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INVARIANT CONFIDENCE SETS WITH SMALLEST
EXPECTED MEASURE!

By PETER M. HOOPER

University of Alberta

A method is given for constructing a confidence set having smallest
expected measure within the class of invariant level 1 — « confidence sets.
The main assumptions are (i) that the invariance group acts transitively on
the parameter space and also acts on the parametric function of interest, and
(ii) that the measure satisfies a certain equivariance property. When the
invariance group satisfies the conditions of the Hunt-Stein Theorem, the
optimal invariant confidence set is shown to minimize the maximum expected
measure among all level 1 — « confidence sets. The method is applied in
several estimation problems, including the GMANOVA problem.

1. Introduction. Let X be a random variable taking values in a space 4 and having
distribution P, for some unknown 8 € 6. Suppose y(f), taking values in T', is the parameter
of interest and the rest of  is a nuisance parameter. The symbol y will be used to denote
both the function y:© — I" and a point in I', depending on context. Let C(X) denote a
confidence set for y with confidence level 1 — a; i.e.,

(1.1) Pyly(@) eCX)]=1—a forall 6.

In the frequency theory approach to set estimation due to Neyman, the desirability of C
is usually measured by the probability that C(X) covers false values of v:

(1.2) Py € C(X)] forall yET,, §€EO.

Here T’y is the set of false y values relevant to the problem at hand. For example, if y is
real-valued and a lower confidence bound is desired, one has I'; = (—o, y(6)). In a two-
sided problem one has I'y = T'\{y(4)}.

An alternative criterion for evaluating C is the expected value of some measure of C(X).
For each 6 € O, let m(-, #) denote a measure on I" and consider

(1.3) Em(C(X),0) forall §€0O.

For example, if C(X) is to provide a lower confidence bound for real-valued y one might
take m(., 8) to be Lebesgue measure restricted to (—o, y(#)). If a two-sided interval is
desired then Lebesgue measure (unrestricted) is more appropriate.

Pratt (1961) pointed out that the criterion of expected measure is closely related to the
criterion of false coverage. By interchanging the order of integration in

E, f Icx)(y)m(dy, 6)
T

he showed that

E;m(C(X), 0) =j Py[y € CX)Im(dy, 8).
T
If the measure satisfies

(1.4) m(\T, ) = 0,
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then one has

(1.5) E;m(C(X),0) = j Pyly € C(X)]m(dy, 0).

Ty

Thus (1.3) can be regarded as a specification of the way in which the probabilities (1.2) are
to be made small. It should be stressed that if (1.4) does not hold, then criteria (1.2) and
(1.3) are not related. In particular, the expected length of a confidence interval is not
relevant in a problem where a one-sided confidence bound is desired. This point is
discussed by Madansky (1962). For an example where confusion on this can arise, see
Section 6.1.

Usually there is no set estimator that uniformly minimizes (1.3) subject to (1.1). One
method for choosing a particular set estimator involves minimizing a weighted average of
the expected measures; see Pratt (1961). The present paper presents an alternative method
that relies on invariance considerations. Let G be an invariance group that acts transitively
on O and that also acts on I'. Let C be an invariant set estimator for y. (We regard C as a
subset of & X T, with C(x) denoting the cross section at x, and so use the term invariant
rather than equivariant.) Then C (X) has a fixed probability, independent of 6, of covering
the true value of y; see Wijsman (1980, Section 3). In Section 2 below it is shown that the
expected measure E;m(C(X), 6) is determined for all 6 by its value at any particular 6,
provided the function m(-, -) is equivariant. Consequently criterion (1.3) determines a
total ordering on the class of invariant set estimators satisfying (1.1). A method is given for
determining the best confidence set in this class.

Suppose C is a uniformly most accurate invariant level 1 — « set estimator; i.e., C
uniformly minimizes (1.2) among all invariant set estimators satisfying (1.1). It follows
from (1.5) that, within the same class, C uniformly minimizes (1.3) for all measures m(-, 8)
satisfying (1.4). In most of the applications in this paper there is no uniformly most
accurate invariant set estimator and the optimal procedure derived depends on the choice
of the measure m(-, #). The results of Cohen and Strawderman (1973) imply that, under
mild restrictions on the measure m(-, 8), the invariant level 1 — « set estimator with
smallest expected measure is at least almost admissible among all invariant set estimators
when the criteria are (1.1) and (1.2).

In Section 3 a version of the Hunt-Stein Theorem is presented. Sections 4, 5, and 6
contain applications. A more detailed exposition and further examples are given in Hooper
(1981b). Section 7 discusses a difficulty that arises concerning the shape of optimal
confidence regions.

2. Invariant set estimators. Let .« and #denote o-fields of subsets of, respectively,
Zand I'. A (possibly randomized) set estimator for y based on X is defined to be a jointly
measurable function ¢ mapping & X T into [0, 1]; see Hooper (1982). Let U be distributed
uniformly on [0, 1] and independent of X. The function ¢ is assumed to represent the
following nonrandomized confidence set based on (X, U):

Observe that ¢ (x, y) is the conditional probability that C,(X, U) covers y given that X =
x. Probabilities of coverage (true or false) are given by

Pyly € Co(X, U)] = Eg9p (X, v).
For each § € 6, let m(-, §) be a o-finite measure on (T, #). By applying Tonelli’s Theorem,
we obtain
Esm(Cy(X, U), 0) = J Eop (X, y)m(dy, 9).
T

Suppose G is an invariance group that also aéts on T’; for definitions see Wijsman (1980,
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Section 3). The actions will be denoted x — gx, § — g6, y — gv. In particular we have
v(g8) = gy(6). A set estimator ¢ is invariant provided ¢ (gx, gy) = ¢ (x, y) for all x € %,
vy €T, g € G. We will say that a function m: % X © — [0, ] is equivariant provided a
linear action of G on [0, ] can be defined so that m(gA, g6) = gm(4, 9) for all A € &,
6 €6, g e . If ¢ is invariant then we have

Eq09(X, v(80)) = Eop(gX, gv(0)) = Esop (X, v(0)),

so the probability of covering the true y is constant on orbits. If ¢ is invariant and
m(-, -) is equivariant then we have

Eyp(gX, gy)m(dgy, g0) = g f Eop (X, y)m(dy,0),

T

r

r

so the expected measure is determined on an orbit by its value at a single point in the
orbit. Now suppose G acts transitively on O; i.e., © consists of a single orbit. Then the
problem of finding an optimal level 1 — « invariant set estimator can be solved by fixing
0* € 6 and minimizing [r Es-¢ (X, y)m(dy, 6*) subject to Es-¢ (X, y(0*)) =1 — a and ¢
invariant.

To do this we need a tractable representation of the class of invariant set estimators.
Let 2T = {Py,: (6, y) € © X T'} be the family of distributions defined on & X I" as follows:
for C € o X % let C(-, y) € o denote the cross section at y and define Py, (C) =
Py(C(-, v)). Let T: ¥ X I' = 7 be invariantly sufficient for 2"; see Hall et al (1965, page
579). Then the class of invariant set estimators ¢ is equivalent to the class of measurable
functions 2: .7 — [0, 1], in the sense that, given an invariant ¢ there exists A such that
Ey0(X, v) = Esh(T (X, v)) for all (6, y) € 6 X I'. The function T can be constructed by
applying sufficiency and invariance reductions in tandem to 2 X T'; see Hooper (1982) for
details and examples. Let 27 = {P],:(6, y) € © X T'} denote the set of distributions
induced by 2! on 7 i.e., for measurable B C .7, we define P}, (B) = Py(T (-, y)"'B). We
now have the notation needed to present our main result.

THEOREM 1. Let G be an invariance group that acts on I" and acts transitively on
©. For each 0 € O, let m(-, §) be a o-finite measure on I' and suppose m(-, -) is
equivariant. Let T: & X T' — 7 be invariantly sufficient for 2* and suppose 2?7 is
dominated by a o-finite measure u”, with densities denoted p”(t; 8, v). Fix * € © and set
v* = y(8*). Suppose p"(t; 0%, y) is jointly measurable as a function of (t, y). Define

p(t; 6%, v*)

(2.2) W) = .
J p(t; 6%, y)m(dy, 0%)
T

Then a level 1 — a invariant set estimator with smallest expected measure is given by

1 when W(T(x,v))>c
o(x, y) =

(2.3) k when W(T(x,y))=c

0 when W(T(x,y))<c
where the constants ¢ and k are determined by

(2.4) PL [W>cl+ kPl [W=c]l=1-a

Proor. By the discussion preceding the theorem, we know that the optimal invariant
set estimator is given by ¢ = ho T, where A: 7 — [0, 1] minimizes

f E¢-h(T (X, y))m(dy, %)

subject to E¢-h(T (X, y*)) =1 — a. An application of Tonelli’s Theorem yields the following
expression for the expected measure:
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f Eyn(T (X, y))m(dy, 6%) =f f h(t)p™(t; 0%, y)u" (dt)m(dy, §*)
2.5) r rJos

= Jh(t){f pl(t; 0%, y)m(dy, 0*)}#T(dt).
T

T

The probability of covering y* can be written

E¢-h(T (X, v%)) =J' h(O)p"(t; 8%, y*)u" (d?).

g

The conclusion follows from the Neyman-Pearson Fundamental Lemma. O

We note that the function W and constant ¢ may depend on the choice of §*. It is easy
to verify that W(¢; g0*) = g 'W(¢t; 6*), c(gh*) = g~ 'c(6*), and k(g0*) = k(@*). If
m(-, -) is invariant then W does not depend on 6*.

The invariantly sufficient function 7' (X, y) is a pivotal quantity; i.e., the distribution of
T (X, y(0)) under P, does not depend on §. We will refer to P, ) as the null distribution
of T. If the null distribution of W = W(T') is continuous then the optimal invariant set
estimator (2.3) is nonrandomized. Otherwise randomization may be avoided by choosing
an appropriate value for 1 — a. The a quantile of the null distribution of W can be
approximated easily enough using simulation methods when analytic methods are intrac-
tible.

From (2.5) we observe that the expected measure under P,- of ¢ = ho T is given by

(26) Eo-- (W(T)/W(T)}.

This expression can be used to evaluate the expected measure of any invariant set
estimator. We note that W equals 0 when the denominator of (2.2) is infinite. If o* =
PJ.,-[W = 0] > 0 then, for a < a*, all invariant level 1 — « confidence sets have infinite
expected measure.

When computing the function W, it is convenient to ignore constant multiplicative
factors. This does not affect the definition of the set estimator in (2.3) and (2.4). And (2.6)
can still be used to compare the expected measures of various invariant set estimators.
Thus in our examples the function W given is proportional, but not necessarily equal, to
(2.2).

The invariantly sufficient function 7' sometimes factors into two terms, the second not
depending on y; i.e., T (X, y) = (T1(X, v), T2(X)). Then T, is an ancillary statistic since T’
is invariant and G acts transitively on ©. The conditionality principle recommends that
the conditional confidence level given T is more relevant than the unconditional level.
Theorem 1 can be easily modified to give the invariant set estimator with smallest
conditional expected measure subject to the conditional level condition. The function W
remains the same since the marginal densit& of T, can be factored out of (2.2). The only
change is that ¢ and %2 become functions of T determined by the conditional level
condition.

In a number of the examples, W (T (x, -)) turns out to be a fiducial density for y with
respect to an invariant measure my(dy). The 1 — « fiducial set estimator with smallest
mi(dy) measure is given by

2.7) {y: W(T(x, v)) = calx)},

provided W(T (x, -)) is not constant over any region, where c,(x) is chosen so that (2.7)
has fiducial content 1 — a. The 1 — « level confidence set estimator (2.3) coincides with
(2.7) provided c.(x) equals the a quantile of the null distribution of W(T') for all x € %.
This need not be the case, as is seen in Section 4. We note that c,(-) must at least be
constant if, for each v, the function 7'(-, y) depends on x only through a statistic S(x) on
which G acts transitively; i.e., S: — & G acts transitively on % and S(gx) = gS(x). This
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statement is proved by observing that

J W(T (x, y))mi(dy)
{y:W(T (x,y))=c)

is constant along orbits in Z.

3. Minimax set estimators. For a given family of measures m(-, 4), 8 € 6, we will
say that a level 1 — « set estimator ¢, is minimax if it minimizes

(3.1) - Supgeo f Ey (X, y)m(dy, 0)
r

among all level 1 — « set estimators. If m(., -) is equivariant and the action of G on
[0, ) is nontrivial, then it follows from (2.1) that (3.1) is infinite for all invariant ¢. Thus
only invariant functions m(-, ) are of interest here. Actually there would be no loss of
generality if Theorem 1 were stated only for invariant m(-, -). The problem of finding a
set estimator with minimum expected measure is unchanged if the measure m(., -) is
replaced by a measure of the form

(3.2) mi(-, §) = c(@)m(-, 6),

where ¢(8) is positive for all § € O. If G acts transitively on O then, given an equivariant
m(-, -), we can define an invariant m,(., -) satisfying (3.2) by fixing §* € O and setting
c(g6*) = g7'1. The function m, is uniquely determined up to a positive multiplicative
constant.

Theorem 2 below parallels the version of the Hunt-Stein Theorem presented in
Lehmann (1959). The following regularity conditions will be assumed. Suppose that </ is
countably generated and that the family of distributions 2= {Py: 0 € O} is dominated by
a o-finite measure p. Denote the densities by py(x). Let % be a o-field of subsets of the
group G and, for y €T, set G, = {g € G: gy = v}. Suppose that the following measurability
conditions hold: for some y* € I" and each A € & X %, we have {(x, gy*): (x, g7") € A}
€ o X Fand G,+ € 4; for each B € # and g € G, we have Bg € #; foreach A € &/ X ¥
we have {(x, v, ) : (gx, gY) € A} € &/ X ¥ X 4. Suppose there is a o-finite measure » on
G such that »(B) = 0 implies »(Bg) =0forall BE %4, g € G.

THEOREM 2. Suppose that G acts transitively on T and that there exists a sequence
of probability distributions v, over (G, #) which is asymptotically right invariant in the
sense that, for each g € G, B € %,

(3.3) lim,—.. | 7a(Bg) — va(B)| = 0.

Let m(-, -) be invariant. Then, under the above regularity conditions, given any set
estimator ¢ there exists an invariant set estimator ¢; that satisfies

(3.4) SUpseo J’ Epr(X, y)m(dy, 6) < supseo J Eyp (X, y)m(dy, 0),
r r
(3.5) infyeeEsdpr(X, v(0)) = infycoEso (X, y(0)).
Proor. For each n, define the set estimator
onlx, v) = f $(8x, gY)va(dg).
G

Then we have ¢,.(gx, £y) — én(x, y) — 0 for all x, y, g. The proof is the same as that of
Lehmann (1959, page 336, Equation 15). By the Bounded Convergence Theorem it follows
that
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(3.6) f {Pn(gx, g8y) — dn(x, ¥)}Py(dx) > 0
A

foralld € 6,A € «.
Fix y* €T By the Weak Compactness Theorem, Lehmann (1959, page 354) there exists
a subsequence {n,} and a measurable function ¥ : Z — [0, 1] such that

(3.7 lim, ... J’ én,(x, Y ) P(x)p(dx) = J’ ¥ (x) p(x)p(dx)

&

for all p-integrable functions p. By (3.6) it follows that ¥(gx) = ¥(x) (a.e. ) for each g
€ G,-. An application of Lehmann (1959, page 225, Theorem 4) shows that there exists a
measurable function ¥;: & — [0, 1] that is invariant under G, and satisfies ¥;(x) = ¥(x)
(a.e. ). Now define

ér(x, v) = ¥1(g7'x)

where y = gy*. Then ¢ is an invariant set estimator. Note that ¢; is well defined since
&1v* = gv* implies g1'g: € G, and hence ¥;(g7'x) = ¥;(g7'g.87'x) = ¥:(g7'x). Setting
Yy = gy*, writing

Eo{¢on(X,v) — ¢1(x, v)}
= Eo{¢n, (X, 8Y*) — 60, (87X, v*)} + Epg{0n, (X, v*) — 01(X, 7)),
and applying (3.6) and (3.7), we obtain
lim, . Eodpr, (X, v) = Eopr(X, v)

for all 6 € ©, y ET. Put GO = {g0: g € G}. Then the application of Fatou’s Lemma and
Tonelli’s Theorem yields

JE0¢1(X,Y)m(dY,0)Slim infz—ch' Eypn (X, y)m(dy, )
r

r

= lim inf, . J f Ey¢(gX, gy)m(dy, 8)v. (dg)
G Jr
= lim inf, ... J J' Eq0(X, y)m(dy, g0)v,,(dg)
G Jr
= Supsece J Ey ¢(X, y)m(dy, 0')
r

and

Eypr(X, y(0)) = lim;_, J’ E.0¢(X, y(g0))vn (dg) = infyeco Eopp (X, v(0')).
G
Equations 3.4 and 3.5 easily follow. 0

CoROLLARY 1. Under the assumptions of Theorems 1 and 2, the optimal invariant
set estimator (2.3) is minimax.

In all of our examples the functions m(-,-) are invariant. Corollary 1 is applicable unless
otherwise indicated.



INVARIANT CONFIDENCE SETS 1289

4. Location and scale parameters. Let (X, ---, X,) be a random vector with joint
density 67"f((x1 — B8) /0, - - -, (x» — B)/0) with respect to n-dimensional Lebesque measure,
where f is known. First suppose that ¢ = 1 is known and 8 € R unknown, so that § =
y(8) = B. Let G = R with actions x, » x, + b, 8 — 8 + b for b € R. A maximal invariant
on & X I' is given by T'(x, 8) = (x1 — B, -+, x, — B8). Consider a measure of the form
m(dg, B*) = 4(B — B*) dp, for some nonnegative-valued function 4. Then we obtain

f(xl_IBr"')xﬂ_IB) )
J A(B—b)f(x1— b, -+, x, — b) db

W(T(x,B)) =

If we have 4 = 1 then W(T'(x, -)) is Pitman’s fiducial density for 8; Pitman (1938, page
396). This does not mean that the confidence interval with shortest expected length is
necessarily a fiducial interval. Suppose the X, are independent and identically distributed.
Denote order statistics by X(;). Then an alternative invariantly sufficient function is given
by (T, Ts), where Ty = X3y — Band T> = (X — Xq), + ++, Xy — X(n_1)). Pitman’s interval
minimizes the expected length in the conditional problem, given 7%.

Next suppose that 8 = 0 is known and ¢ > 0 unknown, so that # = y() = 0. Let G =
(0, ) with actions x, » ax,, 6 — ao for @ > 0. A maximal invariant on & X I" is given by
T(x, 0) = (x1/0, - -, x,/0). Adopting a measure of the form m(do, 6*) = 4(0/0*)o " do,
we obtain
o "f(x1/0, +++, xn/0)

W(T(x, 0)) =

©

t(o/a)a™"f(x1/a, - -+, xn/a)a”" da
0

If we take 4 = 1, then W(T'(x, -)) is Pitman’s fiducial density with respect to 07! do
(Pitman, 1938, page 404).

Now suppose both parameters are unknown and a joint confidence region is desired;
i.e, § = y(8) = (B, o). Let G be the affine group, with actions x, — ax, + b, B— aB + b,
06— ao for a > 0, b € R. A maximal invariant on & X I' is T'(x, B, o) = ((x1 — B)/o, -+,
(xn — B)/0). The measure m(dBdo, (B*, 6*)) = 4((B — B*)/0*) ta(s/c* )02 dBdo yields

_1_f<x1_ﬁ x"_ﬂ)

) ’
—1

[ o

on
W(T(x, (B,0))) = ——— B—b 1 b 2\ 1 .
f J fl( >¢;<E)T_1f<x‘ e 2 )—Zdadb

. a ala a a a
If we take /1 = 1 and 4 = 1, then W(T(x, -)) is Pitman’s fiducial density with respect to
o 2dodf (Pitman, 1938, page 412).

Finally suppose a confidence interval is desired for 8 with ¢ unknown; i.e. § = ( B, o) and
y(6) = B. Let G be the affine group with actipns defined as above. A maximal invariant on
% X I" under the translation subgroup is given by V(x, 8) = (vy, -++, v,) = (x1 — B, -+,
%n — B). Let T'(v) be a maximal invariant under scale changes on R”. Consider a measure

of the form m(dB, 6*) = (1/0*)A(B — B*)/c*) dB. Put * = (0, 1). Applying Wijsman
(1967, Theorem 4), we obtain the probability ratio

<ee,aU,) da

J' flavy,
p(T(v); 6%,0) _ o
pT(T(v); 8%, b)

j flavi + b, ---, av, + b) da
0

Integrating out & in the denominator yields
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j fl(xi=B)/a, -+, (xn — B)/a)a® da
W(T(x, B)) = 2

J' f A(B—0)/a)f((x1 — b)/a, -++, (x. — b)/a)a® dadb

5. GMANOVA. The general multivariate analysis of variance model was formulated
by Potthoff and Roy (1964) as a convenient generalization of growth curves models. Gleser
and Olkin (1970) introduced a canonical form for the model and used invariance reductions
in deriving the likelihood ratio test. Kariya (1978) applied further reductions in deriving
the locally most powerful invariant test. The results of Hooper (1982) yield corresponding
reductions for the set estimation problem. Since we are restricting our attention to
invariant set estimators, these reductions imply that we need consider only the following
multivariate analysis of covariance model:

[X1:Xe] ~ Nox(p+y([M:0], [, ® Z), S ~ W,iq(v, X)

with [ X;: X,] and S independent. So the m rows of [ X;: X;] are independent multivariate
normal with common covariance matrix X and S has a Wishart distribution with » degrees
of freedom. We assume that X is positive definite and that we have » = p + q. Write X =
(X, X3, S). Here § = (M, Z) and y(0) = M.

Let M(m, p) and GL(p) denote, respectively, the set of m X p matrices and the set of
p X p invertible matrices. Consider the invariance group G = M(m, p) X 7, where
& C GL(p + q) consists of all lower block-triangular matrices A = (4,) with A;; € GL(p),
Az € GL(q), and A;; = 0. The group actions are [X;: Xo] — [X:: X2]A +[F:0],S — A'SA,
M — MA, + F, 2 — A'ZA, for (F, A) € G. Partition S = (S;) with S;;:p X p and
S22:q X q. A maximal invariant on & X I' under G is

TX, M) = (T1, T>) = (X1.2S12 X 1.2, X2S75 X5),
where
Xio=Un+ To) % (X1 — M — X38% S2) and Si.2 = Si — 812574 Sa1.

Here and elsewhere the exponent % denotes the symmetric square root.

Let §* = (M*, 2*) = (0, I). It seems difficult to obtain an expression for the density of
T when m > p or m > g, i.e,, when T or T is singular. However only the ratio of the
densities (with respect to a measure defined on an appropriate manifold) is needed here.
A tractable expression for this ratio is obtained by applying Wijsman (1967, Theorem 4).
Put Vi =X1..S1/% and Ve = X852 Let O(p) denote the set of p X p orthogonal matrices.
Then (T, Ts) = (V1V1, V2V3%) is a maximal invariant under (V;, V2) — (V1i€1, Vo€s) with
©, € O(p) and L € O(q). Thus we have

r J' f PV(‘V191, Va2e; 0%, 0) d2 Ay
p(T; 8% 0) _ Joap) Yo

p(T; 6%, M)
pV(Vlﬂl, Voldo; 0%, M) dQ dQ;
«(p) J (q)

(5.1)

3

where d€2; and d€2; denote Haar measure. Under §* the conditional distribution of V(M)
given (Si1.2, V2) i8 Nup(— (I + T2)V°MST'%, I, @ S1i'2) and, in addition, Si;.» and Vs
are independent; see Kariya (1978, Lemma 3.1). It follows that

pV(Vl) sz 0*y M)

= J’ P(Vi| Vo, Sui.z; 0%, M)p(Sr.2; 0*)p(Va; 6*) dSii..
S11.2>0
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1
(56.2) = c-p(Va; 6%) | Si12| ™% tr[— 3 i+ I, + Tz)_l/zMSﬁl./zz}Sle{'}/]

811.2>0
+| Sz |*TIPT e tl‘<— %Suz) dSi. 2.

Now consider the measure
(5.3) m(dM, 8*) = | Z%1.5| ™% dM.

Plugging (5.2) into (5.1) and (5.1) into (2.2), then changing the order of integration, we
obtain

(5.4) ' W(T) = | L, + T, |~ 22| L, + Tz | "~

An alternative meusure

(5.5) m(dM, 6*) = | S| ™ tr{(M — M*)SH3(M — M*)'} dM
yields

W(T) = | In + T1|" ™ 92| L, + T2 |"*

(5.6)
X {w+m—Qtr(l, + To)T) + p tr(I,, + T2)} .

The invariance group G above does not satisfy the Hunt-Stein condition (3.3) and the
set estimators determined by (5.4) and (5.6) are not minimax. Let LT(p) denote the set of
» X p lower triangular matrices with positive diagonal elements. Consider the subgroup
G = M(m, p) X </, where . consists of matrices A = (4;) € o/ with A7, € LT(p) and
A% € LT(q). Then ¢ is isomorphic to LT(p + ¢) and G; satisfies (3.3). Let L11.. € LT(p)
and Ly, € LT(q) denote the lower triangular square roots of, respectively, Si1.. and Sx; i.e.,
Si1.e = Li1.2L11.2 and Ses = LosLj. A maximal invariant on & X I" under G, is U(X, M)
= (U, Us) = (X1.2L7%, XoL5"). Observe that we have T, = U, U} and T, = U, U}. Under
the null distribution, U; and U, are independent (Kariya, 1978, Lemma 3.1) with distri-
bution given by Olkin and Rubin (1964, Theorem 4.2). Minimax confidence sets for
measures (5.3) and (5.5) are determined by, respectively,

B W) =L+ To| 22 Ly Ty 22 [ | (0, + USUD)™|
and
W(U) = | L, + T, |7 P9 V2| [, + To| 2] | (I, + ULU)E !

(5.8)
X[Tei(w+m+p—q—2i+ D{UiIn + T2) Ui }i + p tr(Ln + T2)]7,

where ( ) denotes the upper left-hand i X i submatrix and ( ), denotes the ith diagonal
element. '

The confidence procedure determined by (5.4) corresponds to an improper Bayes test
derived by Marden (1980). Our result combined with that of Cohen and Strawderman
(1973) shows that this test is admissible among all fully invariant tests. As » — o, the four
confidence sets derived above are asymptotically equivalent to Wilk’s determinental
criterion, {M :| I, + T1| =< c}, which is the likelihood ratio procedure. Marden and Perlman
(1980) show that the likelihood ratio test is admissible among fully invariant tests when m
= 1; i.e., in the analysis of covariance problem. However, Marden (1980) proves, for p = m,
that the likelihood ratio test is inadmissible among fully invariant tests when ¢ = 1 and m
= 2; he conjectures this result for p < m.

The optimal set estimators derived in this section produce the empty set when
| I, + T: | is large. The application of the conditionality principle, conditioning on T% or Us,
effectively reduces the problem to the case ¢ = 0; i.e., the MANOVA problem. In the
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conditional problem the G-invariant confidence set with smallest expected volume is given
by the likelihood ratio procedure.

6. Other applications.

6.1 Location parameters for exponential distributions. Let X;;, for j=1, ---, n;, and
. =1, -+, k, be independent with density exp{—(x, — v.)}, x, = y;. When %2 = 1 the
confidence interval X + In(a)/n < y = Xy, is uniformly most accurate at level 1 — a.
Littell and Louv (1981, page 126) construct confidence regions for y, with 2 = 2, by
inverting tests obtained from popular combination procedures. It turns out that Fisher’s
combined test determines the translation invariant confidence set with smallest expected
volume, appropriate in the combined two-sided problem. However a different region is
found to minimize the expected excess, m(dy, y*) = Lebesgue measure restricted to
{yivv.=y! i=1, ..., k}, appropriate in the combined lower confidence limit problem.

6.2. Covariance matrix. Suppose a confidence region is desired for = based on
S ~ Wy(», S). We consider a measure of the form m(dX, *) = | Z* | ™%?| 2| *?V/2J3. An
invariance reduction under GL(p) produces T'(S, £) = the vector of ordered eigenvalues
of =7'S. The optimal confidence set is determined by

6.1) W(T(S, £)) = | =78 |02 tr(—1% =7IS).

Note that W(T'(S, -)) defines, up to a constant factor, a density for = with respect to the
invariant measure | 2| **"/2 X, Taking 2 = 0 and 2 = p — 1 yields, respectively, the
fiducial distributions of Segal and Cornish-Fisher; see Wilkinson (1977, page 139).

The confidence set determined by (6.1) is not minimax. An invariance reduction under
the subgroup LT(p) produces a maximal invariant U(S, £) = H'B, where H = () and
B = (b;) denote, respectively, the lower triangular square roots of = and S. A minimax
confidence set is determined by

(6.2) W(U(S, 2)) = | =7'8| "% tr(—%Z"'S) T2 (bu/n.) P2

6.3. Quantiles. Let X, ---, X, be a sample from a continuous distribution F. Here 6
=F. Let0<pi < ... <pn<1be specified. Put y; = min{x: F(x) = p;} and y = (y1, - - -,
¥m). Let G consist of all strictly increasing continuous functions g mapping R onto R, with
actions x, = g(x,), y: = g(v:), and F — gF, where (gF)(gx) = F(x). This group does not
satisfy the Hunt-Stein condition (3.3). Observe that G does not act transitively on ©.
However the orbit containing the Uniform (0, 1) distribution is dense in the space of
continuous distributions with respect to the metric d(Fi, Fz) = sup.|Fi(x) — Fa(x)|.
Consequently a confidence set that is optimal on this orbit must be optimal on ©. Denote
order statistics by X;), with X(o) = —o and X(,+1) = ». An invariantly sufficient function is
given by: T(X, y) = (t1, - - -, tm) if X(,) < v, < X4y for i =1, - - ., m. Consider the measure
m(dy, F*) = [[Z: F*(dy.). Letting F* be the.Uniform (0, 1) distribution, we compute W(¢)
= p"(¢; F*, v*); ie, W(t) is the multinomial (r; py, D2 — D1, %y Pm — Pm—1, 1 — D)
distribution evaluated at (¢1, > — t1, « + +, tmw — tm—1, n — t). The confidence region obtained
is a union of m-dimensional rectangles X72:[X(), X(+1)).

7. Shape of confidence regions. The confidence regions given above are undesir-
able for some applications because of their shape. When y is vector-valued one often wants
simultaneous confidence sets for a family of parametric functions, say {{,(y) :j € J}, rather
than a single confidence region for v, since the latter is difficult to interpret. While each
confidence region C(X) for y determines by projection a family of simultaneous confidence
sets

(7.1) A,X) =y CX), Je,
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the confidence level of C(X) provides only a lower bound on the probability of simultaneous
coverage Py{{,(v(6)) € A,(X) Vj € J}. On the other hand, each family of simultaneous
confidence sets {4,(X)} determines a confidence region for v,

(7.2) Ci(X) = N,es ¥ 'A)X),

and the confidence level of C;(X) equals the probability of simultaneous coverage of
{A,(X)}. A confidence region C, that satisfies (7.2) for some family {4;} is said to be exact
with respect to {,:j € J}, and the family {A,} is said to be exact with respect to C;. If
{4,} is determined by (7.1) and C; by (7.2) then {A;} is smallest exact with respect to C;
and C;(X) is the smallest confidence region containing C(X) that is exact with respect to
{{,}; see Wijsman (1980, Section 2). Condition (7.2) imposes a restriction on the shape of
the region C;(x) for each x € 2. And the smaller the family {y,} the greater the restriction;
see Hooper (1981a, Lemma 2.3).

In the covariance matrix problem one may want simultaneous confidence intervals for
all a’Za, a € R?. For this family the only G-invariant exact confidence sets are those of
the form

(7.3) {Z: M1 C 4}, AC[0, o)},

where A\; = - .. = A, denote the ordered eigenvalues of Z~'S; see Wijsman (1980, Section
4.3). The confidence region determined by (6.1) can be written in the form

(7.4) {Z:¥721 {A — (v + B)In(\)} = ¢}.

Since x — (v + k)In(x) is convex in x, the smallest set of the form (7.3) that contains (7.4)
has A = [c1, ], where ¢; < ¢, are the two solutions of x — (v + k)In(x) = ¢/p. By Wijsman
(1980, Equation 4.3.3), the family of simultaneous confidence intervals that is the smallest
exact relative to (7.3) is given by a'Sa/c; < a’Za < a’Sa/c:.

In the MANOVA and GMANOVA problems, families of parametric functions that have
been studied include {a’'M:a € R™}, (Mb:b € R”}, {a’'Mb:a € R™, b € R”?}, and
{tr NM:N € M(m, p)}. In the MANOVA problem, for each of these families, Wijsman
(1980, Section 4.1) characterizes all exact fully invariant set estimators. Roy’s maximum
root procedure is exact with respect to each of the families and is the only fully invariant
set estimator that is exact with respect to {a’Mb}. These results are extended to the
GMANOVA problem in Hooper (1981a). Here the classes of exact invariant set estimators
are larger than in MANOVA. However none of the set estimators of Section 5 are exact
with respect to {a’Mb}. And Roy’s maximum root, {M:\;(T:) < c}, is the only set
estimator based on the eigenvalues of T that is exact with respect to {a’Mbd}.
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