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BOUNDS ON AREs FOR RESTRICTED CLASSES OF
DISTRIBUTIONS DEFINED VIA TAIL-ORDERINGS!

By WEI-YIN LoH
University of Wisconsin, Madison

It is shown that large classes of asymptotic relative efficiencies (AREs)
are isotonic with respect to various partial orderings on the heaviness of tails
of symmetric distributions. The orderings include those of van Zwet (1964),
Lawrence (1975), Barlow and Proschan (1975), and a new one that generalizes
all three. Characterizations in terms of these orderings are given for many
familiar families of distributions with restricted tail and central behavior. By
restricting attention to such distributions, finite bounds are obtained for
AREs such as that of some robust estimates to the sample mean, which could
be unbounded otherwise. Similar results are shown to hold for the approximate
Bahadur efficiencies of Kolmogorov-type tests.

1. Introduction. Itis well known that in estimating the location parameter
of a symmetric distribution F, the sample mean X is not efficient compared to
some of its nonparametric competitors if the data contains gross error. Specifi-
cally if 6 is some robust estimator such as the a-trimmed mean X, or the
Wilcoxon estimator W, the asymptotic relative efficiency (ARE) e; x(F) of 6 to X
is unbounded above if F is allowed to have arbitrarily heavy tails. The reason, of
course, is that unlike these competitors, the asymptotic variance of X is highly
sensitive to heavy tails since it is directly proportional to the variance of F. An
interesting question that has not received much attention in the literature is how
supre; x(F) is affected by limiting the tail behavior of F. We examine this question
here for a number of pairs of estimators.

Since the ARE of any 6 to X is proportional to the variance of F, it is clear
that if finite upper bounds are to be obtained, we need to restrict at least to the
class of distributions with finite second moments. It is not difficult to see,
however, that this class is still too large because the supremum of e; x(F) over
the family of truncated Cauchy distributions is infinite. This family clearly has
moments of all orders.

In fact, since AREs are scale invariant, this example indicates that even
restricting attention to distributions with supports on the interval (—1, 1) is not
enough. Rescaling the truncated Cauchy distributions so that they have supports
in (=1, 1) forces the densities to take large values at their centers. It therefore
appears that finite bounds on e; x(F) can be obtained only by simultaneously
controlling the behavior of the distributions at both the centers as well as the
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686 W. Y. LOH

tails. The strongly unimodal distributions turn out to be satisfactory. Other,
more general classes are introduced in Section 3. They are the symmetric
analogues of the failure-rate distributions.

Restricting attention to these classes also makes it possible to obtain finite
bounds for AREs of the form e ;(F) for large classes of 6, where X is the sample
median. It is well known that, in this case, the AREs are unbounded whenever
the density of F is unbounded at the center.

It will be seen that the bounds obtained are not only numerically small, but
also sharp in most cases. The key to the proofs lies in the twin properties that
(a) many AREs are isotonic (or order-preserving) relative to certain partial
orderings, and (b) in terms of these orderings, the distribution classes are not
heavier-tailed than the double exponential.

In Section 2 we describe the four tail-orderings needed and their basic prop-
erties. Three of these are known from earlier authors, while the fourth one is
new and generalizes the others.

Section 4 contains the results for location estimates. In Section 5 we apply
the same techniques to the corresponding problem of obtaining finite bounds for
the approximate Bahadur efficiencies of pairs of Kolmogorov-type two-sample
tests for location shifts when the distributions are restricted to be strongly
unimodal (but not necesarily symmetric). Sinha and Wieand (1977) studied this
problem for completely unrestricted F.

We adopt the following notation in this paper. Distributions and their cumu-
lative distribution functions (cdfs) are denoted by the same upper case letters F,
G, etc. and their densities by the respective lower case letters. All cdfs are
assumed to be absolutely continuous. The center of symmetry of F is denoted by
ur and the inverse of F is defined by

F'(x) = Y[inf{t: F(t) = x} + sup{t: F(¢t) < x}].

All the orderings appearing in the literature are defined on the class & of
symmetric absolutely continuous F such that F is strictly increasing on Sz = {x:
0 < F(x) < 1}. For the t-ordering to be defined below, we will enlarge its domain
of definition to the class & * of symmetric absolutely continuous F such that F
is strictly increasing in a neighborhood of ur. If X and Y are random variables
(r.v.’s) with cdfs F and G, and F precedes G according to the ordering “s”, we
sometimes write X S Y in place of F S G.

2. Tail-orderings on symmetric distributions. Three partial orderings
on the location-scale families in % have appeared in the literature. We recall
the definitions.

DEFINITION 2.1. Let G € & . Then
F <, G & G™'F(x) is convex for x > pup;
F< Ge (G'F(x) —pug)/(x — ur) is non-decreasing for x > ug;

F<,Go G'F(x+y) tuc = G 'F(x) + G'F(y) for x, y > ur.
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The s-ordering was introduced by van Zwet (1964). If a r.v. X has a continuous
cdf F, Y = G 'F(x) has cdf G and so will have heavier tails if G"'F(x) is convex
for x > up. The r-ordering was defined by Lawrence (1975). When ur = ug = 0,
this reduces to requiring G™'F(x) to be star-shaped on [0, ®). (Recall that a
function f(x) is star-shaped on [0, ) if f(ax) < af(x) forall0 <=a =<1 and all x
> 0,) The su-ordering can be found in Barlow and Proschan (1975) as an ordering
for positive r.v.’s. We modified it here into an ordering on symmetric cdfs. It says
that G7'F(x) — u¢ is superadditive on (up, ®). Since star-shapedness and
superadditivity are successive generalizations of convexity for functions passing
through the origin (cf. Bruckner and Ostrow, 1962), it follows that

(2.1) F<G=F< G=F<,G.

We note that in Definition 2.1, F need not belong to~% for the definitions to
make sense. However the s-ordering will not be a true partial ordering on the
location-scale families unless the distributions are restricted to be in & .

Since every cdf with a unimodal density is convex-concave (i.e. convex for x
< ur and concave for x > ur), it is obvious that the uniform density s-precedes
any unimodal density. In fact, van Zwet (1964) proved that

2.2) U-shaped density <, Uniform <, Normal
. <, Logistic <, Double exponential.

Except for the first of this ordering, all the rest correspond to our intuitive feeling
of heavy-tailedness. It is easily verified that the reason for the first part of (2.2)
is due to the fact that the U-shaped density is convex at its median (and hence
is less peaked than the uniform density). This provides one example of the
property of the s-ordering that it orders peakedness as well as tailedness. Another
illustration is the result (Latta, 1979): Double exponential {; Cauchy. Here,
although the Cauchy is quite obviously heavier-tailed, the double exponential is
more peaked since it has a cusp at the median. These examples are partly
explained by the fact that the s-ordering preserves kurtosis, a measure which is
known to be influenced by both peakedness and tailedness (c.f. Kaplansky, 1945,
Chissom, 1970, and Darlington, 1970).

One property, related to truncation, might be desirable of any tail-ordering.
Given a cdf G with symmetric unimodal density g, suppose we truncate g
symmetrically about its center and rescale the result to yield a density f with cdf
F. Since F is essentia]ly G with the latter’s tails removed, it seems desirable that
a tail-ordering should judge F to be lighter-tailed than G. The following example
shows that this is not necessarily true of the su-ordering and hence also of the s-
and r-orderings.

EXAMPLE 2.1. Letc,e>0,c<d <Y and G be a cdf with symmetric unimodal
density g defined on (0, ») by
1+ ¢— ex/e, O=sx=c
gx) = c<x=d
continuous, decreasing, for x = d.
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Let F be obtained from G by truncating g at +c and rescaling to have support in
(=Y, %). Then
Fx) =% +2x(1+e—ex)2+e)7Y, 0<x=<%.

If d is sufficiently close to Y, there is 0 < y < % such that
G'Fla—v) =0 =291 +% e+ ey)(2+e) ' — e

and
G'FMi—Y%y)= (% —v)A +% e+ Yey)2+e) ' — Ve

It is easy to see that for ¢ sufficiently small, we have
G 'F(% — v) < 2G7'F(% — Yey)
thus proving that G'F is not superadditive on (0, %). Hence F £ G.

Another operation which does not preserve these orderings is scale-mixing.
The interested reader is referred to Loh (1982) for details.

The reason that the s, r, and su-orderings are not preserved by truncation is
that their definitions are too stringent. A weaker ordering will hopefully take
care of this. Our choice for such an ordering is motivated by the following.
Suppose we have two symmetric cdfs F, G centered at the origin and such that
F(x) = G(x) for x > 0. Because G puts more mass away from 0 than F, one would
like to say that G have heavier tails than F. (Birnbaum, 1948, called G “less
peaked” than F, although here we are using “peakedness” to mean “sharpness”
of the density at the center.) This ordering is clearly not scale-free since, starting
with any symmetric F, we can always produce such a G by making G a rescaled
version of F. Some matching of the scale parameters is thus necessary. This may
be achieved in many ways, but as we are interested in an ordering for tail
behavior, the most natural course seems to be to “match” the centers of F and
G. Since the symmetry condition already makes the values of the cdfs agree at 0,
we choose to match their first derivatives, i.e., given any two location-scale
families of symmetric cdfs, we compare their relative tail behavior by selecting a
member from each family such that ur = ug =0, and F’(0) = G’(0). Then if F(x)
= G(x) for x > 0, we will say that F has lighter tails than G. This is the essence
of the following definition. Recall the definition of & * is Section 1.

DEFINITION 2.2. Let G € #*. We say that F <, G if and only if the limit

L = lim, ., (G7'F(y) — 1e)/(y — ur)
exists and

(2.3) (GT'F(x) — ue)/(x — pr) = L, x# pr.

The limit L has been called a subgradient (see e.g. Marshall and Olkin, 1979).
In the case that F(x) and G(x) are both continuously differentiable, ur = ug = 0,
and f(0) = g(0), then L =1 and (2.3) reduces to F(x) = G(x), x > 0. The
relationship between the t-ordering and the other orderings is given in the next
theorem.
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THEOREM 2.1.
F<,G=F< GG=2F<,G=F<A.

PROOF. Only the last implication needs to be proved. However, it is a well-
known fact (see e.g. Hille and Phillips, 1957) that if G™'F(x) — uc is superadditive
for x > up, then L exists and (2.3) holds. Hence F <,,G = F <, G.

We show next that the t-ordering is indeed a partial order on the location-
scale families in 7 *. The proof of the following lemma is easy and is omitted.

LEMMA 2.1. The condition (2.3) is location and scale-free.

THEOREM 2.2. The relation “<,” is a partial order on the equivalence classes
of location-scale families in F *.

PROOF. In view of Lemma 2.1, we may assume that all cdfs are centerd at 0.
To show antisymmetry, suppose that F <, G and G <, F. We need to show
that there is 7 such that F(x) = G(rx). Define 7 = lim,_oy 'G'F(y) =
lim,_o(27*F~'G(z)) *. The hypotheses imply that 0 < 7 < . Since F <, G implies
that F(x) = G(rx) for x > 0, while G <; F implies the reverse inequality, we
obtain F(x) = G(rx) for all x. The proof of transitivity is straightforward.

It was noted earlier that the double exponential does not s-precede the Cauchy.
The same turns out to be true with the ¢-ordering. To see this, choose a member
from each family so that they are both centered at 0 and their densities are equal
at 0. Then L in Definition 2.2 is 1 but, because the double exponential density
has a cusp at 0 while the Cauchy has more mass far away from 0, the two cdfs
cross each other at some point in (0, ), thereby violating (2.3). It is clear that
this phenomenon is not restricted to the Cauchy and double exponential, but
holds more generally with any pair F and G such that f(x) has a cusp at ur while
8’ (ue) = 0 < g(uc), and g(x)/f(x) = o as | x| — .

Like the s-ordering, the t-ordering therefore also takes into consideration the
peakedness as well as the tailedness of a distribution. Sometimes when one
distribution is highly peaked, the t-ordering can even forget about tail behavior
in its pursuit of peakedness. Such instances occur when F and G are such that
f(ur) <  and g(ug) = ». Then L in Definition 2.2 is 0 and (2.3) is immediate.
This yields F <, G regardless of the tails of either distribution. However, if we
restrict attention to densities which are bounded from 0 and « at their centers,
these difficulties largely disappear, as (2.3) then genuinely compares tail proba-
bilities. The following theorem gives conditions for a truncated distribution to
t-precede its parent.

THEOREM 2.3. Suppose the density g(x) of G is symmetric, unimodal, and
satisfies
(2.4) lim,0g8G7 (%2 + ae)/gG ™ (Y2 +e) =1 forall 0<a<1.
Let F be obtained from G by symmetric truncation. Then F <, G.
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PrOOF. We assume without loss of generality that G is centered at 0. Let G
be truncated at +y and define F(x) = o *(G(x) — G(-y)), =y < x < y, where «
= 2G(y) —1. The unimodality of G implies that F(ax) = G(x), x > 0. Therefore
we have x7'G7'F(x) = a™!, x > 0. Using L’Hospital’s rule and (2.4), it can be
seen that

o' = lim,ox'G'F(x).

The theorem follows.
We note that (2.4) holds if g(x) is bounded. Therefore the t-ordering applies

in Example 2.1.
The following results are shared by all the orderings. Here we will use “s” to
denote any of the s, r, su, and t-orderings if a result holds for all of them.

THEOREM 2.4. Let F be a symmetric cdf and define F,, 0 < a < Y%, to be the
cdf obtained from F by truncation:

F,(x) =01 — 2a) Y (F(x) — %) + .
ThenF<sG= F,sG,.

PrOOF. Since the orderings are scale-free, we may assume that F and G
possess the same a-quantiles. Then it is easy to check that G;'F,= G~'F from
which the theorem follows.

The following example shows that convolutions are not preserved.

EXAMPLE 2.2. Let F, G be the uniform and normal distributions respectively.
Then F <, G. Let F * F denote the two-fold convolution of F. Since F = F has a
triangular density and G * G is normal, it may be seen that F * F €: G * G. The
reason is the same as for DE <, Cauchy, which is that F' = F is more peaked than
G + G. We conclude that for all four orderings, F < G does not necessarily imply
F+xFsG=QG.

Given two samples {X;, .-, X,}, {Y1, ---, Y,} of size n from F and G
respectively such that F < G, this example shows that we cannot expect X, <
Y., where X, is the mean of the X-sample. A natural question to ask then is
whether an ordering exists for the cdfs of the two sample medians. It is clear
from the above example too that the answer is no for n = 2. It turns out that for
odd n, the answer is yes.

THEOREM 2.5. Let F,, G, be the cdfs of the medians from samples of size n
from F, G respectively. If n is odd and F < G, we have F,, < G,,.

ProOF. The result is due to the fact that G,'F, = G7'F (cf. Barlow and
Proschan, 1975, page 108).

We mentioned earlier that van Zwet’s s-ordering preserves kurtosis. Lawrence
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(1975) showed that the same holds for the r-ordering. It can be verified however
that this is not true of the t-ordering (Loh, 1982).

3. Families with restricted tails. Ibragimov (1956) defined a strongly
unimodal distribution as one whose convolution with any unimodal distribution
is unimodal, and proved that such a distribution is either degenerate or possesses
a density that is absolutely continuous and log-concave on its support. Strongly
unimodal distributions are unimodal. In this and the next section we will be
interested only in symmetric distributions, especially the family % (SU) of
symmetric strongly unimodal distributions. The uniform, normal, logistic and
double exponential are prominent members of this family. Larger families which
contain % (SU) may be defined via the failure rate distributions used in reliability
theory. We recall here some of the definitions.

DEFINITION 3.1. Let H(t) be a cdf with H(0) = 0 and write H(t) =1 — H(¢).
Then
(i) HisIFRIfH(t + s)LH(t) is nonincreasing in t > 0 for each s = 0.
(ii) His IFRA if t 'log H(t) is nogincreasing int>0.
(iii) His NBUif H(t +s) < H(t)H(s) fors, t = 0.
(iv) His NBUE if ¥ H(s) ds < uH(t), t = 0, where u is the mean of H.

In this definition we have restricted attention to cdfs on [0, ) which are
continuous at 0. It can be seen however that the only H which is discontinuous
at 0 and satisfies any of the conditions (i) through (iv) above, is the point mass
at 0.

The connection between the strongly unimodal distributions and the reliability
distributions lies in the fact that for any cdf F, 1 — F(x) is log-concave whenever
its density f(x) is log-concave (see e.g. Marshall and Olkin, 1979). This implies
that the failure rate f(x)/(1 — F(x)) of every strongly unimodal distribution is
non-decreasing, and hence every F € % (SU) is IFR.

For any symmetric cdf F with center of symmetry ur, we write F(x) =
2F(x + pr) — 1, x = 0. Then the following classes of symmetric distributions may
be defined:

Z (IFR) = {F: F is IFR}
AIFRA) = {F: F is IFRA}
Z (NBU) = {F: F is NBU}
Z (UIFR) = {F: F is unimodal and F is IFR}.

(3.1)

The well-known properties of life distributions imply that
(3.2) #(SU) Cc # (UIFR) Cc # (IFR) C & (IFRA) C & (NBU).

Each of these classes properly contains the one preceding it.
The following theorem shows that in terms of the orderings, the distributions
in (3.2) are not heavier-tailed than the double exponential (DE) distribution.
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THEOREM 3.1. Let F be symmetric. Then

@) F e #(IFRA) & F <, DE,
(ii) Fe #(NBU) & F <, DE.
If F is in addition continuous,
(iii) Fe #(FR) « F <, DE,
and
(iv) F € # (UIFR) « Uniform <, F <, DE.
Hence
) F € #(SU)  Uniform <, F <; DE.

PrOOF. The proof is similar to the one given in Barlow and Proschan (1975)
for orderings on cdfs of positive r.v.’s.

This result associates each of the s, r, and su-orderings with a class of failure
rate distributions. It turns out that this can also be done for the t-ordering.

DEFINITION 3.2. We call a cdf H with H(0) = 0 NBAFR (for “new-better-
than-average-failure-rate”) if
(3.3) t"'log H(t) < lim,;os 'log H(s), t>0.

If H is continuously differentiable in [0, ¢) for some ¢ > 0 and the failure rate
r(t) = h(t)/H(t) exists for all t, (3.3) is equivalent to

(3.4) r(0) < t! J; r(s) ds, t>0,

thus accounting for the name NBAFR. As in (3.1), we can define
& (NBAFR) = {F: F is NBAFR}

(3.5) N
Z (UNBAFR) = {F: F is unimodal and F is NBAFR}.

With these definitions we have

THEOREM 32 Let F be symmetric. Then
@) F € 7 (NBAFR) & F <, DE,
(ii) F € #(UNBAFR) < Uniform <, F <, DE.

PrROOF. The proof is similar to that for Theorem 3.1. The s-ordering appears
in part of (ii) because F is unimodal if and only if uniform <, F.

Because the t-ordering is more general than the su-ordering, two conclusions
are immediate from this theorem. They are that & (NBU) C & (NBAFR) and
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{NBU} C {NBAFR}. It can be shown that although the NBAFR and NBUE
classes both contain the NBU, neither contains the other.

4. Location estimates. We are now ready to obtain bounds for the AREs
mentioned in the introduction. In this section all distributions F are assumed to
be symmetric and absolutely continuous. Some formulas for the AREs are recalled
in (4.1)-(4.6) below. The additional conditions on F required for their validity
may be found in Lehmann (1983) and the references therein. These conditions,
however, are satisfied by the uniform and double exponential, the only distribu-
tions for which we need to explicitly compute AREs here. The density and
variance of F will always be written as f(x) and ¢% respectively, and ® and ¢ are
reserved for the standard normal cdf and density. In the formulas the distribu-
tions are taken to be centered at 0. )

-2

(4.1) ewn(F) = 12 {ffz(x) dx} {f [F?(x)/¢®7'F(x)] dx} ;
(4.2) ex x(F) = 030 2(F), 0<a<

(4.3) ex.x.(F) = 4f*(0)c%(F), 0<a <Y

(4.4) exw(F) =1 f2(0)|l f f3(x) dx} ;

2
(4.5) ewx(F) =12 o% Il f f3(x) dx} ;
where ¢2(F) is the asymptotic variance of X, given by

l

Fl(1-«)
(4.6) o2(F) = 2(1 — 2a)72 {f t¥(t) dt + ofF7(1 — oz)]2|

and N is the normal scores estimator.

The results of this section are displayed in Table 4.1 where we also show the
corresponding bounds for unrestricted F for comparison. Some of the latter
bounds may be found in the papers of Hodges and Lehmann (1956, 1961) and
Bickel (1965) while the rest are easy to deduce from the preceding formulas.

We derive the bounds for the restricted classes in Table 4.1 in the order they
appear. The first one is simple because of the work of van Zwet (1964).

THEOREM 4.1. Let G = ¥ (SU) or ¥ (IFR). Then
4.7) inf,ewn(F) = ewn(Uniform) = 0,
(48) supzeW,N(F) = eW,N(DE) = 31!'/8
PrOOF. Since AREs are nonnegative and the uniform distribution is strongly

unimodal, the first part of the theorem is a matter of verification (Hodges and
Lehmann, 1961, first made this observation.) For the supremum, we use the fact,
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TABLE 4.1
Bounds for AREs
ARE Class Infimum Supremum

ewn(F) -7 (SU) 0 3r/8 ~1.18
.7 (IFR) 0 3r/8
unrestricted 0 6/7 ~1.91

ex, x(F) 27 (SU) 1+ 4a)™! 1<k(e)*<?2
.7 (IFRA) (1 - 2a)? k(a)
unrestricted 1-2a)? o

exx, (F) 27 (SU) 1+ 4a)/3 1<2k Y a)<?2
.7 (NBAFR) 0 2k (a)
unrestricted 0 o

exw(F) 7 (8U) 1/3 . 4/3
.7 (UNBAFR) 1/3 4/3
unrestricted 0 L

exn(F) 7(SU) 0 w/2 =157
7 (UIFR) 0 /2
unrestricted 0 o

ewx(F) 7 (SU) 0.864 <3
#(UNBAFR) 0.864 <6
.7 (NBAFR) 0.864 0
unrestricted 0.864 )

* See (4.10).

proved by van Zwet (1964), that the ARE of W to N is order-preserving with
respect to the s-ordering, i.e.

(4.9) F <, G= ewn(F) = ewn(G).

Together with Theorem 3.1, this completes the proof. .

The next theorem is equally simple to prove using a result of Bickel and
Lehmann (1975).

THEOREM 4.2. Let ¥ = % (SU) or & (IFRA), and 0 < a < Ys. Then
sup.ex x(F) = ex_x(DE) = k(a) < 2
where
(4.10) k(a) = (1 — 20)%1 — 2a(1 — log(2a))}~".
Also,
inf ;sv)ex,x(F) = ex_ x(Uniform) = (1 + 4a)7,
infr‘(IFRA)eX",)?(F) = (1 - 2a)>.

Proor. Bickel and Lehmann (1975) proved that Lawrence’s (1975) r-order-
ing is preserved by the ARE of a pair of trimmed means. More precisely, they
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showed that if 0 < 8 < o < %, then

(4.11) F <, G= exx,(F) < ex x,(G).

The first three results now follow easily from Theorem 3.1 and Lemma 4.1. The
last result follows from Bickel (1965).

LEMMA 4.1. Let 0 < a < ' and k(a) be defined in (4.10). Then k(«) is strictly
increasing in (0, ¥2) and lim,_ok(a) = 1, lim,_,;0k(a) = 2.

ProOOF. Elementary calculus.

To obtain bounds on the next three AREs in Table 4.1, we need some facts
on the t-ordering. These are given below culminating in*Theorems 4.3 and 4.4.

LEMMA 4.2. Suppose ¥ (x) is symmetric about 0 and nondecreasing on (0, o).
Let F and G be symmetric about 0 and f(0) = g(0) < «. Then

F <, G= Erny(X) = Egy(X).
Proor. It follows from the definition of the t-ordering that the assumptions

in the lemma imply that F(x) = G (x) for all x> 0. The result is now a consequence
of a well known property of stochastically ordered distributions.

LEMMA 4.3. Fori =1, 2, let H; be a distribution with support on [0, «) such
that h;(x) | and h;(0) < . Suppose further that H, is stochastically larger than
H,. Then

(4.12) f ht(x) dx = f h3(x)dx, n=1,2, --..

Proor. Fixj, k€ {0,1,2, ---} andlet g(x) = hi(x)h5(x), and ¥ (x) = q(0) —
q(x). Since the latter is nondecreasing we have by stochastic ordering that
E ¢ (X) < Ey¢(X) which is equivalent to

f hihst < f hi**hs forall j,k=0,1,2, ---.

THEOREM 4.3. Let 6 be any estimator with asymptotic variance given by 1% =
Ery(X) for some y(x) symmetric about 0 and nondecreasing on (0, ©). Then

(4.13) F < G = ex;(F) < ex,;(Q).
PROOF. Since ex;(F) = 4f%(0)7} and we may choose f(0) = g(0), the result
follows from Lemma 4.2.

Many L- and M-estimators satisfy the conditions of this theorem, including
the mean, trimmed mean, and Huber’s M-estimator.

COROLLARY 4.1. Let ¥ = & (SU) or & (NBAFR), and k(a) be defined in
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(4.10). Then for 0 < a < %,
sup,exx, (F) = exx (DE) = 2k7(a) <2,
inf ,sujexx,(F) = ex x, (Uniform)
=(1+ 4a)/3
and inf ; nBarm€x,%,(F) = 0.
PrROOF. The first two results are direct consequences of Theorems 4.3, 3.1
and 3.2 and Lemma 4.1. To see that the infimum over & (NBAFR) is 0, we

observe from (4.3) that the ARE vanishes whenever f(0) = 0. Such densities are
clearly contained in % (NBAFR).

Although the estimator 6 = W does not satisfy the conditions of Theorem 4.3,
it satisfies (4.13) for unimodal F. This is proved in the next theorem.

THEOREM 4.4. For unimodal F and G,

F< G= exw(F) = exw(G).
Let ¥ = #(SU) or # (UNBAFR). Then
inf ex w(F) = Y5, sup.exw(F) = ¥,

the bounds being attained at the uniform and DE respectively.

ProOF. The proof of the first part parallels that of Theorem 4.3, the only
difference being that Lemma 4.3 is used in place of Lemma 4.2. The bounds are

inferred from Theorem 3.2 and the fact that no unimodal distribution ¢-precedes
the uniform.

These results make it easy to deduce bounds for the ARE of X to N.

THEOREM 4.5. For unimodal F, G,
F <, G= exn(F) < exn(QG).
Further if ¥ = & (SU) or & (UIFR), then
‘ inf,ex n(F) = ex y(Uniform) = 0,
supexn(F) = exn(DE) = % .

ProOOF. This follows from the relation ex y = ex w-ewn, (4.9) and Theorem
4.4, recalling that the s-ordering is a special case of the t-ordering.

The AREs considered so far have all been shown to be order-preserving
relative to at least one of the orderings. The ARE of W to X, in contrast, is not.
To see this, note that the uniform distribution s-precedes any distribution with
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a concave density, and recall the Hodges and Lehmann (1956) result which says
that the infimum of ew x(F') over the class of all symmetric F is attained by an
F with a concave parabolic density. This shows that ey x does not preserve the
s-ordering, and hence also the other more general orderings.

THEOREM 4.6.
inf f/(SU)GW,X'(F) = 0864, supV;(SU)eW,X(F) <3

sup_;wnsarr ew,x(F) < 6, sup ;arriewx(F) = o.

PrROOF. The infimum of 0.864 follows from the above mentioned result of
Hodges and Lehmann (1956) since any distribution with a concave density is
log-concave and hence strongly unimodal. To get upper bounds, we use the
relation

(4.14) ewx(F) = 1.5exx(F = F)
where F = F is the two-fold convolution of F. We consider the classes separately.

(a) F € % (SU). The definition of strong unimodality implies that
F « F € #(SU). It follows from Corollary 4.1 (letting « — 0) that the RHS of
(4.14) is < 3, with the value 3 attained if and only if there is F € % (SU) such
that F' = F = DE. The only F satisfying the latter condition is the cdf of the
product of two independent normals (Nyquist, Rice and Riordan, 1954), and its
density is a Bessel function that is unbounded at the origin. Since every strongly
unimodal distribution that is nondegenerate has an absolutely continuous density
in its support, this F cannot belong to . (SU). We conclude that there does not
exist an F € 7 (SU) such that the LHS of (4.14) is 3. In fact, since the set of
strongly unimodal distributions is closed under weak limits (Ibragimov, 1956),
the sup of the LHS of (4.14) over .# (SU) is strictly less than 3. The exact value
of this sup is not known.

(b) F € #(FR). To see that the sup is infinite over this class, recall first
that any distribution with a U-shaped density belongs to # (IFR). Now pick one
such that f(0) = 0. Moving the two halves of this density away from each other
preserves its membership in % (IFR) (since it remains U-shaped), but increases
the ARE. The latter fact may be seen from (4.5) since this operation increases
o% but keeps‘the integral constant. Therefore we have a sequence F, € & (IFR)
such that ey x(F,) — co.

(¢) F € ¥ (UNBAFR). The upper bound for such F follows from the ine-
qualities

2
ewx(F) = 120%<f f?) < 126%f*(0) = 3exx(F) < 6,

where the last inequality comes from Corollary 4.1. This completes the proof of
the theorem.
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5. Kolmogorov-type tests. In this section we obtain certain efficiency
bounds for pairs of Kolmogorov-type two-sample tests for location shifts. The
test statistics are denoted by

K: Kolmogorov-Smirnov W: Wilcoxon
V: Cramer-von Mises T: Terry-Fisher-Yates.

Wieand (1976) found expressions for the approximate Bahadur efficiency (or
limiting Pitman efficiency) of pairs of these tests. They turn out to be very
similar to the expressions for the AREs considered in the preceding section.
Bounds for these Bahadur efficiencies are given in Sinha and Wieand (1977) for
distributions F subject to the conditions:
SW) F(x) is strictly increasing on (—o, «), and

f(x) = F’(x) has two bounded derivatives.
Here we obtain the corresponding bounds for (i) the subclass ¥ where F is
additionally strongly unimodal (but not necessarily symmetric), and (ii) the
slightly smaller

@* = {F € ¥: median(F) = mode(F)}.

This latter class of course contains the subclass ¥ ** of symmetric strongly
unimodal distributions. It will be apparent in the proofs that the same bounds
are obtained whether we use ¥* or ¥** We quote the following formulas for
approximate Bahadur efficiency from Wieand (1976).

(5.1) ex,v(F) = 4n %sup f*(x) / f f3(x) dx

62 exwlF) = 5 s )] | e x|

(5.3) ew,r(F) = 12 {f f(x) dx} {f O~V (F(x))f*(x) dx}> .

As in Section 4, we will show that the bounds on these formulas are attained
at the uniform and double exponential. The difficulty that these distributions do
not satisfy conditions (SW) is overcome the usual way by embedding them in
the larger family of densities

(5.4) flx, b) « exp{—Ye|x|¥M*P} —1<b<1,

and taking limits as b — —1 and +1 respectively. Clearly these densities are
strongly unimodal and satisfy (SW). The results are displayed in Table 5.1.

The method of proof consists in identifying the formulas in this section with
those of the preceding one and then using the bounds derived there. Because
symmetry is not assumed here, some preliminary work is necessary in each case
before this program can be carried out.
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TABLE 5.1
Bounds for approximate Bahadur efficiencies
Class Infimum Supremum
exv ‘g 4772~ 0.405 12772~ 1.22
unrestrictedt 4772 0
ex.w 2 1/3 4/3
unrestrictedt 1/3 o
ew,r @ 0 37/8 ~1.18
unrestrictedt 0 6/7 =~ 191
ek,T Gg* 0 1(‘/2 =~ 1.57
unrestrictedt 0 o

T subject to conditions (SW).

THEOREM 5.1. Let F € < Then
inf exy(F) = 477%, sup exy(F) = 12772,
ProOF. The inf follows easily from Sinha and Wieand (1977). For the sup,

let F € ¥ and assume without loss of generality that the mode of F is at the
origin and f(0) = 1. Let d = F(0) and define the densities

filx) = d7f(x), x<0
fo(x) = (1 — d) 7 f(x), x>0
& (x) = d7'exp(x/d), x<0

&(x) = (1 — d)7'exp(—x/(1 — d)), x>0.

If d = 0, we leave f; and g, undefined, and similarly for f, and g, if d = 1. Since
fi, 1 = 1, 2 are strongly unimodal, we can apply Lemma 4.3 to obtain

ff3(x)dx=d3ff‘;’+(1—d)3ff32d3fg?+(1—d)3fg§=§.

The result now follows from (5.1).

THEOREM 5.2. Let F € ¥ Then
inf ex w(F) = Y5, sup exw(F) = %.

Proor. The proof is analogous to that for Theorem 5.1 with the lower bound
again following from Sinha and Wieand’s (1977) results.

THEOREM 5.3. Let F € ¥*, Then
inf ew,7(F) = 0, sup ewr(F) = 37/8.

PRrROOF. Assume that F has its median at the origin. We “symmetrize” the
two halves of its density by defining the densities f,(x) = f(— | x|), f(x) = f(| x|)
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for —0 < x < . Then the formulas in (4.1) and (5.3) are identical for F = F,,
1 =1, 2. Therefore Theorem 4.1 yields

(5.5) 0=< eW,T(Fi) = 37!'/8, 1= 1, 2.

Writing [ f> = %{[ f? + [ f3}, etc., it is easy to see that (5.5) in fact holds for the
original F too. Taking F as in (5.4) and letting b — + 1 shows that the bounds
are sharp.

THEOREM 5.4. Let F € <*. Then
inf ex 7(F) = 0, sup exr(F) = w/2.

PrOOF. Follows from the preceding theorems and the relation exr = ex w-
ew,r. .

Acknowledgement. This paper is based on a portion of the author’s Ph.D.
dissertation submitted to the University of California, Berkeley. The author is
indebted to his thesis adviser, Professor Erich L. Lehmann, for his guidance and
support. Also the helpful suggestions of the referees are gratefully acknowledged.

REFERENCES

BARrLOW, R. E. and PROSCHAN. F. (1975). Statistical Theory of Reliability and Life Testing. Holt,
New York.

BICKEL, P. J. (1965). On some robust estimates of location. Ann. Math. Statist. 36 847-858.

BICKEL, P. J. and LEHMANN, E. L. (1975). Descriptive statistics for nonparametric models. I.
Introduction. II. Location. Ann. Statist. 3 1038-1069.

BIRNBAUM, Z. W. (1948). On random variables with comparable peakedness. Ann. Math. Statist. 19
76-81.

BRUCKNER, A. M. and OsTROW, E. (1962). Some function classes related to the class of convex
functions. Pacific J. Math. 12 1203-1215.

CHissoM, B. S. (1970). Interpretation of the kurtosis statistic. The Amer. Statistician 24 4, 19-22.

DARLINGTON, R. B. (1970). Is kurtosis really “peakedness?” The Amer. Statistician 24 2, 19-22.

HiLLE, E. and PHILLIPS, R. S. (1957). Functional analysis and semi-groups. Amer. Math. Soc.
Colloquium Publ. (revised ed.) vol. 31.

HoDGEs, J. L. JR. and LEHMANN, E. L. (1956). The efficiency of some nonparametric competitors
of the t-test. Ann. Math. Statist. 27 324-335.

HobGES, J. L. Jr. and LEHMANN, E. L. (1961). Comparison of the normal scores and Wilcoxon tests.
Proc. Fourth Berkeley Symp. Math. Statist. and Probab. 1 307-317.

IBRAGIMOV, I. A. (1956). On the composition of unimodal distributions. Theor. Probab. Appl. 1 255—
260.

KAPLANSKY, 1. (1945). A common error concerning kurtosis. J. Amer. Statist. Assoc. 40 259.

LATTA, R. B. (1979). Composition rules for probabilities from paired comparisons. Ann. Statist. 7
349-371.

LAWRENCE, M. J. (1975). Inequalities of s-ordered distributions. Ann. Statist. 3 413-428.

LEHMANN, E. L. (1983). Theory of Point Estimation. Wiley, New York.

LoH, WEI-YIN (1982). Tail-orderings on symmetric distributions with statistical applications. Ph.D.
Thesis. University of California, Berkeley.

MARSHALL, A. W. and OLKIN, 1. (1979). Inequalities: Theory of Majorization and its Applications.
Academic, New York.

NyqQuisT, H., RICE, S. O. and RIORDAN, J. (1954). The distribution of random determinants. Quarterly
of Appl. Math. 42 97-104.



BOUNDS ON AREs 701

SINHA, B. K. and WieaND, H. S. (1977). Bounds on the efficiencies of four commonly used
nonparametric tests of location. Sankhya Ser. B 39 121-129.

VAN ZWET, W. R. (1964). Convex Transformations of Random Variables. Math. Centrum, Amsterdam.

WIEAND, H. S. (1976). A condition under which the Pitman and Bahadur approaches to efficiency
coincide. Ann. Statist. 4 1003-1011.

DEPARTMENT OF STATISTICS
UNIVERSITY OF WISCONSIN, MADISON
1210 W. DAYTON ST.

MADISON, WISCONSIN 53706



