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Review by P. J. BICKEL
University of California, Berkeley

In this monograph Pfanzagl has made an important contribution to asymptotic
estimation and testing theory in nonparametric models. The main questions he
addresses are the following:

Consider models according to which we observe Xl, ..., X, which take values
in a sample space 2 and are independent and identically distributed according
toPE £

1) How well can we (asymptotically) estimate a Euclidean parameter K(P)?
Here K: &2 — R™ for some m.
2) How well can we test hypotheses of the form H: K(P) =¢, P€ #?

If & is “parametric”, & = {P, : § € 0}, © Euclidean, § — P, smooth, the
answers are standard.

Pfanzagl develops a method introduced by Koshevnik and Levit (1976), itself
based on an old idea of Stein’s (1956), for obtaining “information bounds” in
“nonparametric” or what one might call semiparametric models, Here are a few
examples of such models; a wealth of others can be found in Chapters 2, 14-18
of Pfanzagl.

a) The symmetric location model: The parameter of interest K(P) here is the

centre of symmetry.

b) The linear regression model with stochastic independent variables and i.i.d.
but not necessarily normally distributed errors. The parameters of interest
are the regression coefficients other than the constant.

¢) The Cox (1972) regression model with time independent covariates. Here
stochastic independent variables (covariates) and survival times are ob-
served, the latter possibly with censoring independent of the survival time
given the covariates. The hazard rate of a survival time (precensoring)
given the covariates c is given by

A(t| ) = explcBINo(¢)

where )\ is an unknown fixed hazard rate. The parameter 8 is of interest.

As these examples suggest, the models of interest are described through a
parametrization (6, G) — P, ) where 6 is Euclidean and G ranges over an abstract
space, typically a set of probability distributions on some space. The parameters
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6(P) are defined implicitly through identifiability rather than being given explic-
itly as a function 8 : & — R™. Typically, these models can be viewed as
generalizations of classical parametric models {P,,} with G, assumed known.
In these cases a question appears naturally:

3) Can we do as well not knowing G, as knowing it?

If we can we are dealing with the phenomenon of adaptation (see Bickel, 1982,
for example). [Pfanzagl dismisses this question as a special case of question 1.
This is, of course, true. Before going on to praise the book further, I must note
that Pfanzagl’s polemical discussion of this question, the issues of robustness,
and testing against multidimensional alternatives put at least this reader off.]
These unnecessary polemics, Pfanzagl’s difficult notation, e.g., P(X) for the
expectation of X under P, and a choice of metric on & which complicates the
exposition, makes this excellent work less accessible than it should be.

Pfanzagl’s presentation falls into three parts.

1) Development of the concepts leading up to lower bounds on the efficiency
of estimation and the probability of type II error of tests in these general models
(Chapters 1-9);

2) a largely heuristic discussion of methods of achieving these bounds in
estimation and testing (Chapters 10-12);

3) a large number of examples in which the bounds are computed. In essen-
tially all of these cases the bounds are shown to be sharp through existence of
well known procedures achieving them. The heuristics of Chapters 10-12 play
only a small role here (Chapters 13-18).

The key ideas (introduced by Koshevnik and Levit) used in developing the
lower bounds are the tangent cone at P, in & and the canonical gradient of K.
The tangent cone .7 is a subset of Lo(P,) defined by: h € 7 « there exists a
mapping (called a path) from [0, 1] to Ly(P,), t — dP,/dP, such that | (dp,/dP,)
—1-thl|,=o(t) as t | 0 where (-, -),, || - |, are the Hilbert inner product and
norm in Ly(P,). This definition implicitly supposes that P, is dominated by Py
and dP,/dP, € L,(P,). Pfanzagl weakens the latter requirement and broadens his
notion of path. However, as Le Cam (1983) shows, the set of all paths obtained
using the weaker definition is just the set of all h = 2g where gVdP, is the
(Hellinger) derivative at 0 of the mapping ¢t — vdP, from [0, 1] to the Hilbert
space of equivalence classes £¢vd@Q, ¢ € Ly(Q) where

a) S\/d_QEn\/JRG)S \/d—(ad%R—)=n \/ﬁ—ﬁ ae. Q@+ R

b)  (¢YdQ, nVdF) = fsn\/d(Q+R)\/d(Q+R)d<Q+R>.

Pfanzagl’s choice of local metric | - ||, leads to awkwardnesses in definitions in
Chapter 7, and long and tedious discussions of approximations by global metrics
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such as the Hellinger metric in Chapter 6. Use of the Hellinger metric and/or
the local metric 2 || (dQ/dP)/? — 1 ||, greatly simplifies the discussion.

If & is parametric, # = {P, : § € R*}, 7 is (under the usual regularity
conditions) the linear span in Ly(P,) of (3/d6;)log p(X,, 0°),i =1, ---, k, where
p(-, 0) is the density of P, with respect to u > & and P, = P,. The tangent
cone in general corresponds essentially to the set of all (3/dt)log p.(X}) | =0 where
Dt is the density of P, and {P,} ranges over smooth 1-dimensional subfamilies of
2 with P, as an endpoint. Typically the tangent cone is a closed linear space as
above and is then referred to as a tangent space. The tangent space is an essential
component of the differential geometric structure of & as studied by Amari
(1982), following Efron (1975).

The 1-dimensional parameter K has a gradient K(PO) € L,(Py) < for all paths

{Pd,
K(P,) = K(Py) + (K(Po), ) ( H 3—2 -1 >
= K(Py) + t(K(P), h,) + o(t)
where
”d—PO—l—tho O—O(t).

The gradient is in general not unique. Evidently if K(P,) is a gradient so is its
projection onto the tangent space, which we shall refer to as K.

The lower bounds of Chapters 8 and 9 can now be expressed as follows: For
estimates K of K such that A, = Vn(K — K(P)) converge in law uniformly
on paths {P,} the distribution of A, under P, is at least as dispersed as
N, | K(Py) |2). The power of tests of H : K(P) = K(P,) vs. K(P) = K(Py) +
(t/vn) is, for t = 0, under regularity conditions on & and H, no larger than
1—®(z —t| K(Py) ||~ + o(1) where the level of the test is 1 — &(2) + o(1).

In smooth parametric models and in the presence of identifiability, these
bounds are classical and attained. In the general case, construction of procedures
achieving these bounds and even their achievement requires considerably more
study.

Pfanzagl gives two lines of attack on the problem of estimating K(P) for K
having a gradient.

i) Say P, € & a sequence of estimates of P, is asymptotically efficient if, for
all f in the tangent space of P,

ff(x)pn(dx) =07l YR, F(X) + 0p(n71).

Then for K ﬁifferentiable in a strong sense and (dP,)/dP sufficiently close to 1
in| - ||, K(P,) is asymptotically efficient, i.e., achieves the lower bound (Theorem
11.2.1).

Unfortunately the construction of P, in other than smooth parametric models
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is unclear. One possibility is to choose P, € # to minimize Hellinger distance
bewteen the empirical distribution P, and 2 Pfanzagl gives (in Theorem 10.4.8
as corrected below) conditions under which such a method yields an asymptoti-
cally efficient P,,. Unfortunately even the weakened conditions of Remark 10.4.11
do not hold in a case as simple as & = {absolutely continuous symmetric
distributions}—see the discussion in Section 15.2 for instance.

ii) Given a reasonable estimate P, of P, P, € 2 use a 1-step Newton iteration,

K(P,) + (1/n) Y&, K(X;, P,)
where K(-, P,) = K(P,)(-).

This method has been shown to work in special cases under suitable conditions
by Levit (1975), Ibragimov-Hasminskii (1979) and Bickel (1982).

The last group of chapters giving examples is in many ways the most novel
and interesting. Here are what I view as the most interesting results:

CHAPTER 14. The most important topic here is estimation of parameters in
the presence of unknown nuisance parameters which vary stochastically from
observation to observations. These “mixture models” which go back to Neyman
and Scott (1948) have been treated by E. Andersen (1973) and others, most
recently by B. Lindsay (1983). Pfanzagl’s main result here (earlier obtained by
Godambe, 1976, Theorem 3.2 in a different setting) is that if there is a complete
sufficient statistic 7T for the nuisance parameter with the parameter of interest
fixed, then conditional inference (given T') is asymptotically efficient. For the
Neyman-Scott model, this was shown by Lindsay and independently by Ham-
merstrom (1978).

CHAPTER 15. This chapter deals with symmetric probability measure models
and contains an application of method (i) of obtaining an asymptotically efficient
estimate of P. The treatment is essentially heuristic and rather unsatisfactory in
view of the results of Beran (1974) and Stone (1975).

CHAPTER 16. The unsurprising key result here is that the product of asymp-
totically efficient estimates of the marginal distributions is the asymptotically
efficient estimate of P if we know P to be a product measure.

CHAPTER 17. This chapter deals with independence-dependence problems.
The most striking result is that, in testing for independence in models such as
that of Bhuchongkul (1964), the upper bound to the power is the same whether
we assume the distributions of the variables under the hypothesis known up to a
change of location and scale or completely unknown. In principle, adaptation is
possible here. ‘

CHAPTER 18. This chapter dealing with two sample (or rather one bivariate
sample) problems contains one particularly interesting result.



790 P. J. BICKEL

SECTION 18.5. An extension to group models of a result of Stein (1956) that
if the second sample is obtained from the first by shift and change of scale,
estimation of both changes should be as easy (on the basis of lower bounds) with
the population shape of the first sample unknown as with it known up to a
change of location and scale.

In this chapter, Pfanzagl also gives the lower bound for estimation of the ratio
of hazard rates in the proportional hazards model. This calculation due to Begun
and Wellner (1983a) has now been superseded in Begun et al. (1983b) which
presents some interesting additional geometry.

Pfanzagl views this book as a basis for a unified asymptotic statistical theory.
This is, I think, too ambitious. Such a basis, in a much more general context, is
to be found in Le Cam’s forthcoming monumental treatise (to appear). However,
I believe at least elements of the Pfanzagl (Koshevnik-Levit) approach will prove
important in the development of theory, at a level where it can be immediately
applied to a wide range of examples. Topics which I see as requiring much greater
development are:

1) extension of the geometry to nonidentically distributed as well as dependent
observations, e.g., regression models with fixed covariate values, Cox regression
models with time varying covariates and censoring;

2) construction of efficient procedures including a thorough examination of
“nonparametric” maximum likelihood and the method of sieves and regulariza-
tion (Grenander, 1981);

3) calculation of the bounds (and of efficient procedures) in further important
examples;

4) uniformity of convergence of efficient estimates. This topic is touched on
briefly in Section 9.4. Attainment of the bounds at any point of the parameter
space is not enough. If convergence is not uniform in reasonable neighborhoods
of the point, a sample size guaranteeing reasonable results cannot really be
specified.

5) Can efficiency in this sense and robustness be reconciled?

6) How do such procedures behave for moderate size data sets? In some cases,
e.g. the Cox estimate in censored regression, some simulation studies are avail-
able, in others, e.g. adaptive estimation of location, very little is available.

In a forthcoming monograph based in part on the Mathematical Sciences
Lectures I gave at Johns Hopkins University in June, 1983, C. Klaassen, J.
Wellner and I hope to carry out some of this program. Our thinking on these
questions was greatly stimulated by Pfanzagl’s book. I expect the book will
similarly influence others.

I conclude with an omission and a misprint:

Page 158 (9.3.3): K*(x, P) = n™' 3%, K*(x:, P) appears not to be defined.

Page 186: The theorem is proved for A(P,(z, -); P) = O,(n""?). The stated
condition 0,(n~"*) requires additional conditions—see Remark 10.4.11.
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