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THE ADMISSIBILITY OF THE EMPIRICAL DISTRIBUTION
FUNCTION

By MIicHAEL P. COHEN AND LYNN Kuo
Bureau of Labor Statistics and State University of New York at Stony Brook

Consider the problem of estimating an unknown distribution function F
from the class of all distribution functions given a random sample of size n
from F. It is proved that the empirical distribution function is admissible for
the loss functions L(F, F) = [ (F(t) — F(¢))X(F(t))*(1 — F(t))* dW(¢) for any
a<1and b <1 and finite measure W. Related results for simultaneous
estimation of distribution functions and for finite population sampling are
also given.

1. Introduction. For the problem of estimating an unknown distribution
function F based on a sample from F, the empirical distribution function F'is an
extensively used estimator. The decision theoretic properties of ¥ have received
considerable attention. Aggarwal (1955) shows that F' is the best invariant
estimator for continuous F when the loss function is

L(F, ¢) = f (F = $)*/IF(1 - F)] dF.

Dvoretzky, Kiefer, and Wolfowitz (1956) prove that F'is asymptotically minimax
for a wide variety of loss functions. Read (1972) indicates that F(t) is not
asymptotically admissible as an estimator of F(t) (in a pointwise sense) when
the loss function is mean squared error and F is known to be absolutely
continuous. Phadia (1973) shows that F' is minimax when the loss function is

L(F, ¢) = f (F — ¢)*/[F(1 — F)] dW.

Here W is any finite, non-null measure and F may be any distribution function
(not necessarily continuous).

In this paper we prove that the empirical distribution function is admissible
for the class of loss functions

LutE,9) = | = 9 - Py aw

where a and b are real numbers, a < 1 and b < 1, W is any finite, non-null
measure, and F may be any distribution function. To show that the empirical
distribution function is admissible, it suffices to show it is particularly good for
a subfamily of the distribution functions. Let & denote a family of discrete
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ESTIMATING A DISTRIBUTION FUNCTION 263

distributions with at most &£ jumps. An inductive argument is presented which
essentially shows that, for all &, F' is a generalized Bayes estimator with respect
to a class of priors concentrated on subsets of %. From this, we can show no
other estimators can be as good as F.

Although our problem is nonparametric, it can be seen in Section 3 to be also
closely related to the problem of finding admissible estimators for multinomial
parameters. Johnson (1971), Alam (1979), Olkin and Sobel (1979), and Brown
(1981) all treated this problem extensively with different loss functions and
different techniques. A modification of the concise inductive argument given by
Alam is used here for our purposes. The inductive argument is closely akin to
the “stepwise Bayes” method developed by Hsuan (1979), Brown (1981), and
Meeden and Ghosh (1981).

In Section 4, simultaneous estimation for many distributions is considered.
The empirical distribution functions from each of the populations are shown to
be admissible for a given loss function.

The problem of estimating the population distribution function of a finite
population is also studied. Consider a simple random sample (without replace-
ment) of size n from a finite population of size N. The unknown population
distribution F is defined by letting F(t) = N~! 3¥ I[y; < t], where y; are the
unknown population values associated with unit ;. The minimax estimators are
obtained by Cohen and Kuo (1981) for four different loss functions. The admis-
sibility of the empirical distribution function for these four loss functions is
proved for any sampling plan of size n in Section 5. A recent paper of Meeden,
Ghosh, and Vardeman (1983) provides a detailed development of the relationship
between nonparametric estimation and finite population estimation.

2. Notation. The parameter space  the action space 7, and the loss
function L are defined as follows:

& ={F: F is a right-continuous distribution function on the real line R'}

o/ = {¢: ¢ is a nondecreasing right-continuous distribution function on R' such
that 0 < ¢(—x) < ¢() <1}

(2.1) Loo(F, ¢) = f (F(@t) — @)*F(@)°Q — F(t)° dW(t)

where a and b are real numbers, and W is a given non-null, finite measure on
(R, &) where @ is the Borel field on R!. The integrand in (2.1) should be
interpreted as zero if it has the form 0/0.

Given a sample of size n, X = (x;, -+, x,) from F, an estimator ¢ of F(t)
which depends on x is denoted by ¢ (¢; x). In particular, the empirical distribution
function is denoted by F, that is F(t; x) = n™' 3% I[x; < t]. The risk function
ErL(F, ¢(t; x)) is denoted by R(F, ¢).

The family of discrete distributions with at most k jumps is denoted by & .

3. Admissibility. The key to the proof of admissibility is the correct choice
of the subfamilies of distribution functions for which F is a particularly good
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estimator. The usual approach is to show Fis Bayes with respect to a prior
defined on this subfamily. One possibility might be the prior used by Phadia
(1973). This prior concentrates on distribution functions with jumps at two
points at most, say —u and u, where the size of the jump at —u is chosen from a
beta distribution %.(a, 8). Phadia shows that the empirical distribution function
is Bayes with respect to this prior with « = 8 = 1 for the loss function L_;, -1
However, since this prior does not have full support, the Bayes property of F
does not imply its admissibility. Essentially, any estimator which agrees with ¥
when the data show at most two distinct values is Bayes with respect to this
prior. It is clear that many of these estimators are not admissible.

A second possibility might be to show F' is Bayes with respect to Ferguson’s
Dirichlet process prior (1973) with parameter «. It can be shown that the proper
Bayes estimator ¢,(t) against this prior for the loss in (2. 1) is (@ + a(—om, t] +
SeI(x; < t))/(a+ b+ a(RY) + n). In order to have ¢, (t) = F(t)for—u=<t< u,
it is necessary to choose an « which assigns no mass between —u and w.
Consequently, this approach encounters the same difficulties mentioned above
in proving the admissibilty of F. Instead, we consider priors which concentrate
on dlStl'lbuthIlS with more than two jumps. We prove that no other estimator is
as good as F by an inductive argument which shows F is the essentially unique
generalized Bayes rule with respect to a class of prior measures on %. In fact,
the following stronger result will be established:

THEOREM 3.1. () If R(F, ¢) < R(F, ) for all F € 4.1, then for all x,
o(t; x) = F(t x) a.e. dW(t) whenevera<1 and b<1.
(i) Ifa=0and b <0, then R(F, ¢) < R(F, F) for all F € &, suffices.

PROOF. Given an arbitrary vector t = (¢, -- -, tz),such that t; < tp < - - - <
ty, we define Z (t) by Z (t) = {F | F(t) = Y% p:I[t; < t], where p; = 0, Y ¢ p; = 1}.
(Note that % = Uieprt Z (t)). If x5, - - -, x, are a sample from F € ¥ (t), then
all the observatlons are located at t;, ---, tx with multiplicities denoted by
Ji, -+, jr respectively. The emplrlcal dlstrlbutlon function ¥ reduces to F(¢; x)
= Yk Gi/n)I[t; < t], where j; = 0, X%, j; = n. Set jx = (ji, -+ - , jx). The order
statistics for the sample and hence j, are sufficient statistics for this problem. It
will be convenient to denote ¢ (¢; x) by ¢ (¢; jz). The lemma given below is key to
the proof of the theorem.

LEMMA ?;{1. Let a < 1 and b < 1. Suppose R(F, ¢) < R(F, I7') for all
F € Z (t). Then for each ji
() o(t;5x) = Pt jr) a.e. dW(t) on the interval [t, t3);
(ii) if a = 0 then ¢(t; jr) = 0 for t < t;; and
(iii) f b=0then ¢(t;§r) =1 fort = t,.

Before proving the lemma, we indicate how the theorem follows from it.
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Suppose R(F, ¢) < R(F, F)forall FE %, and a < 1, b < 1. Given x, let t 41
be a vector whose coordinates include all the distinct coordinates of x as well as
an arbitrary point. From part (i) of the lemma, it follows easily that ¢(¢; x) =
F(t; x),ae. dW(t). Ifa<0,b<0and R(F, ¢) < R(F, ) forall FE %, let t,
be a vector whose coordinates include all the distinct coordinates of x. From
parts (i), (ii), and (iii) of the lemma, it follows that ¢(t; x) = F(t; x) a.e. dW(¢t).
The theorem is thus a consequence of the lemma.

PROOF OF LEMMA. Let us define S, = {j. = (j1, ---, Jr), Ji = 1 for
i=1, --., k}. Then we can express the risk function for an F € % (t) as the
sum of two components
(3.1) R(F, ¢) = C(F, ¢) + D(F, ¢)
where

C(F,¢)=E f (F(t) — o(¢; §x))*F(t)(1 — F(£))°I{jr € Si} dW(¢)
and
D(F, ¢) = E f (F(t) — ¢ (t; §))°F(t)(1 — F())°I{ix € S5} dW(2).

Now define %, (t) = {F € % (t) | p; = 0 for some i}. Note that if F € %, (t), then
Sy, is empty, so C(F, ¢) = 0.

We treat the case a < 0 and b = 0 first. For this case the lemma reduces to
showing that if R(F, ¢) < R(F, F) for all F € &%, then

(3.2) o(t; 5x) = F(t;5) ae. dW(2).

We will prove (3.2) by induction on k. Notice that it holds for £ = 1. Suppose
that (3.2) holds for a particular k. We are going to show that if

(3.3) R(F, ¢) <R(F,F) forall FE %,,,
then
(3.4) ¢ (t; 1) = F(t; o) ae. dW(2).

We will prove (3.4) for any t € R**! by treating each of the two components of
the risk separately. For j..+1 € S%+1, we have

$(t; jer1) = F(t; jor1) ae. dW(2)
by considering F € %, (t) and applying (3.2). Therefore
D(F, ¢) = D(F, ) forall Fe€& Z,,(t).
Moreover, from (3.1) and (3.3), we have

C(F, ) < C(F, F) forall F& B (t).
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That is, forp;>0,i=1, --- ,k+ 1,

pany J[‘ Direr (Zom1 Pr = B(t; §r+1))* (Xl p2)°

titiv1)

- (1 -3k p) < " jk+1)p p’é’ii dW(t)

(3.5)
=¥k i Diker (Bier pr — T Jdn)*(Thar po)°
rli+1
n )
- (1 = X1 pr) < : )p’f <o pil dW ()
1, » Jk+1
where to = —, tys = ®©, 3% p, = 0 and Y;,,, means a k-fold summation over

indices j1, - - - ,jasuch that j; + jo + « -+ + jrs1 = n.

It is clear that the left-hand side of (3.5) is made no larger by taking ¢ (¢; je+1)
=0 fort <t and ¢(t; jk+1) =1 for t = tp+1. We can now divide both sides of
(3.5) by p"“pz .- - prp531 and integrate over dp,dp; - - - dp, where p; > 0, for all
i=1, ,k+ 1, and Y%*! p; = 1. Then interchanging dW(t) and dp,dp, - - - dp:
(by Fublm), the left-hand side of the new inequality is uniquely minimized (up
to sets of measure zero dW(t)) by

& (t; Je+1)
f f (2/—1 Pz)aﬂ(l - Zl—l Pz)b h_a_l '12 p”' ! J"“ ot dp1 <o dpy
J oo § (i ) = Thay o)A - p¥” ‘p’*ﬂ"’ "dp, --- dps
ae = ECmp)a - S p)
) E(Xicip )1 — Xicipr)®

where Yici p, ~ Be(Xiarj, —a, DEL1j, — b)
= Yio1j/n, when & <t< ti.

We also must have ¢ (¢; juv1) = 0 for t < t; and ¢(¢; jr+1) = 1 for ¢t = t441. The
lemma has therefore now been proved for the case a < 0 and b < 0.

The cases 0 <a<1lor 0<b<1 (or both) are somewhat more complicated.
The proof is again by induction on k. Suppose that if R(F, ¢) < R(F, F) for all
F € Z, then for each ji, the conditions (i), (ii), and (iii) of Lemma 3.1 hold. We
will show the corresponding result for k& + 1.

Suppose ji+1 € Si+1. Then j; = 0 for some i. Let t' = (¢, ---, ti) be the
k-vector formed from t € R**! with t; removed. Let ¢t{ < t; < ... < t{. Then
by (i)

(3.7) $(t; Juv1) = F(t; jorr) ae. dW() on [t], th).
We wish to show that
(3.8) Ot §ke1) = F(t; Joer) ae. dW(t) on [t, ten).
Note that ¢t{ = t; or ti = ti+1. If both equalities hold, then (3.8) is established.
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Otherwise, suppose t{ # t;. Then t{ = t,. Let jr+1, denote the first coordinate of
jr+1. It follows from (3.7), (ii), and (iii) that

)
[t

1,82

) (F(t) = ¢(t; §rs1))’FHE)A = F(£))°I{jrrrn = 0} dW(¢)
(39) =E J{: " (F(t) = F(t; jrer))FUE) (L = F (@)L frrra = 0} dW(t)

+E f (F(t) = F(t; 311)) Fo(t) A = F(t))°Iirs11 # 0} dW(2)

[tlrth+1)
for any F € %, (t). Consider F, € Z_, (t) defined by
F.(t) = e[t < t]1 + (pz — )t < t] + EZh p It =]

where each p, > 0, Y%} p, = 1 and 0 < ¢ < p,. Setting F = F, in (3.9) and
dividing both sides by &%, we have

E (e = ¢ (t; re1))*(1 = &) fins1n = 0} AW(2)

[t1,t2)

= E ‘I[‘ ) 82(1 - G)bI{j]H.l,l = 0} dW(t)
t1sto

+E f[ t )(F,(t)—F‘(t; Jre1)) 2FE(t)
1obk+1

(3.10)
- (1 = F.(t) e Ifrs1 # 0} dW(2)

+ J[; . )Ff(t)(l — F.(t))%™°P{jr+1,1 # 0} dW(2).
1Vk+1

Note that Pf{jr+11# 0} =1 — (1 — &)" ~ ne as ¢ | 0. Hence, as ¢ |, 0, both terms

of (3.10) vanish, so that

o(t; jee1) =0 ae. dW(t) on [t;,t;) whenever jii11 =0.
The situation t} # tp+1 is handled similarly. Thus for jr+; € S%+1, we have
b(t; jre1) = F(t; jos1) ae. dW(t) on [t tes1);

if a < 0 then ¢(t; jr+1) = 0 for t < &; and if b < 0 then ¢ (¢; jr+1) = 1 for t = t.
Therefore, D(F, ¢) = D(F, F) for all F € %_, (t). The rest of the proof is the
same as that for the case a <0 and b < 0.

Note that in order to have proper integrals in (3.6), we need j; — a > 0, jp+1 —
b>0,andj;>0fori=2, .-, k. When ji1 € S+1, the above restrictions require
the conditions a <1 and b < 1.
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For a = 1 or b = 1, the admissibility of F is still unknown. It can be shown
that Lemma 3.1 holds for all @ and b when k < 2. The cases k = 3 are still
unresolved.

4. Estimating many distribution functions. In this section, simultane-
ous estimation for several distribution functions is considered. Fori=1, ..., I,
suppose a sample X; = (x;1, %2, - -+, %in,) Of size n; is taken from an unknown
distribution function F;. Given Fjy, - .., Fj, the observations x;, X5, - -+, X; are
independent. Let x, F, ¢ denote (x, ---, x1), (F1, ---, F7), and (¢4, -- -, é1)
respectively. Let Fi(t; x) = X2y I(xi, < t)/n;. The empirical distribution
functions Fy, - - -, F; are admissible for the following loss functions for all @; < 1
and b; < 1:

(41)  L(F, ¢) = 3 f (Fi(t) — ¢:(8))°FE(t)(1 — Fi(t))% dWi(t).

Hence, the Stein phenomenon does not occur in this problem.

THEOREM 4.1. (i) If R(F, ¢) < R(F, ) foral F; € Zpq,i=1,.--,1, then
for all x and i, ¢;(t; X) = F;(t; x) a.e. dW;(t) whenever a; <1 and b; < 1.
(ii) If both a; < 0 and b; < O for any i, then F; € Z,, suffices.

The proof is omitted. The key idea is that the stepwise Bayes argument in
Section 3 can be applied to each summand in (4.1) separately.

Gutmann (1982) shows that Stein’s phenomenon is impossible in finite sample
space problems. We need the somewhat stronger criterion of “essential unique-
ness” (as in Lemma 3.1) as a step in the proof. Similar multivariate estimation
problems are treated by Meeden, Ghosh, and Vardeman (1983, pages 21-24).

5. Finite populations. In this section, we consider the problem of sampling
from a finite population. Suppose there is a population U= {1,2, ---, N} of N
identifiable units with population value y; € R! associated with the ith unit. Let
s denote a subset of U containing n distinct elements and let S, denote the set
of all (}) such s. A sampling design (with fixed sample size n) is a probability
measure 7 on S,. The survey sampler chooses a sample s with probability = (s)
and observes the data {(i, y;); i € s}. It is desired to estimate the population
distribution function F where

F(t) = (1/N) 3, Iy; < t].
The empirical distribution function is defined by
@) = 1/n) Sies Iy: < t].

We will show that ' is admissible for the four loss functions defined in (2.1) with
a=0or —1 and b = 0 or —1. That is, there does not exist an estimator ¢ such

that
Vs, 7(8)Lap(F, ¢) < Tees, 7(s)Lap(F, F) (@ =0or -1, b=0or —1)
for all y = (y1, - - -, yn)(and hence F) with strict inequality for at least one y.
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In fact, we prove a stronger result. First define
e = {F: F(t) = Tk (k/N)I[t; < t], where k; = 0, Y&, k; = N}.

THEOREM 5.1. If
Yees, 7()Lap(F, ¢) < Sees, 7(s)Lap(F, F) (@ =0o0r —1,b=0or —1)
for all y such that the corresponding F € S, then for all samples s € S,
o (t; {6, 3:); L € s}) = F(t; {G, y); i € s)) ae. dW(b).

Proor. We follow the proof of Theorem 3.1 with the following changes: Let
0; denote the number of population units with value ¢;. Let y* = (y%, ---, ¥%),
where y¥ < y§ < --- < y¥%, be the order statistic of population values determined
by the 6;. Let v(1), ¥(2), - - -, ¥(IN) be a permutation of 1, 2, - -- , N. Then the
0; and permutation vy together determine a population by y = (y¥u), ¥¥2), -+,
y¥a). Let v be chosen independently of the 6;, each of the N! permutations
assigned equal probability 1/N! (The choice makes the observed y; values (i € s)
sufficient. See Lehmann, 1983, pages 212-213). Now replace p; in Theorem 3.1
by 6;/N, and (;,..",,.,)p* --- piti in (3.5) by (;)(%) --- (1)/(X). Divide both
sides of (3.5) by 6¢*'0, ... 6,051} and sum over the 6;, s, ---, 6, and all
permutations y. Note that within these summations we can assume without loss
of generality that s = {1, - - - , n}. Also observe that (8, — ji, - - - , Or+1— jr+1) given
jr+1 has a Dirichlet multinomial distribution with parameters (N — n, j; — a, jo,
<+, Jrs Je+1 — b). A straightforward computation (see Blackwell and Girshick,
1954, page 168) shows, whenever a = 0 or —1, b = 0 or —1, that

E[(i+ --- + )™ (N = (B + --- +68))°] _ Foer i
NE[@,+ --- +60)*(N—(0,+ --- +6)) n

’

as required.

REMARK. A unified theory of proving admissibility for both i.i.d. samples
and samples from finite populations has been developed by Meeden, Ghosh, and
Vardeman (1983). The connection between samples from finite populations and
i.i.d. samples can be seen as follows. Suppose the finite population is chosen from
a superpopulation with replacement with P(x = ¢t;) = p;, i =1, ---, k, where x
denotes an cutcome of a draw from this superpopulation. Let 6; denote the
number of elements in the finite population with value ¢;. Then the probability
mass function of 6y, - - - , 8 is f(8 | P) = (5,V.6,)PT - - - DI

If we choose a Dirichlet prior distribution on p;, ---, pr-1, then the posterior
distribution of j;, - - -, jx—1 given 0y, - - -, 61 can be shown as in Ericson (1969)
to be the multivariate hypergeometric distribution

(5.1) FG10) = Tk (?) / <f:’> where Y1t j; = n.

Note that (5.1) is the same sampling distribution used in the previous paragraph.
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REMARK. For a >0 or b > 0, Fis .inadmissible. It is dominated by Fy =
max((1/N), F) or F;, = min(1 — (1/N), F), respectively.

REMARK. Results corresponding to those of Section 4 on simultaneous esti-
mation of finite population distributions can also be obtained.

6. Final comments. The loss functions

(6.1) L(F, ¢) = f (F(t) — o@))XF(t)%(1 — F(¢))° dF (¢),

with dF(t) replacing dW(t) in (2.1), are also of considerable interest. By an
approach similar to that used here, Brown (1984) has shown that Fis admissible,
when a = b = —1, for the class of all distribution functions.

Ifa# —1 or b # —1 in (6.1) and the parameter space is the class of continuous
distribution functions, the empirical distribution function is not the best invar-
iant rule (Ferguson, 1967, pages 191-197). Hence, it is inadmissible. For a = b =
—1, on the other hand, the empirical distribution function is a best invariant
rule. A long-standing open question was whether or not the best invariant rule
is also minimax (Ferguson, 1967, page 197). Brown (personal communication)
has recently announced that F' is minimax. He constructs an intricate sequence
of priors on continuous distribution functions. The admissibility or inadmissibil-
ity of F in this situation is still unknown.
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