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OPTIMAL BAYESIAN EXPERIMENTAL DESIGN
FOR LINEAR MODELS!

By KATHRYN CHALONER

University of Minnesota

Optimal Bayesian experimental designs for estimation and prediction in
linear models are discussed. The designs are optimal for estimating a linear
combination of the regression parameters ¢76 or prediction at a point where
the expected response is ¢”0 under squared error loss. A distribution on ¢ is
introduced to represent the interest in particular linear combinations of the
parameters. In the usual notation for linear models minimizing the preposter-
ior expected loss leads to minimizing the quantity try(R + XXT)~ . The matrix
V¥ is defined to be E(cc”) and the matrix R is the prior precision matrix of 6.
A geometric interpretation of the optimal designs is given which leads to a
parallel of Elfving’s theorem for c-optimality. A bound is given for the
minimum number of points at which it is necessary to take observations.
Some examples of optimal Bayesian designs are given and optimal designs for
prediction in polynomial regression are derived. The optimality of rounding
non-integer designs to integer designs is discussed.

1. Introduction. Optimal experimental designs for classical linear models
have received and continue to receive considerable attention in the statistical
literature. Much of the pioneering work in this area is due to Kiefer, for example
in Kiefer (1959, 1961, 1974) and Kiefer and Wolfowitz (1959, 1960, 1965). Optimal
experimental design is discussed at length in a book by Fedorov (1972) and more
recently in Silvey (1980). Optimal designs have not been extensively studied
however, in a Bayesian framework. An optimal Bayesian design depends not only
on what functions of the parameters are to be estimated or at what values of the
independent variables prediction is required, but also on the prior distribution of
the regression parameters.

Optimal experimental designs are derived here for estimation and prediction
in Bayesian linear models. The designs derived are optimal under expected
squared error loss and the assumptions of normality, independence, and homo-
scedasticity usually made in linear models.

We will assume, as usual, that we can observe a vector y = (yy, 2, -+, yn)T
such that

y=X"0+e

where X = (x4, X5, -+, X,) is the B X n design matrix and each x; is a k-
dimensional column vector, § = (0, 05, ---, 6,)7 is a vector of & unknown
parameters and e | 7 ~ N(O, 7I) is the n-dimensional random vector of observa-
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tion errors having a normal distribution with mean vector 0 = (0, 0, ..., 0)" and
precision matrix 7I. The parameter 7 can be assumed to be either known or
unknown and I is the n X n identity matrix. We assume that the prior distribution
of 6 and 7 is such that the conditional distribution of 8 given 7 is N(8,, 7R),
where R is a specified positive definite & X k matrix. The distribution of 7 is
arbitrary, although it will be necesary to assume that E(77") is finite in order to
ensure that the risk associated with optimal designs is finite. In particular, + may
be known or may have a gamma distribution which is a conjugate prior distri-
bution. In any case, the posterior conditional distribution of 8 given 7, that is
p(0] 7, y), is normal with mean 6, = (R + XX”)"'(Xy + R,) and precision
matrix 7(R + XX7). If we are interested in a particular combination ¢ of the
;s and squared error loss is appropriate, the best point estimate is the posterior
mean c¢70;. The posterior risk is the expected variance of c’0,, that is
c¢"(R + XX) '¢E, |, ("), where E,|,(r7") is the posterior mean of 7~'. Thus the
preposterior risk in estimating ¢79 is just ¢"(R + XX7)"'cE(r ") where E(r7") is
the prior mean of 7. Hence, assuming that E (7 ') is finite, the optimal design
on n points, i.e., the optimal choice of the k X n matrix X, to estimate ¢”6 would
be an X such that XX7 = ¥, x,x7 minimizes ¢”(R + XX7)'c. We are assuming
that the x;’s are not stochastic and can be chosen by the experimenter from some
specified set <.

A more typical ‘situation would require estimation of ¢”6 for more than one
vector c. This situation could be represented by putting a probability measure u
on c. For example, if the experimenter wishes to estimate each 6; separately and
each is equally important, u might put weight k™" in the direction of unit vectors
along each coordinate axis. With a probability measure on ¢ it would be appro-
priate to choose X to minimize the expected preposterior risk, where the
expectation is taken with respect to w. Thus our criterion for opti-
mality is the minimization of E,[¢"(R + XXT)7’¢], which can also be
written as tr Y(R + XX7)7!, with ¢ = E,(c ¢”). The expected risk is then
tr (R + XX7)"'E(+7"). This criterion which we call y-optimality was proposed
and discussed in Duncan and DeGroot (1976). Note that }b-optimality could also
be derived by assuming a quadratic loss of (0 — 8)7y(0 — ).

It is also true that y-optimal designs are optimal designs for prediction at
certain points. If the value of the dependent variable Y is to be predicted at
a point where its expected value is ¢’6, then the best prediction under
squared error loss is again the posterior mean of ¢76, and the expected risk is
(1 + ¢T(R + XXT)'e)E(r 7). If we were to put a probability measure u over ¢,
then the expected risk is (1 + E,[e¢"(R'+ XXT)'¢])E ('), which can be written
as (1 + tr ¢(R + XXT)™HE(+7Y), with ¢y = E,cc”. Thus the optimal design is
again the XX 7 minimizing tr ¢ (R + XX7)™.

Y-optimality has also been referred to as Bayes A-optimality. The criterion
complies with the view stated by Lindley (1968) that the design of an experiment
should depend on the use that is to be made of the information obtained. If the
purpose of the experiment is not estimation or prediction then y-optimality may
not be appropriate.

A y-optimal design can also be interpreted as the solution to several non-
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Bayesian problems. Suppose the experimenter is committed to a design matrix
X, but can also choose n further observations. Also suppose that for some
given vector ¢, the experimenter wishes to minimize the variance of 7o,
the least squares estimate of c¢’6. The appropriate criterion is to minimize
7 1eT(X XT + XX te. If XoX7 is of full rank this is exactly the problem of
minimizing ¢”(R + XXT)*c. This is discussed in Silvey (1969). In the context of
designs for estimating response surfaces Kiefer (1973) suggested minimizing the
criterion try (R + XXT)~* when bias is believed to be present. The matrices y and
R however, are derived from different considerations than those presented here.
Finally the criterion of y-optimality has also been shown to be appropriate in
situations where certain kinds of prior knowledge are accounted for using a non-
Bayesian approach. Nather and Pilz (1980) detail these situations. One example
is when 0 is constrained to lie in a region (§ — 6,)"R(8 — 6,) < ' and minimax
linear estimation is used (see eg. Rao, 1976). Another example is the mixed
estimation procedure of Theil (see eg. Theil, 1971, pages 346).

The criterion of y-optimality was derived earlier under the assumptions that,
conditionally on 7, the observation errors e have a normal distribution and that
0 has a normal prior distribution. It is shown in Pilz (1981a) that y-optimality is
also appropriate under a variety of relaxations of these assumptions, extending
the results of Rao (1976). Pilz considers situations where the prior distribution
of 8 is such that (E(6) = 0o, var(0 | r) = (rR)'and E (7 ') < c and the observation
errors e are such that E(e) = 0 and var(e) = 77'I.

With 6, = (R + XX7)"'(Xy + R6,) Pilz shows that ¢’6; is a Bayes estimator
of ¢’ among all linear estimators under squared error loss. The corresponding
expected risk is proportional to ¢”(R + XXT)'c. Furthermore he shows that ¢’
is minimax-Bayes over all estimators with the maximum expected risk again
being proportional to ¢”(R + XX”)'c. We may note, however, that it is demon-
strated in Goel and DeGroot (1980) that under mild regularity conditions if the
posterior mean of 0 is 0, a linear estimator, then conditionally on 7, the prior
distribution of 8 and the distribution of the errors e must be normal. Hence, -
optimality may only be appropriate in a strictly Bayesian sense under the
assumptions of normality and squared error loss.

Bayesian experimental design is discussed in Sinha (1970) and Owen (1970).
Owen considers design for analysis of variance models as do Giovagnoli and
Verdinelli (1982) and Verdinelli (1982). Bandemer and Pilz (1978) and Pilz
(1979a, b, ¢, d) also discuss y-optimality and discuss in detail the case where the
matrix ¢ is of full rank. Extensions of this work appear in Pilz (1981a, b), Nather
and Pilz (1980) and Gladitz and Pilz (1982a, b). Pilz and his co-workers have
been primarily responsible for developing the mathematical properties and ap-
plicability of Bayesian optimal designs. Some of their results will be discussed in
the next section. Brooks (1972, 1974, 1976) uses the y-optimality criterion to
derive optimal designs for prediction and also considers the choice of which
independent variables to include in the model. Brooks (1977) also discusses the
problem of designing an experiment to be able to control the response at a
particular value.

An alternative to y-optimality in a Bayesian context is the equivalent of D-
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optimality—that is to maximize the determinant of R + XX7”. This is discussed
in Stone (1959), Sinha (1970), Guttman (1971) and Smith and Verdinelli (1980).
This approach will maximize the increase in Shannon information in the exper-
iment (Lindley, 1956). Chernoff (1972, page 37) expresses some criticisms of D-
optimality in that using this criterion may be mathematically appealing but tends
to avoid the issue of specifying what use is to be made of the experiment and
what loss function is appropriate. In the context of augmenting previously chosen
designs we find papers discussing the maximization of the determinant of
(XoXT + XXT) where X, X{¢ is fixed. This is discussed in Covey-Crump and
Silvey (1970), Dykstra (1971), Mayer and Hendrickson (1973), Evans (1979) and
Johnson and Nachtsheim (1983).

In Section 2 we will discuss the general equivalence theorem of optimal design
as applied to y-optimality. A bound on the minimum number of points in a y-
optimal design is found which is an improvement on bounds given in the previous
literature. The special case of c-optimality is investigated in Section 3. A new
geometrical interpretation of Bayesian c-optimal design is given and a parallel
of Elfving’s Theorem is derived. The approximation to integer designs is discussed
in Section 4 and it is shown how rounding noninteger designs to integer designs
leads to designs which are almost optimal.

Some examples for particular design spaces are given in Section 5. Finally, in
Section 6, the important special case of polynomial regression is considered and
the geometrical results of Section 3 are used to find optimal designs.

2. Equivalence theorem. A y-optimal design leads to the matrix XX7
minimizing tr (R + XX7)™}, with XX7 =Y, x;xT forx;, € 2,i=1, ---,n.
Rather than consider this integer programming problem directly we will follow
usual practice and introduce a continuous relaxation. Define the set H as the set
of all probability measures on the design space X and define

Y ={R+XXT)|XXT=n LxxT dt(x), ¢ € HJ.

We define the function ¢ on & by ¢(M) = tr YM~! and minimize ¢ over &/
The set < is convex. It is the closed convex hull of {R + nxx”| x € 2 }, the set
of possible R + XX matrices obtained by one-point designs. The convexity of
& ensures that there always exists a discrete measure on £ solving the
approximate problem. That is, there exists an integer m, m < k(k + 1)/2 + 1,
such that the optimal XX7 can be written XX7 = Y7, nixx!, X, € Z, n;> 0
and Y, n; = n. Note that for Bayesian optimal designs in general the optimal
measure on 2 will depend on n, the number of observations to be taken. This
is not the usual case in classical design theory. Hence, rather than refer to optimal
probability measures on 2 we will refer to the optimal approximate design
matrix XX7 in full as the optimal design.

The notation that observations may be taken at points x € 2 is taken to
include arbitrary linear regression models. For example, regressions with an
intercept term may be such that the first coordinate of x € 2 is constrained to
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be one, in a polynomial regression of degree p we have x = (1, x, x%, ---, xP) 7,
or, in general we may have x = (f1(2), f2(z), - - -, f.(z)) where z € & for some
suitable set Z.

Note that taking an observation at x is exactly equivalent to taking one at
—x. So henceforth for mathematical convenience we will assume the set 2 to
be symmetric. Thus we extend 2 to include not only points x at which
observations may be taken but also all corresponding points —x. For example
suppose we have a quadratic regression model with the independent variable x
constrained to lie in the interval [a, b] then the set 2 consists of all points x =
(1, x, )T and x = (-1, —x, —x%) 7 for x € [a, b]. In general we will assume 2 is
closed, bounded and symmetric. The set 2 may be a finite collection of points
or a closed and bounded region.

The function ¢(.) is convex on & and is continuous and differentiable
everywhere on & If rank (y) = k, ¢(-) is strictly convex and there is a unique
minimum. If rank (¢) <k, ¢(-) is convex but not strictly convex, and there may
be a convex subset of & at which the minimum occurs. In either case define
the Fréchet directional derivative at M, = R + X,XI in the direction of
M1 =R+ X1X’1F as:

Fy(Mo, M,) = lim,jo[¢{(1 — e)Mo + eM1} — ¢{Mo}].
Using the following matrix identity for any ¢ > 0
(Mo + e(My — Mo))™' = Mg' — eM5' (My — Mo)M;?

(2.1)

+ M (M — Mo) (Mo + ¢(M; — My))""(M;, — My)M3*
we see that
(2.2) Fy(My, M) = tr[y Mg' (M, — My)M;?).

Note that (2.2) may be written:
Fy(My, My) = tr[yM; (X XT — X1 XT)M'].

We may now apply the general equivalence theorem of Whittle (1973) as given
in Silvey (1980).

THEOREM 1. Any of the following 3 conditions are necessary and sufficient for
Xo XU to be an optimal design:

() Fy(R+ XoXT, R+ X, XT) = 0 forgll R + X,XT € &
(i) Fs(R+ XoXT,R+ nxx") =0forallx € &
(iii) min,e »F,(R + XoX?, R + nxxT7)
= maxg+xxTe »Minge 2F, (R + XX, R + nxx7).

Furthermore, if Xo X = Y™, nix;xF where x; € 2, n; > 0 and X, n; = n, then
fori=1,.-.-,m ’

F,(R + X, X¥, R + nx;xF) = 0.

The proof of Theorem 1 directly parallels the proofs in Silvey (1980) page 19—
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23 for general linear criterion functions. This theorem is also given in a slightly
different form in Bandemer and Pilz (1978).

It is interesting to note that condition (ii) reduces to the condition that if
X X¥ =3P nxx!, X, € Z,n;>0,¥" , ni=nthenforallx;=1, ---, mand
alye &

x/ (R + XoX3)W(R + XoX§)7'x; = y'(R + XoX7)W(R + X X7)7ly.

Thus, the points at which to take observations lie on a surface x’Ax = A > 0,
centered at the origin, containing the set 2  and intersecting 2 on the boundary
of Z. A y-optimal design will only include points which lie in the intersection of
this surface and the boundary of 2. Note also that if rank(y) = k the surface is
an ellipsoid containing 2.

We will now use Theorem 1 to derive an upper bound on the minimum number
of points at which a y-optimal design must take observations. From the convexity
of &/ we already have a bound of k(k + 1)/2 + 1, and we proceed to improve on
this bound in Theorem 2. The ideas of Theorem 2 parallel those of Chernoff
(1953) who derived a similar result for designs minimizing the average asymptotic
variance of certain estimators in models that are not necessarily linear.

THEOREM 2. Let rank(y) = r. There is a Y-optimal design minimizing
tr Y(R + XX7)~ that includes at most r(2k — r + 1)/2 different values of x; € Z.

ProoF. Using a linear transformation, we assume without loss of generality
that ¢;;=0,i#j;¢s=1,i=1,---,r;andy;=0,i=r+1, - .-, k. We consider
% to be a subset of k(k + 1)/2 dimensional Euclidean space. Let M, be an
element of &/ where tr yM~!is minimized. By constructing a (k(k + 1)/2) — 1
dimensional affine set H;, and showing that H, is a supporting hyperplane to &
at M, we shall prove that M, is a boundary point of &/ As M, is optimal we have
forall M, € &

Fy,(My, M;) =0
or equivalently,
-1 [Mg' — Mg'MiM3']: = 0.
Define H, by the linear constraint
-1 [Mg' — Mg"MM5']; = 0.

Clearly M, lies in H, which is a supporting hyperplane to &/ The set H, N & is
a closed convex set on the boundary of & with extreme points being extreme
points of 2 If r = k the theorem is proved. For r < k consider the k(k + 1)/2 —
r(2k — r + 1)/2 dimensional affine set H, defined by the r(2k — r + 1)/2 linear
constraints

IMg'M —1;=0 i=1,2 ---,rj=ii+1, -,k

Clearly H, C H, and all points in % N H, correspond to optimal designs. The
set & N H, is a closed convex set on the boundary of ¥ Take M, to be an
extreme point of H, N The point M, corresponds to an optimal design and is
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also a point in H; N &/ Let m be the least number of extreme points of H; N &
required to express M, as a convex combination. Denote by Hs the set of linear
combinations of these points. Clearly H; C H; and dim(Hs) = m — 1. Furthermore,
M, is an interior point of H; N & since if it were a boundary point we would
only need m — 1 points to generate M,. Hence H; N H, = {M,} and
dim(H; N H,) = 0 because otherwise M, would be expressible as a convex
combination of the distinct points in H, N & Let H, ® H; denote the space
spanned by H; and H;. As H, and H; are contained in H;, we have H, ® H; C H,
and thus dim(H;) + dim(H;3) — dim(H, N H3) < dim(H,). Substituting into the
above expression gives the inequality

m=r(2k —r+1)/2.

Thus we have the desired result that an optimal design exists on at most
r(2k — r + 1)/2 different points x € Z.

Note that when y is of full rank, r = k, the bound is k(k + 1)/2 and when
r =1, that is ¢ = ce” for some ¢, the bound is k. This bound is an improvement
on k(k + 1)/2 + 1, the usual bound from Carathéodory’s theorem. We will also
see in subsequent examples and in Section 3 that we may often need less than
r(2k — r + 1)/2 points. Note also that the proof of Theorem 2 relies on elements
of & being nonsingular, even when XX7 is singular.

It is also interesting to note that the bound of Theorem 2 also applies if we
consider designs taking observations only at the extreme points of the symmetric
convex hull of 2. It is shown in Chaloner (1982) that for any design giving
X, XT there is a design giving X, X7 taking observations only at points in 2
which are extreme points of the convex hull of 2 such that tr ¢ (R + X, X7)™!
< tr ¢(R + X, XT) ! for any . This parallels the result of Ehrenfeld (1959) who
showed that the class of designs supported by the extreme points of 2 is an
essentially complete class. Thus an optimal design need only include points which
are extreme points of the symmetric convex hull of 2. Instead of minimizing
¢(-) on the set & we may consider minimizing ¢(-) on the subset of &
corresponding to designs on these extreme points. The proof of Theorem 2 can
be adapted directly to show there is an optimal design involving at most
r(2k — r + 1)/2 extreme points.

It has been assumed that an optimal design, taking n; observations at x;, need
not be an integer design. The result of Theorem 2 does not give a bound on the
number of design points for an optimal integer design. The procedure of rounding
noninteger n;’s to integers is discussed in Section 4.

3. c-optimality. An important special case of y-optimality is the situation
where rank(y) = 1, i.e., ¢ = ce” for some k-dimensional vector ¢. A y-optimal
design will be that for which ¢7(R + XX7T) ¢ is minimized. That is we minimize
the posterior variance of a linear combination of the parameters 6 or we minimize
the predictive variance at a particular point. This criterion is often referred to as
c-optimality.

Elfving (1952) gave a geometric interpretation for c-optimal designs in classical
linear regression. He showed that if 2 is symmetric, closed and convex then a
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design minimizing the variance of the least squares estimate of c”0 need take
observations at only one point. Theorem 3 gives a geometric interpretation for
Bayesian c-optimal designs and the corollary gives a similar result to Elfving’s
for the optimality of one-point designs.

One-point designs may not be appealing to the applied statistician in general
as no information is provided on the adequacy of the model. When prior
knowledge is available, however, perhaps in the form of previous data which
support the model assumed, the experimenter may perhaps be willing to use a
one-point design. It would always seem sensible to compute the expected loss
associated with an optimal one-point design in order to have a benchmark against
which to compare other designs.

Throughout this section it will be assumed that the set &2 is symmetric.
Again, if the set of points x at which observations may be taken is not symmetric
we lose no generality in including all points —x and making the set 2" symmetric.

THEOREM 3. A design XoX§ = Y7, nix;x] is optimal for minimizing
c¢T(R+ XXT) ‘¢ if and only if (R + XoXT) ¢ is normal to a supporting hyperplane
of the convex hull of Z at X; and —x; fori=1, ---, m.

PROOF. Since & is symmetric, a normal to a supporting hyperplane at a
point y on the boundary of the convex hull of 2 is also a normal to a supporting
hyperplane at —y. Furthermore a vector p is normal to supporting hyperplanes
at y and —y if and only if (y’p)? = (x"p)? for all x € Z.

Using condition (ii) of Theorem 1 we see that X, X7 = Y™, n;x;x] is y-optimal
if and only if for all x € &

Y7 n(xF(R + XX le)? = n(x"(R + X0 X3) e)?

This condition leads to the required result. It also follows that in a c-optimal
design, all x; must lie in the same supporting hyperplane of the convex hull of
Z or the supporting hyperplane symmetric to it.

COROLLARY. If 2 is convex then a c-optimal design can be concentrated at a
single point x € Z.

PROOF. Suppose that an optimal design is X, X{ = ¥, nixx[, and denote
My, =R + XoXTI. As 2 is symmetric, we can without loss of generality choose
the x; such that x’Mg'c = k> 0. Let X = n™! Y™, n;x;, then the point X lies
in 2 on a supporting hyperplane through x; i = 1, ---, m with normal
Mj'e. Consider the one point design taking n observations at X and denote
M, = R + n xx”. Using identity (2.1) with ¢ = 1 and noting that (M, — M,)c =
0, the & X 1 vector with zero entries, we see that

c’™™j'e = c"Mi'e.

Thus the one-point design concentrated at X is c-optimal.

We may use Theorem 3 to find c-optimal designs even when &£ is not convex.
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We may suppose we can take observations anywhere in the symmetric convex
hull of 2 and find the optimal one-point design. That is we find x such that
(R + n xx7)7'c is normal to a supporting hyperplane at . Then we find the
extreme points X;, i = 1, ---, k such that X = Y%, a;x;. Either x; or —x; is a
point at which observations may be taken and an optimal design is to take no;
observations at x;,i=1, --- , k.

Note that for a regression model with an intercept term the set 2 is not
convex and the corrollary does not necessarily apply. In simple linear regression,
for example, if we could take observations at points x = (1, x)7 where -1 < x <
1then 2" = {(%1, x) | —1 < x < 1} which is not convex.

It is interesting to note that, for small values of n or a very precise prior
distribution, one-point designs may be optimal even when rank(y) > 1. An
example is given in Bandemer and Pilz (1978) and these designs are discussed
further in Pilz (1981Db).

4. The approximation to integer designs. Throughout this paper opti-
mal designs are found using a continuous relaxation of the integer optimization
problem. That is, we consider designs taking n; observations at the points x;
where the n/’s can take nonnegative noninteger values. Of course, a true optimal
design must have integer values for the n/s, and the unconstrained minimum of
tr ¢ (R + XX")™' is not usually attained on integer values. A common practice is
to round the noninteger n/’s to integers n} in some systematic way; see, e.g.,
Fedorov (1972). Then the design taking n} observations at the same points x; is
used. If this procedure is followed, a simple expression can be derived for the
increase in the value of tr (R + XX7)7.

Let the noninteger optimal design be X, XI = ¥, nix;x7 and let M, = R +
XoX{. Let the integer alternative on the same x’s be X; X7 = Y7, n¥xx’, with

Zini =YL nf=n,and let M, = R + X;X7. From expression (2.1) with
e =1, we have:

@ tr yM™! = tr yMy' — F,(M,, M;)
+ trly Mo (X, XT — XoXOMTH (X XT — X0 XT)M').
If we write
XiX{ = XoX§ = T2 (n¥ — n)xxT
and use part (ii) of Theorem 1 we see that F,(M,, M,) = 0. Hence
tr y M1t — tr yMy? l
(42) =32 I (nF = n)(n} — n)[tr(UM5" xxT M7 xaf M),

Clearly, if n} is close to n; for all i the difference (4.2) is very small. In Theorem
5 a bound is found for this difference which, for appropriate choices of the n*’s
is O(n?). A proof of Theorem 4 is given in Chaloner (1982).

THEOREM 4. Let rank(y) = r, 1 < r < k, and denote a Y-optimal design for n
observations as XoX§ taking n; observations at X; fori=1,2, ---, m and n; > 0.
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Let an integer design, denoted X, XT take n} observations at x;i=1,2, ---, m
where Y7, n¥ = n and n¥ is an integer. Denote M, = R + XoXfand M, =R +
X X7, then

tr yMi' _ (X2 |ni = n¥l|)?
n(min;n¥)

Note that if we consider designs for each value of n with }2; |n, — n}|
uniformly bounded then in situations where (min;n;)™* = O(n™") then we also
have (min;n¥*)'= O(n™!) and hence

tr yM7?
tr yMy!

and tr yM71! — tr yM;! = O(n~®). This is parallel to a result given in Kiefer
(1971) for classical designs. Theorem 2 indicates that there is an optimal
design for each value of n with m < r(2k — r + 1)/2. Thus the condition that
S, | ni — n¥| is uniformly bounded is not unreasonable. We may also note here
a major difference between Bayesian optimal designs and classical optimal
designs. Classical optimal designs can be thought of as measures on 2 which do
not depend on n. For Bayesian y-optimal designs m, X; and n; depend on n.

In finding an optimal integer design we must, of course, consider the possibility
of taking observations at values of x other than those in the noninteger optimal
design. However, Theorem 4 indicates that we may lose little, in terms of the
expected loss, by using the same values of x; and rounding the n/s to integers.
Note that the true optimal integer design has a loss associated with it which lies
between tr yM;' and tr yM7'.

=1+ 0(n™?

5. Some examples. The results of the previous sections will now be used in
finding y-optimal designs for particular sets 2. We first consider a spherical 2
of radius b: that is

(5.1) Z = {x|x"x < b%.

This would correspond to a linear regression model without a constant term.
Suppose that rank(y) = k and let ¢*/* denote the symmetric square root of .
Define

A = (nb? + tr R)(tr y'/?)7!
and let
XoXT = Y2 — R.

If n or b? is large enough then X, X7 is positive semidefinite. Let e;, i =1, -- -,
k be the unit eigenvectors of X, X{ and y; be the corresponding eigenvalues. We
obtain the design matrix X, X? by taking observations at the points be; on the
surface of the sphere and taking n; proportional to u;, i =1, --- , k. Let M, =R
+ XoX? and so for any M; = R + X; XT € & we have

F,(Mo, M) = \2%r(Xo X{ — XXT) = A %(nb? — tr XX7).
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But tr XX7 < nb? with equality if and only if all observations are taken on the
surface of the sphere. Thus for all M; € &7, Fy(M,, M;) = 0 and XoX7? is ¢-
optimal. The optimality of X, X7 can also be shown explicitly by using Lagrange
multipliers and differentiation (Chaloner, 1982).

Now consider the situation where rank(y) = 1, that is ¢ = ce” for some
k-dimensional vector c. For a spherical 2 as in (5.1) the corollary to Theorem
3 indicates that there is an optimal one-point design. The normal at x, on the
surface of &, is parallel to x. Thus it is easy to show that the optimal design
takes all observations at x, where X, is on the surface of 2  and x, is parallel to
(I + (nb?»™'R)'c. This is a generalization of a result by Silvey (1969) who
considered the case n = 1 in the context of augmenting a previous design.

As a numerical example, consider the case when R = (r;)}-, and r; =1, r;;=
—.25i#j. This would arise for example if the 6,’s were believed to be exchangeable.
Furthermore suppose that ¢ is diagonal with ¢;; = 1 and Y5, = ¥33 = 4. This
would correspond to estimating 6;, 26, and 26; with equal weight. If b = 1 and
n = 12 the optimal design is to take observations at x; = (.101, .703, .703)7, x,
= (0, —.707, .707)T and x; = (.994, —.076, —.076)T with n, = 5.29, n, = 4.75 and
n; = 1.96. We could round this noninteger design to an integer design, for
example, n¥ = 5, n§ = 5 and n} = 2. It is interesting to note that the optimal
design has an expected loss of 5/3 = 1.667 and the integer design an expected
loss of 1.670. Thus the integer design has an associated risk which is almost
optimal.

Consider now another example for the same matrix R and the same space 2
but with n = 1 and ¥ = cc” where ¢ = (1, 0, 0)7. That is we have one observation
and we wish to estimate ;. The optimal choice of x is X, = (.98, .14, .14)T. The
classical approach, with no prior information, would give a c-optimal design at
Xy = (1, O, O)T.

We have considered the case where 2 is spherical, that is the model has no
intercept term. The case where the model has a constant term is more complicated
analytically. Suppose we have a design space 2 such that for x = (x;, - -+, x)7
€ Z,x: =1and 3%, x? < b% Brooks (1976) solved the optimal design problem
for y = I for this space 2 . His proof can be adapted for any matrix ¢ of full
rank (Chaloner, 1982). Gladitz and Pilz (1982b) consider y-optimality for a
spherical space 2 and for rank(y) = k and give optimal noninteger and integer
designs explicitly.

We will now consider the case where the space &2 is rectangular. We begin
by showing how designs for a model with a constant term can be derived from
those for models without a constant term.

First, suppose that we have a model without a constant term and the space
Z is a rectangle, symmetric with respect to the origin. This would arise if the
constraints on x were of the form —a; < x; < a;fori =1, 2, ..., k, for each
coordinate of x. With a linear transformation of the x’s and of the parameters
of the model, 2 can be transformed to a cube % centered at the origin with
each side of length two units. The symmetric convex hull of ¥ is just £

Second, suppose we have a model with a constant term and constraints on the
coordinates of x of the form x; =l anda;<x; < b;fori =2, ---, k. With a linear
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transformation on &, namely 2; = x;, z; = 2x; — a; — b))/(b; — a;) for i = 2,
, k, we can transform 2 to a space 2 * with

Z*={z|lzy==%1,-1=<z=<1 for i=2,--.,k}

Thus the symmetric convex hull of 2 * is again a cube ¥ centered at the origin
of side length two units.

In either case we can consider, without loss of generality, the cube % centered
at the origin. It will be convenient to do so. There are 2* extreme points of %
i.e. the corners, so we only need to consider designs taking observations at these
points. Furthermore, there are only 2*7! different values of x;x7 where x; is a
corner. Therefore, without loss of generality we can consider taking observations
at the corners where the first coordinate is one. This will give (XX7);=n, i =1,

, k for designs on the corners of Z.

Suppose we can find an X, X7 with (XoX{)i=n,i=1, , k and for some
diagonal matrix A with nonnegative entries then My, = R + XOXO is such that
M, A M, = y. It is easy to verify that F,(M,, M,) = 0 for all M; € & Thus, if
there is such an M, € & it is y-optimal. Whereas there always exists a positive
semidefinite matrix M, satisfying My A M, = ¢ and (M,);; = r; + n, it need not
necessarily be an element of S7If y is of full rank, however, and n is large enough
there will exist such a solution in &/

As a numerical example suppose we have k = 3, a regression in two variables
with an intercept term and the symmetric convex hull of 2 is % Suppose the
measure u is uniform over the face of Z {e|c; =1, —1 < ¢y, ¢; < 1}. That is, we
are interested in prediction at the points where the expected value of y is 6, +
205 + 303 and —1 < ¢; < 1 for i = 2, 3. This gives a diagonal matrix  with ¥;, =
1 Y22 = Y33 = 5. Suppose that the prior information corresponds to 6; being
independent of both slope coefficients but the slope coefficients are positively
correlated. For example, r; =3,i=1, 2, 3, r1o = r;3 = 0 and ry3 = —2. Then the
optimal design taking observations at the corners of ¥ with My A M, = ¢
is given by taking observations at x, = (1, 1, 1)7, x, = (1, -1, -1)7,
x; = (1, -1, )T and x, = (1, 1, =1)7. If we take n; observations at X; we have
nm =n;=(n+ 2)/4 and n; = n, = (n — 2)/4. If (n — 2) is a multiple of 4 this
design is an integer design and so must be the optimal integer design.

It is interesting to note that for this precision matrix R and for any diagonal
matrix ¥ we have this same optimal design. This is due to the fact that if we find
an M € & such that M A M = ¢ for any diagonal ¥ we have the same solution.
The minimum expected loss is different however, for different matrices y and
the optimal integer design will also depend on the exact value of .

Gladitz and Pilz (1982a) give an algorithm for the construction of y-optimal
designs for general experimental regions for special combinations of R and y.

6. Polynomial regression. An important special case of the linear regres-
sion model is polynomial regression. Designs for classical polynomial regression
models are discussed extensively in the literature, for example in Kiefer and
Wolfowitz (1959), Hoel and Levine (1964), Hoel (1966, 1981), Herzberg and Cox
(1972) and Studden (1968, 1971). The only reference to Bayesian optimal design
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for polynomial regression is Smith and Verdinelli (1980) who use the D-optimality
criterion.

It will be assumed that we have a polynomial regression of degree p and we
can take observations anywhere in a closed interval. Without loss of generality
we will assume that the interval is [—1, 1]. Thus the set of points x at which
observations may be taken are {x |x = (1, x, x%, ---, "), =1 < x < 1}. The set
Z, in the notation of previous sections, consists of these points, x, and all points
—X.
We denote 8 = (6, 0,, - - - , 6,) 7 to be the vector of unknown coefficients which
are assumed to have a normal prior distribution given 7 with precision matrix R
where R = (r;;)%i—, is a known positive definite matrix.

We will restrict attention to c-optimal designs. That is, we wish to choose a
design to estimate ¢’0 where ¢ is a (p + 1)-dimensional vector. For prediction
c=(1,a, ---,a”)T where a is a real number. The case |a| > 1 corresponds to
extrapolation and the case |a| < 1 to interpolation. These two different cases
lead to different kinds of optimal designs. Note that 2  is not convex so an
optimal one-point design does not necessarily exist.

It will be demonstrated that for designing to extrapolate or designing to
estimate 6, the coefficient of x?, the optimal design involves taking observations
at the p + 1 Chebychev points, x; = —cos wjp~,j =0, 1, - - -, p. The Chebychev
points are the points at which the pth Chebychev polynomial is maximized or
minimized on [—1, 1].

We will use the following lemma which demonstrates that the vector of
Chebychev coefficients is the normal to the supporting hyperplane of the sym-
metric convex hull of 2 at the points corresponding to Chebychev points.

LEMMA 1. Let d; be the coefficient of x' in the pth Chebychev polynomial of
the first kind with leading coefficient 1, T,(x). Further let x; = (1, x;, x?, ---,
x?)T, where x; = —cos ixp™',i =0, 1, - - -, p are the Chebychev points. Then the
vector d = (do, dy, -+, dp-1, dp) is normal to the supporting hyperplane of the
symmetric convex hull of 2 atx;,1=0,1, --.,p.

PROOF. Note that for all x = (1, x, x2, ---, xP)7, x"d = T,(x) and xd
Ty(x;) = (=1)P*1727P*1 {=0,1, ..., p. For all x € [-1, 1] we have

(Tp(x:))* = (Tp(x))*

(Karlin and Studden, 1966, page 2181), with equality only at x = x;, i =
0,1, ---, p. Equivalently for all x € 2, (x7d)? = (x’d)? and the lemma is
proved.

Thus Theorem 3 implies that if we can find a design on the Chebychev points
with My = R + XXT and M;! ¢ = Ad for some constant A then the design is c-
optimal. For extrapolation, or estimation of 6, we can find such a design.

First suppose that ¢ = (1, a, - -- , a?)T and | a| > 1. That is, we wish to predict
at the point x = a which lies outside the experimental region. Taking n; obser-
vations at x;,j =0, 1, --- , p, x; = —cos 7jp " and setting A\¢ = M,d leads to the
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following equations for# =0, 1, -, p:
6.1) N’ = P rad, + YPo njxj(—1)P2Pr

Solving equations (6.1) and the equation Y%, n; = n will lead to the optimal
design. For large n the solution approaches the classical solution for extrapolation
at x = q, given in Hoel and Levine (1965). They define the Lagrange polynomials
L(x) forj=0,1,---,phy

_ Iy s j(x — i)
I j(x; — x)

L,(x)

Then their optimal design for extrapolation at x = a is to take n; observations at
x]’j = O, 1, te }pWith

n|Lia)|
YPo | Li(a) |

The solution (6.2) can be obtained by substituting r;;= 0,:,j =0,1 --. p, in
equations (6.1). As n increases the solution to equations (6.1) approach (6.2) for
any fixed R. Thus for large enough n the n/s given by equations (6.1) will be
positive and correspond to the Bayesian c-optimal design. For small values of n
the solution to (6.1) may give negative values for some of the n/s. It would seem
that one approach may be to round negative n;’s to zero and round down other
n’s accordingly. This may not be the optimal solution but a few examples have
been investigated where the expected loss is almost optimal following this
procedure.

For all illustration consider quadratic regression. The Chebychev points are
X0 =—1, x; = 0 and x, = 1. If we let

(6.2) n =

_ (2(12 + 1)"()2 - (127'()() - 27‘22

by = 202 — 1
and
b, — 2a%ris + args — 2are — a’ro
2 2a2 — 1
then the solution given by (6.1) is
na(a — 1) (a—1) 2¢2-1) n@*-1)
= - by ————= = —— + b,
M=o =1 " a0 T P2 7T 2a-1
= na(a + 1) _ b (a+1)_b (2a2-1)
®72(2%-1) ' 2a 2 2a

Note that the terms involving n correspond to the classical solution. For any
given prior precision matrix R all the n;’s will be positive for n sufficiently large.
For small n or very informative prior information some of the n/’s may be
negative.

In a similar manner an optimal design for estimating 6, can be found which
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involves only the Chebychev points. In this case ¢ = (0, 0, 1)7 and setting Ac =
Md gives:

b rad; + 21 o MXj(=1)PH 1Pl = y=0,1,---,p—1
X0 redi + Z —o Nixf(— 1Pt = A,

Solving equation (6.3) with Y?_, n; = n gives the optimal design. Again, for
large n, the solution to equations (6.3) approach the classical solution of Kiefer
and Wolfowitz (1959) who showed that to estimate 6, the optimal design takes

(6.3)

n; observations at the Chebychev points x;,j =0, 1, - .. , p with
' n n
= = — d L= — ‘=1’2,...’ —1'
ny = n, o and n; > J p

For any prior precision matrix R equations (6.3) will lead to the optimal Bayesian
design for n sufficiently large.
As an illustration consider cubic regression and designing to minimize the
posterior variance of ;. The Chebychev points for p = 3 are x, = —1, x, = —,
= Y and x3 = 1. Solving equations (6.3) gives

4(3ra _ ), 48 (3 T _
4 ris 5 4 To3
8ru _ )4 8(8ra _ 3r21
4 ri 5 4 To3
_n_4(3m_ \_8|(3ru_ 3r21
=3T3\ ") 75|\ T
_n A (Bra_ ) _ 48 (Bra ) _ (3ra _
n3—6 3\ 4 rs 5 4 To3 4 res | |.

For interpolation in [—1, 1] or estimation of an arbitrary linear combination
of the coefficients, it is not necessarily optimal to take observations at the
Chebychev points as simple examples will show. In a classical design to interpo-
late at a particular point it is optimal to take all observations at that point. With
prior information however this will not necessarily be true. Taking observations
at the Chebychev points and setting Ms'e = Ad does not in general lead to a
positive solution for the n’s even for large n except for a few special values of R
and c. The problem of interpolation ‘is discussed in Chaloner (1982). There
appears to be no general approach for finding c-optimal designs for this case.

The designs derived in this section for extrapolation and estimation of 6, were
derived using a different approach in Chaloner (1982). The minimization of
c¢’(R + XX")"'c was considered directly and Chebychev systems of polynomials
were used. The approach was parallel to that of Kiefer and Wolfowitz (1959) for
finding designs to estimate 6, in classical polynomial regression. The geometric
approach used here is much simpler and the approach appears to be unique to
finding optimal Bayesian designs.
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7. Discussion. Some basic properties of Bayesian y-optimal designs have
been presented. Parallels and differences between Bayesian and classical designs
have been shown. The dispersed literature on Bayesian optimal design has been
reviewed.

The upper bound on the number of design points, the geometric interpretation
of y-optimal designs and the approximate optimality of rounded designs are
particular aspects of Bayesian design not previously shown in the literature. The
geometric interpretation is especially useful for c-optimal designs and led to the
designs for polynomial regression in Section 5. These designs are of special
interest and it should be possible to extend these results for c-optimality to
situations where rank(y) > 1.
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