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INVARIANT CONFIDENCE SEQUENCES FOR SOME
PARAMETERS IN A MULTIVARIATE LINEAR
REGRESSION MODEL

By B. K. SINHA AND S. K. SARKAR'
University of Pittsburgh and Temple University

Let X;, X;, - - - be independent p-variate normal vectors with E X, =
BYea a=12, -.. and same p.d. dispersion matrix . Here 8: p X ¢ and T are
_ unknown parameters and Y,’s are known ¢ X 1 vectors. Writing 8 = (8183)’
= (BwBw) with Bi: p; X g(p, + p» = p) and By: p X qi(q: + g2 = q), we have
constructed invariant confidence sequences for (i) 8, (ii) Bq, (iii) 8; when B,
= 0 and (iv) ¢ = | Z|. This uses the basic ideas of Robbins (1970) and
generalizes some of his and Lai’s (1976) results. In the process alternative
simpler solutions of some of Khan'’s results (1978) are obtained.

1. Introduction. The problem of deriving confidence sequences i.e., se-
quences of confidence regions which contain the true parameter for every sample
size simultaneously at a specified confidence level, has been tackled by Robbins
(1970) and Lai (1976) using likelihood ratio and generalized likelihood ratio
martingales. Let, under Py, 8 € Q, the random p X n matrix X, = (Xy, ---, X,,)
have the probability density p.s(xw), n = 1, with respect to a o-finite measure
u» defined on the Borel sets of the space 2, of X(,. A family of subsets
{R,(X(), n = m (some fixed positive integer)} of Q is said to constitute a
(1 — a)-level sequence of confidence sets for 8 if Pe{d € R, (X)) foralln = m} =
1 — q, for all 8 € Q. The construction of such a sequence of confidence sets is
based on the following inequality due to Robbins (1970). Let F be a measure
defined on Q and

Zn = fpn,n(x(n)) dF('fI)/Pn,o(x(n)), if pn,ﬂ(x(n)) >0
(1.1) @

0 if pn,o(x(n)) = 0.

Then {Z,, #.} n = 1 is a Py-martingale (%, is the Borel field generated by X,))
and satisfies the martingale inequality given by

Py{Z, = 6 for some n = m}

(1.2)
< PyZ, =0} + 67" f Z, dP, for any &> 0.
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To define invariant confidence sequences (Lai, 1976), let 6 = (8,, 6,) and let G
be a group of tranformations on 2, leaving the family {P,, (0;, 0,) € Q}
invariant. Let G be the induced group on Q. We assume that G is such that G
induces a transformation on the space of ;. Then, a sequence of confidence sets
{R.(%(n)), n = m} for 6, is said to be invariant under G if

(13) Rn(g * x(n)) = {g— * 01301 S Rn(x(n))}

foralln = m, x,) € 2, and g € G.

Our object in this paper is to derive invariant confidence sequences for some
parameters in the following probability model. Let X;, X, --- be independent
normal p-vectors with E X, =8Y,, @ =1, 2, --- and the same p.d. dispersion
matrix Z. Here 8:p X q and 2 are unknown parameters and Y,’s are g X 1 vectors
which are regarded either as known or else the above distribution is to be
understood conditionally given the Y.’s. Let us write 8 = (8183)’ = (BwBe),
where B:p; X q¢(p1 + p; = p), Bo:p X qi(g1 + g2 = q), i = 1, 2. We want to
construct sequences of invariant confidence sets for (i) 3, (ii) B, (iii) 8; when S
=0and (iv) e2= | Z]|.

Some special cases of the above problems have been treated in the literature.
Khan (1978) considered problem (i) when (a) p =1 and (b) ¢ =1, Y, = 1. Our
solution to problem (i), when specialized to case (b), is much simpler than Khan’s
and provides a natural multivariate analogue of the results of Robbins (1970)
and Lai (1976). The motivation for problem (iii) in case (b) can be found in Giri
(1968). We offer two solutions in this case. Problem (ii) in case (a) relates to a
subset of the regression coefficients in a linear model situation.

In order to construct invariant confidence sequences, we reduce the data first
by sufficiency and then by invariance. The following version of Stein’s theorem,
due to Hall, Wijsman and Ghosh (1965), is often used.

THEOREM 1. Let, for each n, U, be sufficient for X,y = (X4, -- -, X,,) and let
there be a group G of transformations on 2. Let T, = T(U,) be a maximal
invariant under the induced group of transformations on U,-space. Then, under
certain assumptions, for each n, T, is sufficient for (Ty, --- , T,).

In the applications of this theorem to our problem, it is not difficult to verify
Assumption C of Hall, Wijsman and Ghosh (1965), which is sufficient for the
above theorem to hold. We also use the representation theorem due to Wijsman
(1967) (see also Kariya (1978, 1981a, 1981b)).

Problems (i)-(iii) are discussed in Section 2 and problem (iv) is treated in
Section 3.

2. Invariant confidence sequences for regression coefficients.

2.1 Problem (i). Let Py 5 be the probability measure under which the density
of Xn)= (X, -- -, X,,) with respect to the Lebesgue measure is
(21) (27r)—np/2 I 2 |_"/2exp{— ) tr E_I(X(,,) - ,BY(,,))(X(,,) - ﬁY(n)),}

where Y,y = (Y4, ---, Y,). It is assumed that Y, is of rank q for each n = q.
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Define
(2.2) Bn = X Y(nC7', where C,= Y Yiy
and

Sn = XwXimy = BaCubi.

Then, for each n = g, (Ba, S.) is sufficient for the above family of distributions.
We now consider the group G, whose elements are g,, p X p nonsingular matrices.
The induced action of g; on (,ém S.) is g1 - (ﬁ,,, S,) = (glﬁn, 2:S,g1) and on
B, Z)is & - (B, Z) = (86, &2g1). For each n = p + ¢, a maximal invariant
under G, is T, = 8,,S,'8, and the joint distribution of Tp+q, Tprg+1, -+ - , Tn Will
depend on (B, =) only through 5’y where n = Z/28. Let h, ,(t,+q, - - - , t,) denote
the joint density of Tp.q, - - -, Th. Because of Theorem 1, we have

hn,n(tp+q9 M) tn)/hn,()(tp+q, Tt tn) = pn,q(tn)/pn,o(tn)

where p, ,(¢.) is the density of T),. Hence, for any measure F on the space of 7, if
we define

| Praltn)
(2.3) Z,= f ro(tr) dF (n),

then {Z,, Z,}n=p+qis a martingale under P, 5, 7, being the Borel field generated
by (Tp+q7 ] Tn), ’} =p+gq.

The density of (8., S,), n =p + q, at (8, Z) = (», I) is given by (Anderson,
1958, page 183)

(2.4) K,|C,|"?expi{— Y2 tr(B, — n)Cn(Br — 1)’ — Vo tr S,} | S,| P97 1/2

where K, stands for a generic constant. Using Wijsman’s representation theorem

(Wijsman, 1967), we get that

pn,q(tn)

pn,O(tn)

_ Jaewrexpi— Yo tr(AB, — n)C,(AB, — 1)’ — Y tr AS,A'}| AA’ | P2 dA
[accrexpl— Ve tr A(S, + B.C.BL)A’} |AA’ | P2 dA

(2.5)

where o is the group of p X p nonsingular matrices. Now, choosing F such that
dF(n) = (27)™/% | C,,| P’? dn for some fixed positive integer m = p + ¢ and
integrating (2.5) with respect to this F, we have

7 = | C| P Joexp{—Ytr A S,A’} |AA’ | (P2 g4
"7 |Cn|P? [.,expi{— Y tr A(S, + B.C.Bi)A’} |AA" | P2 dA
(2.6) = {|Cn|P2/| CalP'E} - {| S, + BnCnﬁ,',I”“/lS,A"/z}

= “ lep/2/| Cnlp/z} II + CnTnln/Z'
Since Z, satisfies the inequality (1.2) with 6§ = (0, X), replacing X,, by X,y —
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BYnin (2.6), we therefore get
Pys{l I, + Co(Bn — B)'S7 (B, — B) |

@7 2 §*/*{| Co|®"/| Cu|P'™} for some n = m = p + q}

< Pos{Z, =6} + 671 f

Z,<

Z, dPys, forany 6> 0.
)

Under Pos, Z}/™ is distributed as U3 ,._,, Up,m,» being the random variable
distributed as the product of p independent Beta variables, B((n — i + 1)/2,
m/2),i=1, ---, p. (See, for example, Anderson, 1958, page 194). Hence, taking
6= (1/p)™?, we can write the right hand side (rhs) in (2.7) as

(2.8) P(Upgm-q < p) + p™? f> U, om—q(u) du
u>p

where f is the density of U. Using (2.7) and (2.8), one can obtain a sequence of
invariant confidence sets for 8. It is interesting to observe that the regions
determined by (2.7) have the same shape as the confidence region determined by
Wilk’s A criterion which, in the fixed sample size problem, has smallest expected
volume among all fully invariant confidence sets; see Hooper (1982, page 1290).
Moreover, our measure dF is the same as his measure m(dvy, 6). In the following,
we consider some special values of p and ¢, and present the corresponding
inequalities (2.7) in simplified forms.

p=1. Since Uy 4n-,= Beta ((m — q)/2, ¢/2), the second term in the rhs of
(2.8) reduces to 2p"""?"%(1 — p)¥?/{gB((m — q)/2, q/2)}, yielding the following
inequality:

Py 3[(B, — B)Ca(Bn — B’
={(p™|Cal/ICn)V" =1} - S,, foralln=m = q + 1]
=1-I(m - q)/2, q/2)
= 20" (1 = p)**/{q B((m — q)/2, q/2)}, p>0

where I.(p, g) = P{B(p, q) < x}. This is precisely the same as obtained by Khan
(1978).

(2.9)

g = 1. Note that U, -, is distributed as Beta ((m — P)/2, p/2) (see e.g.
Anderson, 1958). Hence, proceeding as above, a sequence of invariant confidence
sets for B(p X 1) is obtained as

Pys[(Bn = 8)'S7' (B, — B)
=< {p™™™C,/Cr)"" — 1}C; foralln = m = p + 1]
=1-L((m - p)/2, p/2)
— 2 p" (1 = p)P2/{pB((m — p)/2, p/2)}, p > 0.

(2.10)
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Taking Y,)=(1,1, ---,1): 1 X nin the above, we obtain a (1 — «)-level sequence
of invariant confidence sets for u, the mean vector of a p-variate normal
population N,(u, Z) as

(2.11) Ro={unXm—n) Si'Xm—n)<Cr}, nzm=p
where

Xm =2t Xi/n, S,=3XX! - nXpX,

Cro = pa""(n/m)”™ — 1, p, being the value of p

which makes the rhs of (2.10) equal to (1 — «a).

This sequence of confidence sets for u is different from and much simpler
than that obtained by Khan (1978) and is a natural multivariate analogue of the
known univariate result of Robbins (1970) and Lai (1976). A reasonable criterion
to compare the two sequences of confidence sets would be to look at the limiting
behavior of the two sequences of (if necessary normalized) volumes of the
corresponding confidence sets. The evaluation of this limit is straightforward in
our case but extremely complicated in Khan’s case because of its dependence on
confluent hypergeometric functions and we have not attempted to do it here.

2.2 Problem (ii). Let us partition §, and C,, in the manner of 8, as

A _ 4 A _ C(ll)n C(12)n
(2.12) Br = (BawnBen), C"_<C(21)n Ceon

and define Cq1.2, = Canyn — CaznC@nCann. Consider now the group G, whose
elements are g, = (A, B) where A is a p X p nonsingular matrix and Bisap X g
arbitrary matrix. The induced action of G; on (8, - S,) is 22(Bny S1) = (ABuyn:
B + Aﬁ(z)n), ASnAl) and on (ﬁ, E) iS gz . (,3, 2) = ((Aﬁ(l)IB + Aﬁ(g)), AEA') It
is clear that under the group G, of transformations the problem of constructing
a confidence sequence for 3() remains invariant. It is not difficult to show that,
for each n = p + ¢, a maximal invariant is T, = ${1),S»'Bum, and the joint
density of (Tp+q, -+, Th) depends on (8, Z) only through n'n where n =
=7128,,. Now the density of ()., S.) at (8, 2) = ((n:0), I) is given by
Kn I C(11.2)n |p/2
(2.13) R R
eXp{— Yo tl'(6(1)71 - ﬂ)C(11.2)n(6(1)n - 77), — Y tr Sn} ISnI(n_p_q_l)/Z'

Hence, as before, using Theorem 1 and Wijsman’s representation theorem, we
find that ‘

(214)  Z, = {| Carom|/I Caram|}*? | T + C12nTal™, nz=zm=p+gq

is a martingale under P(g,)> relative to %, (the Borel field generated by
(Tmy yTn)’n2m2p+q)-

Under Pz, Z4™ is distributed as U,y n—q. So replacing X, by X, —
(B1):0)Y(,) in (2.14) and using the basic martingale inequality (1.2), we obtain
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the following.
Pox{I T + CaropmnBaye — Bay)’ Si*(Baym — Bw) |
(2.15) < p7™"(| Cargml/| Cargym| /" for all n = m = p + ¢}

=1—- P{U,qm—q=p}—p™* J; Wy 0 meg(@) du, 0<p<1.
u>p

2.3. Problem (iii). We provide two solutions in this case. The first solution
is direct though involved and is based on invariance consideration parallel to
that in Giri (1968). Let us consider the group Gs; of transformations whose
elements g; are given by g5 = (' 42), A;:p; X p; nonsingular, i = 1, 2. The
induced action of Gs on (B8,, S,) is g - (Bn, S») = (AB., A S,A’) and that on
(M), =) is g5 - (), Z) = ((*w’), AZA’). It is clear that the problem remains
invariant. Let us partition 8, and S, in the manner of g as follows:

N _ '['zln — Slln Sl?n
(2.16) '6" <B2n>’ Sn <S21n S22n>

and define
(2.17) Aél.zn = iéln - SlZnS2_21n32n9 Si1-20 = S1in — 8120522, S21-

It is easy to verify that, for each n = p + ¢, a maximal invariant is T,
(51 2n ST znﬁl ons ,82nS 22n62,,) and a correspondmg maximal invariant in the pa-
rameter space is n'n where n = St (e = Zu — 21225 Za1). Let Pra(Th)
denote the density of T, at ((%), =) = (), I). Denoting by <7 the group of p; X
p: nonsingular matrices, i = 1, 2, and by defining A = (5" 42), Ag) = (AnAmp),
and using Wijsman’s representation theorem, we see that p, ,(T.)/pno(T,) is
equal to

Jcaxaxrom expf{—Ye tr(A B, — (1))Ca(A B, — () — Ve tr A S,A’}
| A AL | PP | A A | P72 dAy, dAgy A,

f_r/lxr/zka eXp{_ Y tr A(Sn + :éncngrlz)Al}

A AL |P7P/% | ApaAgy | P9/ dA dAge dAy,
(2.18)
f_r/lx:/sz”l” exp{— R tl‘(A(l)ﬂn - ﬂ‘)Cn(A(l)ﬂn - 17), — Y tr A(l)SnA(l)'}

| AllA {1 I (n=p)/2 dAu dA12
J-_r/lx,c/zkam exp{— 1 tr A(l)(sn + 6nCnB-,,,)A(1)'}
| AllAlll | (n=p)/2 dA11 dA12>

Now, we choose F such that dF(n) = (2r)—P9% | C,,|"/? dn. Then, the numerator
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in (2.18), after being integrated with respect to this F, becomes
(I C |>P1/2
[Cal
’ 1 ’ 1 ’ ’ l
e exp I 3 tr AjnSinAf — 2 tr A12S820,A12 — tr AIISIZnAIZJ
2.19) | A1 AL | "7P2 dAy, dAy,

Cnl

nl

I

(27r ) (P1P2/2) <|

I
f expll

Letting S} = S, + 6.C,8, and partitioning S} in the manner of S,, we get
similarly the denominator in (2.18) as

(2m)PwP/2 | Sk, | TPV2 | STy g |~ PR/

P1/2
> | Sagn| P12 | Sy, | P2

| =

—tr AnAq l[ | A AL | P2 dAy,.

(2.20)
1
I exp{ — tr A11A 11 } | A11A1,1 I (n=p)/2 dAn.

So, from (2.18)-(2.20) and Theorem 1, it is seen that
= (| Cul/I Ca)P/A(| S%1/1 Sazn | )P3( | Sti2nl/] Sir2n|) " P27

n=mz=p+gq

(2.21)

is a martingale under P o) s relative to #,, the Borel field generated by
(Tw, ---, T,). On simplification, Z, is equal to

(1 Cul/I Ca P2 | I + CnﬁénSEz},.ﬁan"‘/z
* | I + (I + Cnéénsggn32n)_l nB‘{.ZnSIII.ZnBAI.ZnI(n_pz)/z.

It is not difficult to show that for each n = m = p + g, conditionally glven
,8 S 22,,,82,,, 61 2n and Sy 2, are independently distributed as N, 4(0, =1, ® (C,.* +
62,, Sggnﬁz,,) ') and W, (2112, n — p2 — q) respectively. Hence, for eachn=m =
p + q, Z, is distributed as

(2.23) Z, ~(|Cnl/|1C, I)PI”UPJZ#’_?,’,?(,- Ubiznq

(2.22)

where U, ¢ n—p,—q and U, , .-, are independently distributed. (2.23) for n = m can
be used to get the rhs in (1.2). Finally, a confidence sequence for §; is obtained
by replacing X, in (2.22) by X () — (§) Y(n)-

Our second solution is obtained if we proceed in a different way, reducmg this
problem to one similar to Problem (ii). For this, let us partition X, as X,) =
(X1(nX3n))’, and assume Xy, to be fixed. Let P} » be the underlying conditional
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probability. Thus, under Pf s, columns of X, are independently distributed as
pi-variate normal with common dispersion matrix =,,, and with E (Xamy/Xatm))
= (8121222) Y{,), where Y& = (Y{X4m)": (¢ + p2) X n. Let us define

Ctuvn Chy
= r — n .
C: - szn) ?‘n) - C* C% ) C?‘ll)n- q X q
@1)n (22)n
-1
Cf"n.zm = C?‘n)n - Ciklz)nczkzzm C?‘znn
(2.24)

:8:: = Xl(n) Y?:nl)cz'l = (62"1)716?:2)71)9 6?‘1)n: D1 X q
St = XiwXim — BECEB*.

Then, arguing in the same manner as we did in the case of Problem (ii), it is seen
that the sequence

Zn = (| Ctrom|/| Climn )P | I + CliroynfBtin’ SE6%n| ™2,

n=zm=p+gq,

(2.25)

is a martingale under P§ =, the underlying sequence of Borel fields being %, =
Borel field generated by 8%5,S% ™ 8¥y, n=m=p + q. Here, under P¢y, Z%™ is
distributed as Up,q m-p,—q, Which, being independent of Xo(m), is also the distri-
bution under P, . So, using (2.15), we get

P§1,2[|I + Clion(Blin — B1) S5 (%, — 1) |
l

|

pi/n
(2.26) sim > foralln2m2p+q1'

<| Clion |
p

I Czkll.Z)m |

2z 1 = P(Up,gm-py-q < p) = p™"* f u_mﬂfpl,q,m—pz—q(u) du.

u>p

To derive the unconditional confidence sequence for B1, it is enough to note that
the rhs in (2.26) is independent of X,)’s. Moreover, after a little bit of algebra, it
can be checked that

227 Bt =Piza, St=Sus and Ciibyn = C:' + 4,550 fon.

Hence, integrating the left hand side of (2.26) with respect to the probability
measure on the space of X, and using (2.27), we find that a (1 — a)-level
sequence of confidence sets for 8, when 8, = 0 is given by

(2.28) R, ={B:: | I+ (C;* + ,[‘?énSEzlnBZn)_l(,él.zn - ,31)'Sf11.2n(31.2n - B8
= (02" C3' + B5mSBubonl /| Ci* + B50S5hfan])P) V),
pe being the value of p which makes the rhs of (2.26) equal to 1 — a.

3. Invariant confidence sequence for | =|. Consider the group G, with
elements g, = (B, T) where B is a p X ¢ matrix and T is a nonsingular lower
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trlangular matrix such that | T'|2 = 1. The induced action of G, on (b",,, S,) is g,

- (Bn, Su) = (B + Bn, T S,T’) and the corresponding action on (8, Z) is &, -
(B, Z)=B+B, TZT’).Foreachn=p + g, a maximal invariant under G, can
be shown tobe T, = | S,.| (see Eaton, 1967), the corresponding maximal invariant
in the parameter space being ¢> = | 2 |. From Anderson (1958), we know that 7',
~ 2 I1% x%_i+1, x¥s being independent, v = n — q. Define for some measure F
over (0, )

Pro(Ty)

3.1 Z, = f dF (1

(3.1) 7 our(T) (1/0).

Then, by Theorem 1, {Z,, #,.},=p+, is a martingale under P,; where ., is the
Borel field generated by (Tp+q, -+, Th), n = p + ¢q. The martingale inequality

(1.2), upon replacing T, by T,/s? in the expression for Z, in its right hand side,
can be used to obtain a sequence of confidence intervals for ¢2. We consider
below a special case p = 2.

When p =2, T, ~ (¢%/4)x4,—2 (see e.g., Srivastava and Khatri, 1979), with the
density

1 1! v—3
(3.2) P(T) = 5=y ;) exel= VT./o) ——

We choose F such that dF(1/¢) = (1/T'(m — q)) d(1/¢) for some fixed positive
integer m = q + 2.
Let t,(n, m, 6) and ¢ (n, m, §) (t1 < t;) be the solutions of

(3.3) exp(t)t™*=6I'(m —q)/T(n—q), n=2m=qg+2, 6§>0.
Then after straightforward simplification we have the following:
Pss{T./ts(n, m, 8) < o> < T,/t3(n, m, ),V n=m =q + 2}
= Pfx3m-24-2 < 2 t2(m, m, 8)} — P{x3n-2-2 < 2 t:(m, m, 8)}
— (1/6(m — q — I){1/t:(m, m, §) — 1/tz(m, m, 6)}, &> 0.
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