator is admissible if componentwise it is admissible under the
corresponding one-dimensional squared error loss. See Brown (1975).
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Note Added in Proof. Theorem 3.1 does not follow directly from the
sufficiency of 6“5 and | X — A65|, because, in the argument, one gets involved
with randomized estimators which are difficult to handle since the loss functions
are not necessarily convex. Qur proof uses a different approach based on the
canonical form of a linear model and direct maximization to get by such difficul-

ties.
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