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INTEGRATED SQUARE ERROR PROPERTIES OF KERNEL
ESTIMATORS OF REGRESSION FUNCTIONS

By PETER HALL

Australian National University

Weak laws of large numbers and central limit theorems are proved for
integrated square error of kernel estimators of regression functions. The
regressor is assumed to take values in R”, and the regressand, X, to be real
valued. It is shown that in many cases, integrated square error is asymptoti-
.cally normally distributed and independent of the X-sample. As an applica-
tion, a test for the regression function (such as that proposed by Konakov) is
seen to be asymptotically independent of an arbitrary test based on the X-
sample. The proofs involve martingale methods.

1. Introduction. Kernel estimators of a regression function were intro-
duced by Nadaraya (1964) and Watson (1964). They take the following form
when the regressand is a multivariate random variable. Suppose (X, Y;), 1 < j
< n, is a random sample from the (p + 1)-variate distribution of (X, Y), where
X is a p-vector and Y is a scalar. Let K be a density function on IR?, and let h be
a small positive constant. Then

fn(x) = fa(x | B) = [Bi YiK{(x — X)/h})/[Ei=1 Ki(x — Xi)/hi]

is a nonparametric estimator of u(x) = E(Y | X = x). (The ratio 0/0 is interpreted
as unity.)

This definition is obviously closely related to that of a nonparametric density
estimator. Indeed, the denominator in our expression for u,(x)is proportional to

(1.1) fu(x) = (nh?) ™ Ty K{(x — Xi)/h},

which is a nonparametric estimator of the marginal density of X at x € R”. The
similarity between these two concepts suggests that we might transfer techniques
from the better-known field of nonparametric density estimation, to regression
function estimation. In particular, recalling that mean integrated square error is
the most commonly accepted measure of the performance of a density estimator,
we might decide to construct a regression estimator on a set A € R” so as to
minimise

(1.2) fA Efpn(x) — p(x)}? dx.

However, at this point we immediately encounter difficulties. The estimator
i, (x) is defined as the ratio of two random variables, and so computation of the
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expectation in (1.2) is not a straightforward matter. Collomb (1977) has described
an asymptotic formula for E{j,(x) — u(x)}? at a fixed point x, although under
somewhat restrictive conditions on the “window size”, h. He has remarked
(Collomb, 1981) that similar results could be obtained, under appropriate condi-
tions, for weighted mean integrated square error. However, it is known that tin i8
consistent for u under the minimal conditions, h = h(n) — 0 and nh” — o, which
are necessary for the consistency of f,,; see for example Devroye and Wagner
(1979). Therefore it is very desirable to describe integrated square error under
such basic constraints. Furthermore, a sufficiently detailed description of inte-
grated square error could be used to construct hypothesis tests for the unknown
regression function, u; see Nadaraya (1974) and Konakov (1977).

Our aim in the present paper is to prove laws of large numbers and central
limit theorems for a very general version of weighted integrated square error,

I, = fA {fa(x) — p(x)w,(x) dx,

where w, (x) is a weight function which may be either random or deterministic.
Among the conclusions of our study are the following points.

(i) Laws of large numbers for I,, of the form I,/c, — 1 in probability for
constants c, converging to zero, hold under minimal conditions on h(n). We
suggest that these results could play the role of mean integrated square error for
regression function estimators. The constant c, breaks up cleanly into two parts,
one corresponding to the variance of 4, and the other to the squared bias. The
rate of convergence of integrated square error is maximised when these two terms
are of the same order of magnitude.

(ii) Central limit theorems for I,, hold under very general conditions. Konakov
(1977) used approximations to empirical processes to derive the first central limit
theorems of this type, but his techniques forced him to confine attention to the
case p = 1 and to impose very restrictive conditions on the window size h(n).
Indeed, the conditions require that the estimator be constructed suboptimally
with respect to mean square error. In this paper we use different methods,
including martingale theory, to substantially generalise Konakov’s results.

(iii) For the most part, central limit theorems proved for integrated square
error are valid conditional on the X-sample, as well as unconditionally. The
centering constants are not affected by conditioning. This means that hypothesis
tests for u(x) which are based on integrated square error, such as that proposed
by Nadaraya (1974) and Konakov (1977), are asymptotically independent of
arbitrary hypothesis tests based on the X-sample. Under various conditions on
h and n, “Studentized” versions of centered integrated square error could be
constructed, and used to test hypotheses about the regression function u. Assess-
ment of the practicality of such a procedure would probably rely heavily on
simulation studies. See Liero (1982) for an example of “Studentization” in the
context of nonparametric regression.
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Our proofs of the results summarized above are founded on a single basic
lemma, which is stated as Theorem 1 in the next section. All the proofs are
relegated to Section 3.

The history of integrated square error theory for density estimators is longer
and more detailed than that for nonparametric regression function estimators.
Bickel and Rosenblatt (1973), Rosenblatt (1975), Csorgo and Révész (1981,
Chapter 6) and Hall (1981) have proved central limit theorems for integrated
square error of nonparametric density estimators. However, these results are of
a very different nature from their counterparts for regression function estimators,
since in the latter case the dominant source of variability in limit theorems is
the Y-sample, not the X-sample. (See point (iii) above.) Indeed, limit theory in
the regression case is perhaps closer to that for sums of weighted independent
random variables, than to limit theory for density estimators.

All our results describe L2 properties of the error in nonparametric regression.
By way of comparison, we mention the recent L results of Johnston (1982) and
Liero (1982).

2. Results. Throughout this section we impose the following conditions.
Let A C R be a rectangle (not necessarily bounded; A = R” is permissable), and
let A°be the set of all points in R which are distant less than ¢ from A, where ¢
is an arbitrary positive number. We take K to be a bounded density function on
IRP with compact support and satisfying

f 29K(z) dz = 0, f 2929K(2) dz = kdj;

for 1 < i, j < p, where k does not depend on i and §; is the Kronecker delta.
Assume that X has a uniformly continuous density, f, on A°, whose first deriva-
tives exist, are bounded and uniformly continuous on A°; that the conditional
moments

px) = E(Y|X=12x), oix)=E(Y?| X =x)— u’(x),
pa(x) = E[fY — p(X)}*| X = x]

are well defined for x € A*; that u is uniformly continuous on A°; that the first
and second derivatives of u exist, are bounded and uniformly continuous on A°;
that ¢%(x) is bounded on A°; and that

(2.1) J; pa(x) flx) dx < oo,

To simplify our notation we write w,(x) = f‘ﬁ(x)vn(x), where v, is a random
function measurable in % {X;, ..., X,} (the o-field generated by Xi, ..., X.)
and defined on x € A°, and where f, is defined by (1.1). We suppose that there
exists a bounded, nonnegative, deterministic function v such that

(2.2) supseac| va(x)/v(x) = 1| -0

in probability as n — .
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Note that if A is a bounded rectangle then none of our conditions, in particular
the constraint (2.1), require the assumption that Y have a finite moment. This
is made possible by our restriction that K have compact support, and it seems
unlikely that the latter condition can be relaxed without more stringent assump-
tions about the tail behaviour of Y. We do not require that u be bounded.

Our first theorem is used in the proofs of all subsequent results in this section.
Define

V(%) = B Tt [10F (0)/0x O} 0u ()05} + Vo £ (2){0% () /0502,

2
o = 2[[4 ot (x)f A (x)v3(x) dx] [f {f Kx)K(x + y) dx} dy]

ar =4 fA o 2(x)y3(x)v?(x) dx.

and

Here and below, an unqualified integral is taken over all of IR”. To avoid
trivialities we assume that «;as > 0.

THEOREM 1. Under the above conditions, and if h — 0 and nh” — © as n —

@,

fA {in(x) — p()PF2(x)va(x) dx

= P2y o X; 2f(x — X
(2.3) = (R Zim X)) fA K*{(x — Xi)/hiva(x) dx

+ (nh?)™? J; [ (X)) — p(@)K{(x — Xi)/h}Pva(x) dx

+ (n72hPa; + n"'htas)V?N,,

where N, is asymptotically normal N(0, 1) and asymptotically independent of
D, CHND. ¢

The statement that N, is asymptotically independent of Xj, ..., X, means
that for any sequence of events {A,} for which A, is measurable in & {X,, ...,
X,} for each n, we have

SUP_wcren| P(An; Ny = x) — P(A,)®(x) |~ 0

as n — o, ¢ being the standard normal distribution function. It is easily seen
from the proof that the variable N, has conditional mean (given X, ..., X,)
exactly equal to zero, and so the sum of the first two terms on the right hand
side of (2.3) equals the conditional mean of integrated square error.

Our next result describes a weak law of large numbers for integrated square
error.
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THEOREM 2. Assume the conditions of Theorem 1, and in addition that v is
uniformly continuous on A° and satisfies

(2.4) f v(x) dx < co.
A

Then

f,, {fin(x) — p(x)}2(x)va(x) dx

(2.5) = (nh?)-! f o2(x) f(x)v(x) dx f K(u) du + h* fA v2(x)0(x) dx
A

+ 0,{(nh?)™' + hY}

asn— o,

The first term on the right hand side in (2.5) is derived from the error about
the mean of g, while the second term corresponds to the bias. The minimum
order of magnitude of the sum of these terms is n~*®*%_and is achieved when
h = const. n™"®*% (cf. Stone, 1982). Note too that n"'h* >> n"2h " if and only
if h >> n7Y®*Y_ (A term of order (n"'h* + n"2hP) /2 appears on the right hand
side in (2.3).)

Let us choose A to be a bounded rectangle such that f(x) is bounded away
from zero on A°, and select v,(x) = w(x) /f Z(x), where w is an arbitrary bounded,
continuous, nonnegative weight function. Condition (2.2) is satisfied if we take
v = w/f?, and we may deduce from Theorem 2 that

J; {ln(x) — n(x)Pw(x) dx

(2.6) = (nh?)™! f a2 () {f(x)}'w(x) dx - sz(u) du
A

+ Rt fA YU (2)} 2w (x) dx + 0,{(nh?)™ + hY).

The sum of the first two terms on the right in (2.6) is the same as would be
obtained by formally integrating the asymptotic formula for E{i.(x) —
r(x)w(x), given in Collomb (1977) for a fixed point x, over the set A.

Konakov (1977) used empirical process methods to prove central limit theo-
rems for the weighted integrated square error given in (2.5), in the special case
where v,(x) = v(x) for all n. He confined attention to the case p = 1, and
considered only values of h satisfying nh? — o and nh*?— 0. The methods used
in this paper permit us to remove these restrictions, and to prove in addition
that the normal limit is asymptotically independent of the X-process.

THEOREM 3. Assume the conditions of Theorem 1, and take v,(x) = v(x) for
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all x, where v is uniformly continuous on A°and satisfies (2.4). Then

(n7*hPay; + n"'hiay) V2 (J; {in(x) = p()PF2(x)v(x) dx
2.7)

—EU; {n(x) — w2 (x)0(x) dx]) — N(, 1)

in distribution as n — «, and the variable on the left hand side is asymptotically
independent of X1, ..., X,.

Our last result provides a central limit theorem for integrated square error
when the weight function w is purely deterministic. More general results may be
proved under weaker conditions on h and p. It is necessary only to use an
arbitrarily long Taylor expansion of {f,(x)}2 = {Ef.(x) + f.(x) — Ef,(x)}2,
extending (3.28) below.

THEOREM 4. Assume the conditions of Theorem 1, and take A to be a bounded
rectangle such that f (x) is bounded away from zero on A°. Set v,(x) =
w(x)/f2(x), where w is a bounded, continuous, nonnegative weight function. If in
addition 1 < p < 3 and n*h** — w0 as n — o,

(n"*h™Pay + n7'hiay) 2 < fA {in(x) — p(x)}Pw(x) dx

—E[ j; {in(x) = p)PF2Ef(x)} 2w (x) dx])

— N(0, 1)

in distribution as n — o, and the variable on the left hand side is asymptotically
independent of X, ..., X,.

Note that the conditions on h and p imposed in Theorem 4 include the
“optimal” h, h = n™/**¥_The constraint 1 < p < 3 is a “technical necessity”,
and is not directly connected with the problem.

3. Proofs. We let E’ denote expectation conditional on X, ..., X,, and
C, C,, C,, ... denote generic positive constants.

PROOF OF THEROEM 1. Observe that
pa(x) = p(x) = (0h?)" T {Y: — w(XDIK{(x — Xo)/h/fu(x) + 8. () /fu(x),
where
&.(x) = (nh?)™! Ty {r(Xi) — u(x)}K{(x — Xi)/h}.
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Therefore
(3.1) J; [fiin — m(O)PF2(X)0a(x) dx = Ly + 2L + 205 + L,
where
Iy = (nh?)72 T {Y: — w(X)) J; K*{(x — Xi)/h{va(x) dx,

Ly = (nh?)? 33 {Yi — w(XOHY; — (X))}

1=i<j=n

X J; K{(x — X;)/hiK{(x — Xj)/h}v.(x) dx,

Ly = (nh?)7 B Y — (X))} J; K{(x — Xi)/h|ga(x)vn(x) dx

and

L= J;g?.(x)vn(x) dx.

We shall handle these terms one by one. Our major task is to separate out
behaviour which depends on the X’s and Y’s together, from behaviour which
depends solely on the X’s. This is achieved in steps (i), (ii) and (iii) below.

(i) I.:: Note that
(nhP)'E'{I,, — E'(In)}?

= Xk E'[{Y: — w(X))? — o¥(X)P U; K*{(x — Xi)/hjva(x) dx]

= 0,(1) T na(X) U; K*{(x — Xi)/h} dx] .

If K(z) vanishes for | z| > X then the integral within square brackets is zero
unless X; € A™. In any event,

J; K*(x — X;)/h} dx < f KZ{(’x — X))/h} dx = h* f K%(x) dx,
and so
(nhP) E'{L,y — E'(In)}* = O0,(h*) ¥x.ea ua(Xi) = 0,(nh?),

the last equality following from (2.1) and the weak law of large numbers. It now
follows via Chebyshev’s inequality that if {\,, n = 1} is any sequence of constants
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diverging to +o,
P{|In,— E'(In)| > M\n"3?hP| Xy, ..., X} =0

in probability as n — . The unconditional probability must also converge to
zero, by dominated convergence. Therefore

Iy = E'(I1) + O,(n™*?h7P)

(3.2)
= (nh?)2 ¥, o¥(X)) J; K*{(x — X;)/h}v,(x) dx + O,(n"*?h7P)

as n — o,

(ii) Ino: Let

Whij = fA K{(x — Xi)/hiK{(x — X;)/h}vn(x) dx,

and define Wnij in the same way but with v, replaced by v. Observe that
(3.3) (nhP)?Ly = 3Y Y — w(XOUY; — w(X)IWoy = Tiep Yo,

1=i<j=sn
where
Yo ={Yi — p(X)} T2 Y — w(X)Weij, 2<is=n

If #,; denotes the o-field generated by X;, ..., X,and Y,,..., Y;forO<i=<n
(so that o= 7 {X,, ..., X.}), then E(Y,;| #,:-1) = 0 almost surely for all i.
Therefore the sequence

{(Sni = 25‘:2 Y., Zui)s 2<is=n<o

is a martingale triangular array. (See Hall and Heyde, 1980, pages 52-53.) The
conditional variance of S,, is given by

V?; = Yo E(Yﬁil %,i-—l) = )i 62(Xi)[2§;{ t},] - #(Xj)}Wm'jF

L2 o%(X)) T2 Y — w(X)PWE;

+ 235 d%(X) BY . {Y; = (XY — u(Xe)} Wi Wein
Vo + Vg,

Il

(3.4)

1sj<k=i—

I

say.
Our aim is to prove a central limit theorem for S,,. This entails checking two
conditions, which is done in Lemmas 1 and 2 below.

LEMMA 1.

oy 1
n2h 3an1—)—Ol1

4
(3.5)

'21‘[1; o*(x)f3(x)v(x) dx] [f {f Kw)K(u + v) du} dv]

[
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and
(3.6) n?h™V,, — 0
in probability as n — o,
PROOF. Since V,;= {1 + 0,(1)}V,;, where
Vi = 3is o*(X) TiE Y — w(X)PW3,
then it suffices to prove (3.5) with Va replacing V,;. Now,
E'{Va = E"(Va)}? = 2721 E'[{Y; — u(X)}? = o*(X)))?
X (S (X)) Why)?
(3.7 .
= C T mXNZimn o (X)) Whyh?
< Co 275 m(X) (Ekin Wiy)?,

using the fact that ¢2(x) is bounded on A°¢, and W~nij = 0 unless both X; and X;
are inside A, where X\ is such that K(z) vanishes for | z| > A. Furthermore,

(3.8) Vij < Cs J; K{(x — X;)/h} dx < Csh®,

and so by (3.7),

E'{Vu — E'(Va)}? < Canh® Yjsn-1, ua(Xi) Sizjr1, Wy,
XEA*

Xxear

But the mean of the double series on the right is dominated by a constant
multiple of

n’ J; pa(x)f (x) dx Lf(y) dyfAKt(z—x)/h}K{(z—y)/h} dz

< C n?h? J‘; wa(x)f (%) dx'f dv f K@w)K(u + v) du

= 0(n?h%),
whence E’{V,; — E'(V,1)}? = 0(n®h%) and
(3.9) Vo = E' (Vo) + 0,(n¥?h*").

(Note that for positive random variables Z,,, E(Z,) = 0(5,) implies Z, = 0,(6,,).)
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Let A, = E’(V,;) and a, = E(A,), and observe that

a, = = n(n — DE{c*(X1)02(X,) W22}

NI= DN

n(n — 1)h% f f oX(x)a%(x — wh)f (x)f (x — wh) dx dw
(3.10)

2
X Jf K(2)K(z + w)v(x — zh) dzl
] (A=x)/h I

1
~ Z n2h3”a1 .

We may write A, — a, as a U-statistic,
Un = An - a, = Z Z Hn(Xi, )Q),

1=i<j=n

where H,(X;, X;) = o%(X)o*(X))Wi; — E{c*(X1)0*(Xz) Wi}, Let Ga(x) =
E{H,(X,, x)}. The U-statistic’s projection is given by

S, = (n—1) Tk G.(X)),
and
E(S%) + E(U, - S,)*
= n’E{G(X1)} + n®E{H, (X1, X5) — Gu (X)) — G.(X2)}?
< CnPE{o* (X)) o4 (Xe) Wi}
< C,n’E(Wip).

Now,

E(Wiy) = P f ff(x)f(x — wh) dx dw

4
X {f K@)K(z + w)v(x — zh) dz]
(A-2)/h

= O(h™),

and so E(A, — a,)* = O(n’h*), whence A, = a, + O,(n**h*"?). Since nh” —
as n — %, we may now deduce from (3.9) and (3.10) that n A"V, — Y4 a; in
probability, from which follows (3.5).
To prove (3.6), observe that
E'(Vh) =4 Y3 o%X)o*(Xi){Z e o2 X)WoiiWoi}?

1=sj<k=n-—1

(3.11) ..
=0,(1) I¥ (Zkrsr WoijWaa)®

1sj<k=n-1
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Ifl=j<k=n-—1then
(3.12) E(Tkrs Wi Woir)? = (n — R)E(W212 W)
+ (n = k)(n = k = 1)E(Wo1s Wara Wzs Wizd),
and
(3.13) E(W2:Wiis) = O(h*),
using (3.8) and the fact that E(W,2) = O(h?). Furthermore,
CE (W13 Wo1s Wz W)

f f f f Bn(ula Uz, U1, 02) du1 dU«Q dUl dUg
A YA YA YA
" f f f f
A YA YA, YA,

~B,,(u1, u, + alh, u, + a2h - a3h, u, — a3h) dul da1 daz da3,

(3.14)

where the A; are transformed versions of the set A, and
Bn(uly Uz, U1, UZ)
= E[K{(u; — X1)/h}K{(uz — X1)/R}]E[K{(v; — X1)/hiK{(vs — X1)/h}]

X E[K{(u1 — X1)/h}K{(v; — X1)/R}E[K{(uz — X1)/hiK{(v2 = X1)/h}]

= h? [f Kw)K{w + (us — uy)/hif (uy — wh) dw]
X f K(w)K{w + (Ul - Uz)/h}f(vz - ZUh) de

X f Kw)K{w + (v, — uy)/hif (u, — wh) dw]

X f Kw)K{w + (uy — vy)/hif (v2 — wh) dw] .

On substituting this formula into (3.14) we may deduce that
(3.15) E(Wnls WnM v n23 Wn24) = 0(h7p)~
It follows from (3.12), (3.13) and (3.15) that
E(Yira WnijWnik)2 = O(nh* + n®h™)
uniformly in1 < j <k <n — 1, and so by (3.11) and the fact that nh” — o,
E’'(n72h™V )2 = 0,(n'h™ + hP) = 0,(1).

The result (3.6) is a consequence of this estimate.
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LEMMA 2. For each ¢ > 0,
n?h™® iy E'{YRI(] Yai| > enh®/?)} — 0
in probability as n — .
PROOF. Define Z,;= Y21 {Y; — u(X;)} Wy, so that Y= {Y; — u(X; NZ.:. Fix

k> 0, and observe that | le > enh*®/* entails either | Y; — u(X,) | >k, or k| Z,|
> enh¥/2. Therefore

E{Y%I(| Yai| > enh®/?) | Fni-1}
S ZUE'{|Y: — w(X) 1P2I() Yi — (X)) | > k)}
+ 0'2(X')I(|Zm'l > k_lenh3p/2)]

Now, E’(Z%) = Y2} o*(X;)W2,;. Thus, since ¢2(x) is bounded on Afyand W=
0 for large n unless both X;, X; € A°,

E'{YLI(| Yoi| > enh®/?)
= Ci(ZjZ WEHE{I Y — (X)) 12I(] Vi — p(X3) | > k)}

+ CE'{ZLI(| Zni| > k7'enh®/?)},
But

Tt Whij = 0,(1) T21 W2y = 0,(h?) Tzt Wiy
uniformly in i, using (3.8), and so Lemma 2 will follow if we prove that
(3.16) nhT® Y, E{Z%I(| Zni| > enh®/%)} — 0
in probability as n — o for all ¢ > 0, and

lim sup,_.n"2h=%

(3.17) X E[Eis (Zj2t Wai)E{1 Yi — u(X)1I(] Y — (X)) | > k) | Xi}] = 0

as k — oo,
To prove (3.16) observe that
E'(Z3) = TZ E'{Y; — w(X)}Wei+6 3 X (X))o A X)) Wi W2,

1=sj<k=i—-1
= O (h3p) Z I-L4(X)Wnu + O (nh3p) Z mj
uniformly in 7, and
E{E Ej 1 /M(X )ij; + E(Z j— ~nij) = O(n2h2p)’

using the argument leading to (3.9). Therefore 37y E’(Z%) = O(n®h®), from
which follows (3.16). The result (3.17) may be proved by slightly modifying the
argument leading to (3.9). This proves Lemma 2.

It follows from Lemma 1 and the identity (3.4) that n"2h"*V2 — Y a, in
probability as n — c. From this result, Lemma 2 and a central limit theorem
due to Brown (1971) (see Corollary 3.1, page 58 of Hall and Heyde, 1980), we
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may deduce that n~'h~%/2S,, is asymptotically normal N(0, ¥4 a;). It is not
difficult to prove even more than this. The o-fields F.0 = F{X1, ..., X,} have
the properties E(Y,;| no) = 0 for all i, and Fo C F,; for all i. By modifying
arguments of Eagleson (1975) we may prove that for any sequence of events A,
€ 0, and all real x,

| P(A,; n th=%/28,, < Y2 ai’?x) — P(A,)®(x)&— 0
as n — o, It now follows from (3.3) that
(3.18) | P(A,; 2nhP L, < al?x) — P(A,)®(x)| — 0.

(iii) I,.3: Let v,.(x) = E{g.(x)}, and define

Jnj = (nhp)_l =1 {Yi - I-‘(Xi); J; K{(x - Xi)/h}aj(x)vn(x) dx,

for j = 1, 2, where a;(x) = y,(x) and az(x) = g.(x) — yn(x). Then
(319) In3 = Jnl + Jn2.
We shall handle these terms individually.

LEMMA 3. Jno=0,(n"'h™?) as n — .

ProOOF. It suffices to prove that
(3.20) E’(J2;) = 0,(n"%h7P).
Since
E’'(J%) = (nh?)™? 3, o%(X))

X [L Kf{(x — X;)/h}{gn(x) — vn(x)}va(x) dx]
< (nh®)*{sup.eavi(x)} {f K(x/h) dx}

X Ezn=1 02(Xi) L K‘(x - Xz)/h}{gn(x) - 7n(x)}2 dx’

then (3.20) will follow if we show that

(3.21) -1 J;K{(x — X:)/h}{ga(x) = va()}? dx = 0,(1).

Let g.:(x) = (nh?) ™' 3,.i{n (X)) — n(x)}K{(x — X;)/h}, and observe that
{gn(x) — vn(x)}?
< 2{gni(x) — Egnu(x)}* + 4(nh?)*{u(X)) — w(x)PK*{(x — Xi)/h}
+ 4(nh?)E{u(X:) — n(x)}K{(x — X)/h})%
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Consequently if x € A,
bu(x) = E[K{(x — Xi)/h}{gn(x) — va(x)}]
= Ci((nh*)E[K{(x — X)/h}] E[{n(X) — u(x)PK{(x — X)/h}]
+ (nh?)E[{w(X) — w(®)PK{(x — X)/h}])
= Co(nh?)TE[{u(X) — p(x)PK{(x — X)/h}),
using the fact that f is bounded on A°. Now, if K(z) = 0 for | z| > A then

fA Elfu(X) — w@)PK{(x — X)/h]] dx

= h? J; dx f fu(x — zh) — n(x)P’K(2)f (x — zh) dz

= hp{supxeA,lzls)\hl ﬂ(x + 2) - ﬂ(x) 12} = O(hp)’

using the uniform continuity of u. This proves (3.21).

The next step is to derive a central limit theorm for ¢J,;. Conditional on
Xi, ...y Xn, Jn1is just a sum of independent random variables with zero means,
and so we shall prove the theorem conditional on Xj, ..., X,. This requires us
to check the two conditions in the following lemma. Let Y,;= {Y; — w( X2,
where

Zn = j;K{(x — Xi)/h}yn(x)v,(x) dx.

LEMMA 4.
(3.22) nRFE/(SE, Vo) — i ap = f a2(x)y*(x)v2(x)f (x) dx
A

in probability as n — «, and for each ¢ > 0,
(3.23) nThT®t B EY{YRI(| Yal > en'?hP*2)} — 0

in probability as n — .

PROOF. Since

(3.24) yau(x) = f fu(x — zh) — p@)IKQ)f (x — zh) dz = h?y(x) + o(h?)

uniformly in x € A, and v, (x) = v(x) + 0,(1) uniformly in x € A, then
T, = E'(E?=1 Yni)2 =Y 02(Xi)Z~3u'

(3.25) 2
=h* 3% e¥(X)) [J; K{(x — Xi)/h}y (x)v(x) dx} + r,,
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where

4
Iral = 0p(h?) Tina [J; K{(x — Xi)/h} dx] = 0,(nh**),

using (3.8). Let T, denote the last-written series in (3.25). Then

2
E(T,;) = nh%® f a2(2)f (2) [L_ " K(u)y(z + uh)v(z + uh) du] dz

~ nh?® f c2(2)vH2)v2(2)f (2) dz,
while
4
var(T,.) < CnE[f K{(x — X)/h} dx] < Cnh*r.
A
The result (3.22) follows on combining the estimates from (3.25) down.
To prove (3.23) it suffices to show that
(3.26) n?h™ 8y, E'(Yn) — 0

in probability as n — o. Now,

sup;| Zni| = Op(h?) sup; f K{(x — X:)/h} dx = O,(h#*?),
A

using (3.24), and so
ryEN(YY) = Sk ZEE'{Y: — p(X)} = 0,(h*9) Zif"' ua(Xi)
LEA®

= 0,(nh**8).

This proves (3.26).
Let F, denote the distribution function of

Tn3 = 20‘2_1/271'_1/2174_‘)_2 Ezn=1 Yni’

conditional on Xj, ..., X,. We may deduce from Lemma 4 and the Lindeberg-
Feller theorem that F,(x) — ®(x) in probability as n — . Therefore for any
sequence of events A, € ¥ {X,, ..., X,},n =1, and all real x,

| P(An; Tos < x) = P(A,)®(x)| — 0
as n — . Consequently
3.27) | P(A,; nY2h72J,; < Y ad?x) — P(A,)®(x)| — 0.

The expansion (2.3), with the term (n™2h™Pa; + n'h%a;)"/2N, replaced by
(nh??)'a¥?N,1 + n~?h%a}/?N,, for asymptotically N(0, 1) variables N,; and
N,., follows immediately on combining the results (3.1), (3.2), (3.18), (3.19),
(3.27) and Lemma 2. If one of the terms (nh??)~! and n~'/2h? is asymptotically
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negligible in comparison with the other as n — «, then the theorem is proved.
It remains only to derive the last term in (2.3) in the special case where
(P In"Y2p2% 5 )\, 0 < A < ®, as n — ® along a subsequence of n-values. This
in turn entails proving the asymptotic independence of N,; and N,; as n —
along this subsequence. Now, N,; and N, are principally derived from the terms
I, and J,,, (see (3.18) and (3.27)), and I,,and J,; both have zero conditional mean
and satisfy E(I,2dn1| X1, ..., X,.) = 0. For all real constants a, b, the quantity
al,, + bJ,, can be expressed as a martingale, very much as was done early in step
(i1). The proof in steps (ii) and (iii) can now be reworked to show that 2(al,.. +
bd,.,) is asymptotically normal with variance n™ha,a® + n~'h*a,b”. The desired
independence now follows via the Cramér-Wold device. (See Billingsley, 1968,
page 48.)

PROOF OF THEOREM 2. In view of condition (2.2),

L o3(Xp) J;K%(x — Xi)/hjvn(x) dx

= {1 + 0, (1)} Tk ¢*(X)) LKQ{(x = Xi)/hju(x) dx.

The last-written series has mean equal to

nh"fa2(x)f(x) dxf
(A—x)/h

K*uw)v(x — uh) du ~ nh® J; o2 (x)f (x)v(x) dx - f K?(u) du,

and variance of order nh*. Therefore the first term on the right in (2.3) is
asymptotically equivalent in probability to the first term on the right in (2.5).

Defining g,.(x) and v,(x) as in the previous proof, we see that the second term
on the right in (2.3) equals {1 + 0,(1)} [483%(x)v(x) dx, while

ng?.(x)v(x) dx = J; {8.(x) — va(x)}Pv(x) dx
+2 fA (8.(2) — vn(X)}yn(X)0(x) dx + L‘y?,(x)v(x) dx,
J;E{g,,(x) — v (x)}Pv(x) dx

< (nhP)7! j; v(x) dx f {u(x — zh) — u(x)1’K*2)f (x — 2zh) dz = o(n"'h™P),
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LEIgn(x) = Ynl(x) [ yn(x) |v(x) dx

= f [ va(x) | v(x)[(nhP)™ f {u(x — zh) — p(x)PK*(2)f (x — zh) dz]"?dx
A

= o{h*(nh?)~V/3},

and
f vi(x)v(x) dx = h* f v¥(x)v(x) dx + o(h?),
A A

using (3.24). Therefore the second term on the right in (2.3) equals the second
term on the right in (2.5), plus terms of 0,(n"*h™ + h*). The last-written term

in (2.3) equals 0,(n*h "+ h*).

PROOF OF THEOREM 3. The variance of the first term on the right in (2.3)
is dominated by a constant multiple of

2
(n3h4")_lE[f K*(x — X)/h} dx] =0(n3h™%) = o(n?h7P).
A
Therefore the error about the mean of the first term is asymptotically negligible

in comparison with the last term on the right in (2.3). The difference between
the second term on the right in (2.3), and its mean, equals L,; + 2L,., where

Ly = (nh?)™* T, f £2(Xi, x)v(x) dx,
A

L, = (nh?)? 3 % A ED(Xi, 0) ED (X, x)v(x) dx

1=i<j<n
and
ED(X;, x) = {u(X) — w@)IK(x — Xi)/h}
- E[{#(Xi) - M(x)}lKl{(x - Xi)/h}]~
Therefore
var(L,) = (n®h*)™ fA fAE{£5.2’(X,x)E$,2’(X, y)v(x)v(y) dx dy
and

var(L,;) = % (nh?)*n(n — 1) fA fA (EED (X, x)EP(X, y)Pv(x)v(y) dx dy.

Each of these integrals may be expanded into several terms, and shown to be of
smaller order than n~2h™® + n~'h*. Therefore the error about the mean of the
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second term on the right in (2.3) is asymptotically negligible in comparison with
the last term in (2.3). We treat here only the first term in an expansion of
var(L,;), which (if K(z) vanishes for | z| > \) is dominated by

(n*h*)7! J; J; E{w(X) = p@) | | p(X) — u(y)]
X K((x — X)/h)K((y = X)/h)}Pv(x)v(y) dx dy

= {SUPxea,jx—y 1< | w(x) — p(y) [}(n®hP)7 J; v(x) dx

2

X f v(x + yh) {f K(y + 2)K(z)f (x — zh) dzl dy
(A-x)/h J
= o(n"2h7P).
PROOF OF THEOREM 4. Observe that

(3.28) (o) = {Efu()} + 0,(1) | fu(x) — Efu(x) |

uniformly in x € A, and so the term [, from the proof of Theorem 1 may be
written as

(329) I, = f g2 (){Ef,(x)} 2w (x) dx + 0,(1) fA g2(x) | fu(x) — Ef,(x) | dx.

The argument we used to prove Theorem 3 may be employed to show that the
first term on the right in (3.29) equals

J; E{g2(x)}{Ef,(x)}w(x) dx + 0,(n*h?* + n~2h2),

while the second term equals

l1/2

0,(1) { f gh(x) dx}m { fA | fa(x) = Efy(x)|? dx l
It can be proved that
fA E{gi(x)} dx = O{(nh?)*h* + h¥}
and
fA E{fa(x) = Efs(x)}* dx = O(n'h7P),

and so the last-written term in (3.29) equals

Op{(nh")™*h% + (nh?)™V2hY} = 0,(n"'hP"? + n~V2h?)
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under the conditions imposed on h and p. Consequently
(3.30) I,= J; E{g2(x)}{Ef.(x)}2w(x) dx + 0,(n"'h?”? + n~V?h?).
Using a longer expansion than (3.28) we may deduce that

E'(I,) = (nh?)™ T, o*(X:) J;Kz{(x — Xi)/RHEfu(x)}) 2w (x) dx

— 2(nh?)7 T o*(X)) J; K2{(x — X;)/hHEfa(x)}

(3.31) A A
{fo(x) — Efn(x)}w(x) dx

+ Op{(nh?)™ fA [(nh?)* Tk,
K2{(x — X)/h}]{f.(x) — Efo(x)}? dx.

The argument leading to Theorem 3 may be used to show that the first term on
the right hand side in (3.31) equals its mean plus o,(n"*h™2 + n™"/?h?), while
the last term equals O,{(nh?)~%}. The second term multiplied by —'2 equals L,
+ Ln2 + Lng, where

L. = (nh?)? ¥, J; E[¢*(X)K*{(x — Xi)/h}£x(Xi, x)wn(x) dx,
Ln2 = (nhp)—3 ln=1 J; nn(Xi’ x)gn(Xia x)wn(x) dxy

Ln3 = (nhp)—3 Z¢Z L nn(Xi’ x)gn()(j’ x)wn(x) dx’

£.(Xi, x) = K{(x — Xi)/h} — E[K{(x — Xi)/h}],
10 (X, x) = X X)K*(x — X))/h} — E[e*(X)K*{(x — X;)/h}]

and w,(x) = w(x)/{Ef,(x)}>. Now, L,, and L,; both have zero mean and variance
of order (nh?)™*, while L,, has mean of order (nh”)~2and variance of order (nh?)™.
Therefore the second term on the right hand side in (3.31) equals 0,{(nh?) %} =
0,(n"*hP’?), since n*h* — oo, whence

E'(Iy) = (nh?)™ T JA E[*(X)K*(x — X)/R}){Efu(x)}?w(x) dx

+ 0,(nth7P2 + n~V/2h3).

Theorem 4 follows from this estimate and (3.30).

Acknowledgments. The helpful comments of two referees have been in-
corporated into this revised version.
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