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ON A CLASS OF BAYESIAN NONPARAMETRIC ESTIMATES:
I. DENSITY ESTIMATES'

By ALBERT Y. Lo
University of Pittsburgh and Rutgers University

Given a positive, normalized kernel and a finite measure on an Euclidean
space, we construct a random density by convoluting the kernel with the
Dirichlet random probability indexed by the finite measure. The posterior
distribution of the random density given a sample is classified. The Bayes
estimator of the density function is given.

1. Introduction and summary. The problem of density estimation from
a nonBayesian point of view has been considered by a number of authors (for a
good list of references, see Tapia and Thompson, 1978). Here we consider the
density estimation problem from a Bayesian point of view and obtain such
estimates under a weighted squared error-loss and when random density function
is generated by convoluting a known (density) kernel with a Dirichlet process
(Ferguson, 1973). The next section presents the notation and the statistical
description of the problem and gives the Bayes estimator f of the density function.
In the same section, some computational aspects of f are also given. The third
section discusses the choice of K and «. This is illustrated with a few numerical
examples.

2. Prior and posterior distributions. Throughout the paper, let 2, #
both be Borel subsets of Euclidean spaces and % % the s-fields generated by
the open sets relative to 2 and % respectively. Let o denote a finite measure
on (%, #). Let K(x, u) denote a nonnegative valued kernel defined on (2" X 2,
F @ #) such that for each u € %, [+ K(x, u) dx = 1 and for each x € Z;
[ 2 K(x, u)a(du) < «. Let © be the space of distributions on (R, #) and 7 the
o-field on © generated by weak convergence. For each G € 0, we define f(x| G)
= [#K(x, u)G(du), x € Z.Then f(- | G) is a density function by virtue of Fubini’s
theorem. Let % be the family of f(- | G)’s when G varies in 0. That % is made
rich by a suitable choice of K(-, -) is well known (see Section 3). It can also be
shown that f(x | G) is o/-measurable by first showing this when K is an indicator
and then passing to the limit. Let &, be a Dirichlet probability on
(0, o) with index measure « (Ferguson, 1973). This is denoted by G ~ #,. Note
that for each x € Z, [o f(x|G) Z.(dG) = [ » K(x, u)(a(du)/a(#)). This is the
marginal density of x and it is also the Bayes estimator for the no sample problem
with respect to the quadratic type loss function.

We denote the posterior distribution of the parameter G given a sample X;,
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, X, by 2" The Bayes estimator of the density function f(x|G) =
| K(x, u)G(du) under squared error loss can be obtained as an application of

LEMMA 1. Let g be a positive valued or quasiintegrable (with respect to the
Jjoint probability of %, and G) function defined on (# X 0, 8 ® /), Then

2.1) f f g(u, G)G(dw) 2,(dG) = f f gty G) Prs (dG) "‘(‘i‘;;

where 6, is the Dirac probability measure degenerate at u.

ProoOF. Apply Theorem 1 of Section 3 of Ferguson (1973) and a limiting
argument. [

We shall use Lemma 1 to evaluate the posterior distributions. To simplify our
notation, we define the measure u, x ., on (%", 4"), the n-folded product measure
space of (%, B), by unx.(du) = [[I% K(X;, )] [T% (a + TEh 6,)(du:), where
u = (uy, ---, u,). We denote the conditional expectation given the observations
X, -+, X, by EX.

THEOREM 1.

J on fe g(@) %+Z{'=16u‘_(dG)ﬂn,K,a(du)
J.jf" ﬂn,K,a(du) ’

for any nonnegative or integrable function g on (0, %).

(2.2) E*g(G) = n=1

ProOF. We shall evaluate the numerator of (2.2) by repeated application of
Lemma 1. We first write the numerator of (2.2) as

J;g(G) 1= LK(x“ u;)G(du;) Z.(dG)

= J(; LK(Xl,ul)g(G) T2 L K(Xi, u:)G(du,)G(du,) Z.(dG).

It has been noted earlier that the integrand is measurable with respect to & ®
/. Thus Lemma 1 is applicable. The above quantity is equal to

f fK(Xl’ u1)8(G) [k f K(X;, u)G(du;) Pavs, (dG) oldu)

o 7 5 a(R)
- . L o+ 3 6,)(du)
= L" J(;g(G)a+Z{'=l,su‘_(dG) Hi=1 K(X;, w) Hz=1 2 ri-1

Applying this argument a total of n times gives the numerator, and replacing
2(G) by 1 to obtain a similar result for the denominator completes the proof. [

The evaluation of the Bayes rules via (2.2) is rather similar for several types
of functionals of G and we give the derivation of the Bayes rule of the density
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function below to illustrate the idea. We need the following combinatoric result
to derive the Bayes rule for f(x | G) under weighted squared-error loss in Theorem
2 below. Let o be a finite measure on %, m a positive integer and g;, i =1, .. -,
m are positive or a-integrable functions. Let P be a partition of 1, ---, m and
N(P) be the number of cells in the partition. Thus, P = {C;, i =1, ..., N(P)},
where C; is the ith cell of the partition. Let e; be the number of elements in C;.
Note that C;and e¢;, i =1, .- -, N(P) depend on P.

LEMMA 2.
23 f T2 &) TI2: (o + 27 0,)(du) = T 6(P)
where
(2.4) #(P) = TI4P l(e - 1! f M g/<u>a<du>}
and the sum is over all possible partitions P of {1, - - -, m}.

PrOOF. The left hand side of (2.3) can be written as a sum of m! terms.
These terms, which are in fact integrals, can be grouped according to the number
of distinct u;, doubles in {u,, ---, un}, triplets in {u,, ---, un}, ---. Grouping
these integrals according to the possible choices of u;, it can be seen that the
integrals are of the type

(2.5) 1Blg f Mrec, & (Waldu).

There are a total of (e; — 1)! ways to obtain the above integral fori =1, - ..,
N(P), hence the total number of ways to obtain (2.5) is [[¥¥’ (e; — 1)! and thus
(2.3) is obtained. O

THEOREM 2.
E*f(x|G)
_ _a(Z#) f a(du)[
0 a@) +n | EE 9 o)
—_ = Np) i “ K(x, u) Il.ec, K(X,, u)a(du)]
a(g?) tn 2e W) 25 n [ Mrec, K(X,, u)a(du) ]

where W(P) = (¢(P)/Tp ¢(P)).

PROOF OF THEOREM 2. Expression (2.6) can be reduced to

1 . _[9?"'“ Ian+1,K,a(du)
a(R) +n J 2 pnk.o(du)

by writing x as X,+,. By Lemma 2, the numerator becomes Yp' ¢(P’) where P’
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is a partition of {1, - .-, n + 1} and the denominator becomes Yp ¢(P) where P
is a partition of {1, - - -, n}. It remains to show that (2.6) is equal to (1/a(%2) +
n) - (Zp o(P")/2Zp 6(P)).

We shall expand Yp' ¢(P’) as a sum over P. To do this, observe that each P
= {C,, ---, Cn@)} can be identified with {C,, Ci, - - -, Cnp)} with C, being the
empty set. In this case each P corresponds to N(P) + 1 different P’’s by assigning
the element n + 1 to each of Cy, Cy, - - -, Cnep). Also note that if P; and P, are
two different partitions of {1, - - -, n}, the N(P;) + 1 partitions generated by P,
and the N(P;) + 1 partitions generated by P, are all different. By running P
over the class of all partitons of {1, .. -, n}, we obtain the class of all partitions
of {1, - .-, n + 1}. Using this, Yp- ¢(P’) can be written as

zp{ f KXo, waldw) TIEP (e — 1)! f [ec K(X,, waldu)
+ P el f K(Xps1, W) Tlrec, K(X,, waldu)
1% (e — D! f e, K(X,, u)a(du)}~.
Rewriting X,,;, as x and simplifying, we arrive at (2.6). 0

REMARK 2.1. A referee pointed out that the computational aspect of the
expression (2.2), which appeared first in Lo (1978) had been investigated inde-
pendently by Kuo (1980) and Ghorai and Rubin (1982). It was known that both
the numerator and the denominator of (2.2) could be reduced to a sum of products
of single integrals. In particular, Kuo (1980) noticed that the number of sum-
mands in this sum is equal to the Bell’s exponential number and proposed a
Monte Carlo method for its evaluation whereas Berry and Christensen (1979)
gave approximations to cut down on computations. On the other hand, Ghorai
and Rubin (1982) obtained Lemma 2 by mathematical induction.

3. The choice of K, o and some examples. The choice of K defines the
model and is the difficult part. One easy case is that of the histogram model
obtained by choosing K(x, u) = ¥; (1/2(A))jxeaueay in Zk, where {Aj} is a
partition of 2 = % and / is Lebesgue measure. In this case expression (2.6)
readily reduces to the usual Bayes estimates of the cell probabilities. Other
determinations of K are more difficult. Roughly speaking, {K(-, u), u € #} are
the extreme points of the convex family %% and hence the determination of K
rests on the existence of a Choquet-type theorem representing elements of .
In the following we list the available results. A broad model is also given in case
no such theorem is available.

Suppose % is the family of scale mixtures of the uniform densities. A theorem
of Klintchine and Shepp says <k is the family of all decreasing densities
supported by [0, ] (Feller 1970, page 158). For the same reason, the family of
unimodal densities with mode at zero is equal to the family of mixtures of uniform
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(—u1, ug) densities with u; > 0 and u, > 0, which further reduces to the family of
symmetric and unimodal densities if u; = 0. On the other hand, a theorem of
Bernstein says the family of all completely monotone densities is characterized
by its exponential extreme points. Furthermore, this last class is a smooth
subclass of the family of all decreasing densities. The characterization of %% of
scale mixtures of normal has been studied by a number of authors; see in
particular Theorem 2 of Eaton (1981) which also contains some interesting
results in the multivariate case.

In view of the lack of Choquet-type theorems for the models considered here,
a Y% which is rich enough to contain all densities in its closure is quite desirable.
It can be shown that in the real line case such a family consists of densities of
the form

(3.1) flx|G) = J(; J: 7K(7(x — u))G(du, dr)

where K(-) is a prescribed nondegenerated density on (—, »). Here we anticipate
the problem of choosing K parallels that of choosing K for the classical kernel
estimates. Details and references of the latter are available in Tapia and Thomp-
son (1978). Nevertheless, we find that a standard normal K to be convenient in
practice.

Expression (2.6) suggests that once K is chosen, the choice of a should be
based on the usual prior-posterior analysis when sampling from the K(-, u)
densities with a(du)/a(%) being the prior distribution of the “parameter”
u € . Consequently, for computational purposes, a(du)/a(#) would be a
member of the conjugate family of priors when sampling from the K(-, u) densities
(DeGroot, 1970, Chapter 9). In this case, ¢(P) is given by (2.4) and expression
(2.6) can be reduced to integral-free forms. The following examples concerning
densities on the real line are made to illustrate this. Computations are carried
out by an IBM 360 system via a subroutine that generates all partitions of the
set {1, ---, n}.

A sample of size 8 (—1.47, —0.85, —0.52, —0.11, 0.058, 0.39, 0.985, 1.61) from a
standard normal density is drawn and three estimates are plotted in Figure 1
using the following three models: location mixtures of normal kernels with fixed
variance 1, scale mixtures of normal kernels with fixed location 0, and location
and scale mixtures. The «’s are the N(0, 1) distribution and the gamma (1, 1)
distribution in the first two models. The last model corresponds to (3.1) and
hence « is supported by [0, ©) X (=, ©) with joint distribution specified by: =
~ gamma (1, 1) and given 7, u ~ N(0, 1/7).

Figure 2 gives estimates based on a sample of size 8 (0.08, 0.12, 0.42, 0.61, 0.96,
1.21, 1.40, 2.30) from a standard exponential density using scale mixtures of
uniform kernel and scale mixtures of exponential kernels. The corresponding a’s
are Pareto distributions with parameters 0.1 and 1, and the gamma (1, 1)
distribution. The two irregular points on the curve obtained by using uniform
kernels are caused by the two largest observations 1.40 and 2.30, whereas these
do not seem to affect the smoothness of the second estimate.

In Figure 3, the two-sample data (Control: 6.8, 3.1, 5.8, 4.5, 3.3, 4.7, 4.2, 4.9;
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Treatment: 4.4, 2.5, 2.8, 2.1, 6.6, 0.0, 4.8, 2.3) of Lehmann (1974, page 37) are
used to derive estimates for the model specified by (3.1) with joint distribution
of « being identical to that of Figure 1.

4. Concluding remarks. Asymptotic theory is not available (besides the
result of Doob (1949) which says that one always has consistency for almost all
parameter values) except for bounded K in the convolution model (this statement
applies also to Lo, 1980). In this latter case, convergence of the posteriors to a
limiting distribution is achieved by vn rescaling (Lucien Le Cam, private con-
versation).

The relatively simple form of expression (2.7) is promising for solving the
following problems from other viewpoints. (I) The minimax rule of this model
may be derived by choosing an appropriate sequence of a(du)’s and exploiting a
constant risk type argument. (II) Deflating the prior a(du)/a( %) appropriately,
perhaps a “heuristic” or a maximum likelihood estimate can be uncovered (the
existence and uniqueness of the latter are guaranteed by a convexity argument).
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