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ASYMPTOTIC THEORY FOR MEASURES OF CONCORDANCE WITH
SPECIAL REFERENCE TO AVERAGE KENDALL TAU!
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The problem of n rankings is considered and the asymptotic distributions
of measures of concordance based on rank correlations are derived under the
null model of complete randomness. The Bahadur efficiencies of the measures

- are computed. A matrix analysis then reveals the asymptotic distribution and
superior efficiency of average Kendall tau. Some interpretation of the results
is also made.

1. Introduction. Consider the situation in which n judges each rank r objects. The
question of interest here is whether there exists a degree of agreement (concordance)
among the n judges. The usual approach is to test the null hypothesis that the set of n
rankings is a random sample from the uniform distribution on the set of r! possible
permutations of the numbers, 1, - .., r. Although we will comment further on this null
hypothesis in the concluding discussion, it forms the basis of our analysis.

The most widely used statistic in this context is Kendall’s W, a statistic derived by
Friedman (1937), and which is equivalent to the average of Spearman’s rank correlation
between each of the (%) possible pairs of judges (see Kendall, 1970). Here we will consider
a general class of concordance statistics, develop their asymptotic (n — o) distribution
theory (Section 2) and discuss their relative efficiencies (Section 3). In Section 4 we make
special reference to the average Kendall tau statistic, first suggested as a preferable
alternative by Ehrenberg (1952) and also discussed by Hays (1960). In fact we are able to
establish its superiority over the W statistic with respect to the approximate Bahadur
slope criterion and the null hypothesis mentioned above.

In Section 5 we discuss this approach to testing for agreement.

We introduce the following notation. The judges’ rankings are denoted by

W = (1), -+, wi(n)), i=1,-..-,n,
and we let
v=(Q0), -, 5@, j=1,.., k
be the & = r! possible permutations of the numbers 1, .- ., r. Let
Po={n, -, yk},
We further denote by
7= (m, -, )

the vector of probabilities according to which each judge will select a ranking, i.e.
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(1.1) 7; = Prob(w, = v;).

The judges’ rankings are assumed to be drawn independently according to the same
distribution 7. The null model corresponds to 7 = 7° = k™1 with 1 denoting a k-vector of
ones. We will let P, denote the measure induced on the subsets of £, by 7 according to
(1.1).

2. Measures of concordance—asymptotic distributions. We describe a class of
measures of concordance constructed via the following three steps:
(i) a right-invariant metric g: %, X %. — [0, »] forms the basis. Diaconis and Graham
(1977) consider examples of metrics g which have the right invariance property
(2.1) g(u, n) = gpo, no), forally,n, o€ 2.

(This definition, in which po denotes the group multiplication of permutations, ensures
that relabeling the r objects would not alter the distances between the rankings.)
(i1) By considering

(2.2) M =max{g(@,n); j=1,...,k}
we now construct a rank correlation statistic,
“(ﬂ»ﬂ)=1_2g(#,”l)/M» :U‘yne‘@r’

which has values between —1 and +1.
(iii) For the case of n rankings the measure of concordance is then simply defined as

-1
an = (;) ¥ j<i alwi, w)),

or the average of all the pairwise rank correlations.
For the measures of concordance based on Spearman’s p, Kendall’s 7 and Spearman’s
footrule the appropriate metrics are, respectively,

HEr+1
(2.3) 8s(u,m) = Yi-1 {u(s) —n(s))* = Z{W— u’n}
1
(2.4) gxlw,m) =3 o<t [1 — sgn{u(s) — u(t)}sgn{n(s) —n(t)}]
(2.5) gr(p, m) = Yoz |pu(s) —n(s)|.

We now derive the asymptotic distribution of &,, under Hy: 7 = #°, for any measure
constructed according to (i), (ii) and (iii) above. Define & X k matrices

G= (g, v)), J=11, I= identity.

THEOREM 2.1. Under H,, for a, defined as in (i), (ii), and (i) above,

(2.6) n(@, —c) >« X'QX—-1+c
where

(2.7) Q=J—-2/M)G, Qr’=cl
and

(2.8) X ~ Ni(0,%0), Yo=k2(kI—J).

(N, denotes the k-variate normal distribution.)

Proor. Let N, = Y7 1{w, = v/} so that N = (Ni, ---, N.)’ is a realization of a
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multinomial k-vector with parameters (n, 7). Define
An=n""AN—n7"), H,=3} g0, w).
It then follows that
H,=Y"%, NNn.gWw:, vm) = NGN = (~N'QN + n?)M/2
= (—nA,QA, — n’c + n*)M/2,

since right-invariance ensures @7° = cl1. Therefore

(2.9) , dn=1— <;‘) H, /M= (A,QA,—1+¢c)/(n—1) +c

and the required result follows from the multivariate central limit result A, —¢ X, with X
as given in (2.8). 00

An earlier version of Theorem 2.1 was due to Quade (1972).
Writing ¢ (-, -) = 1— 2g(-, -)/M we see that

-1
_ n n
an = (2) Vi< q(wi, wj)
is a U-statistic with a kernel g of degree 2. The right invariance property, however, implies
that
E{q(w, w)|w=v}=¢ foralve 2,

so that the U-statistic is degenerate. Theorem 2.1 can, therefore, also be viewed as a finite
sample space (Z,) version of Gregory’s (1977) limit theorem for degenerate U-statistics.

The asymptotic form (2.6) essentially involves a quadratic form of normal deviates and
an equivalent expression involving weighted sums of x3 variables can be obtained. The
weights are the eigenvalues of the matrix

(2.10) QYo=k(Q—cJ)

(see, e.g. Johnson and Kotz, 1970). We note here that for the measure of concordance p,
based on Spearman’s p it is true that ¢ = 0 and that the corresponding @ matrix, @s say,
is such that 27'(r — 1)Qs is idempotent with rank r — 1 (see (4.5)). This fact leads to the
well known result that

(2.11) (r=D{(n = Dpn + 1} 5o x71.

In Section 4 we will compute the explicit form for 7,, the measure of concordance based
on Kendall’s 7.

3. Asymptotic efficiencies. In order to compare the various measures of concord-
ance we will here consider their slopes according to the Bahadur approach to efficiency of
test statistics. We let

3.1) T,=n""{(n—1)(a,—c) —1+c} =n""A,QA,

and now determine the exact slope of {7, }.
LEMMA 3.1 n YT, - (7 — 7% Q (7 — 7°) a.s. [P,].

Proor. Letting
Va=n"'(Ny, -+, N} and Au(m) =n"*(V, — )
we find that, from (3.1),
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nVT, = nT'ALQA, = nTHAL(M QA () + n(m — 7 Q(x — 7°)
+2n % m =7 An(m)} > (1= 7 Qm —7°) as. [Pi]

since n"?4,(7) = 0 as. [P,]. O

LEMMA 3.2. Let

A={v=(v, -+, u):,=0, Yi,v=1)

and
3.2) K@, 7)) =%k, v log(v,/7j); v, 7w € A.
Then

n"'log Po(T, = Vn t) — — f(¢t)
where

f@) =inf(K(, 7%):(v —7°) Qv —7°) = ¢t, vE A).
ProoF. We have
P(T,=<Vnt)=P(n'A,QA,=t) = P(V, € B)

where B, = {v: (v — 7°)'Q (v — #°) = ¢}. Applying Sanov’s (1957) theorem we obtain the
desired result. 0

THEOREM 3.3. The exact slope of {T.} against « is given by
3.3) c(m) =2inf{K (v, 7%: (v — 7°) Qv — 7°) = (7 — #°) Q(r —7°).

Proor. The result follows from Lemmas 3.1 and 3.2 and the definition of exact slope
(Bahadur, 1967) as the limit as n — » of —2n"" log(attained level of T',). 0

In order to compare efficiencies of the various measures of concordance, one would like
to evaluate (3.3) for the matrices Qk, @s, @r corresponding to (2.3), (2.4), (2.5), but we
have not been able to compute c¢(«). An alternative to computing ¢ () is to calculate the
approximate slope which will be a good approximation to the exact slope for local
alternatives (= close to 7°). This approach is discussed in Bahadur (1967) and also in Foutz
and Srivastava (1977) and can be justified directly in our multinomial situation as is shown
in the following theorem.

THEOREM 3.4. Suppose Q Y is positive semi-definite. Then the approximate slope of
{n'*T,} is given by

(3.4) a(m) = (7 — 7% Q(x — 7%/,
where A, is the largest eigenvalue of @ Y. Moreover,
(3.5) a(m)/e(m) > las|m — =’ >0,

where || - || denotes Euclidean norm.

Proor. The asymptotic null distribution of {n"T,} is that of X’QX. On applying
Lemma 3.3 of Foutz and Srivastava (1977) we have that

(3.6) ~log P(X'QX = A1QA,) = (n™ A1QA)(1 + o(1)}/(2Ay).

Hence (3.4) follows from Lemma 3.1 and the definitions of approximate Bahadur slope as
twice the limit of (3.6) as n — oo,
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The result (3.5) is obtained by investigating the properties of K(v, #°) for v in a
neighbourhood of #°. 0

Consequently, the local relative efficiencies of our measures of concordance can be
determined from their respective approximate slopes, i.e. from equation (3.4). In the
following section we will be able to establish the superiority of 7, over p, based on these
considerations.

4. Average Kendall tau. It is clear from Sections 2 and 3 that determining the
asymptotic distribution and the relative efficiency of 7, requires an eigenanalysis of the
matrix k'@, or equivalently Qx Y. This analysis forms the content of this section.

In what follows, the subscripts K and S refer to the Kendall and Spearman cases
respectively. The following can be determined quite readily using (2.2), (2.3), (2.7):

r r(ir—1) rir+1)(r—-1)
(4.1) MK= (2> =-——2———‘, Ms=-—-———-—~—§———---—,
(4.2) ck=cs=0,
4, _ 3(r+1)

where
D= (v, v, - ,n)

is the r X k2 matrix whose columns are the & = r! permutations of 1, - - - , r (labeled in some
order). Furthermore

2
(44) (QK)ij = —1)2§<t S,(S, t)S/(Sy t)

r(r—
where

S;(s, t) = sgn{w;(s) — vi(t)}.
On computing DD’ we may deduce further that

k

2 _
(4.5) Qs = -1

QS ’

from which (2.11) was obtained. We now state a lemma, the proof of which is available
from the authors.

LEMMA 4.1. The matrices Qx and Qs satisfy

. C2k(r+ 1) l
(i) QxQs =1 Qs

46) (i) @c= 2(r3—"':l)Qs +A, QA =0

4 k(r+1)° 2k

2 _
4.7) (i) Q% = 9 7% r —1) Qs+ 3r(r—1) 4.

We are now able to complete the analysis of Qx.

THEOREM 4.2. The matrix Qk has two distinct non-zero eigenvalues

(4.8) A=2k(r+1)/{3r(r—1}, A=2k/{3r(r—1)}
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with corresponding principal idempotents

Ei={(r—-1)/k}Qs, E;= {(3r(r—1)/2k} A,

of rank (r — 1) and (r ; 1) respectively.

Proor. By considering the result (4.6) of Lemma 4.1 we have

4(r + 1)* ( k

“9 Qk=—5= 7_—1>QS Al

since @% = {k/(r — 1)} Qs. Comparing (4.9) and (4.7) of Lemma 4.1 we conclude that
A% = {(2k)/3r(r — 1)}A.

We then may identify E» = {3r(r — 1)/(2k)}A as idempotent and by considering the traces
of both sides of (4.6) we obtain

tr(A) = k(r —2)/(3r)
which gives the rank of E; as described. O

REMARK. The above result seems to be related to that of Hajek and Sidak (1967, page
60).

Theorem 4.2 provides the key to the following two results. The first identifies the
asymptotic distribution of n7,.

THEOREM 4.3. Under the null model ( Pr°), the asymptotic distribution of n7, is
given by
(4.10) () Xt )} — 1

’ 3r(r—1) Xr-1 x<r;1)

where the two x* variates are independent.

ProoF. The proof follows from Theorem 2.1 and the eigenanalysis of Qx Yo = £ '@«
given in Theorem 4.2. 0

Critical values of the distribution (4.10) can be computed using the Wilson-Hilferty
approximation described in Jensen and Solomon (1972).
Turning now to the efficiency question we have the following theorem.

THEOREM 4.4. The approximate Bahadur slope of average Kendall tau against rho
is given by

(4.11) ax(m) = (r — 1)’ Qx(m — 7°) 32%(:-511)1
and ag(m) = as(w) for all w € A.

ProoF. The result (4.11) follows from Theorems 3.4 and 4.2. Moreover, from Lemma
41

2(r+1)
e -
3r

= (r—1)(7 — 7% Qs(r — 7°) = as(w),

3r(r—1)

ak(m) = [{(‘” — 7% Qs(m — 7°)) 2(r+1)

(7 — 7% A — 770):|
(4.12)

since A is positive semi-definite. 0

In terms of approximate slope we see that average Kendall tau is at least as efficient as
average Spearman rho for testing the null hypothesis H, when the probability vector = is



MEASURES OF CONCORDANCE 1275

appropriate. Bearing in mind Theorem 3.4, this superior efficiency applies also to the exact
slope criterion for “local” alternatives .

The claim that average Kendall tau is superior has appeared in the literature (Ehren-
berg, 1952; Hays, 1960; Kendall, 1970) and we have here provided some justification for
this claim. In addition we have identified the exact asymptotic distribution in contrast to
the approximations discussed in Ehrenberg (1952) and Hays (1960).

5. Remarks. From the calculation (4.12) it is clear that the superior efficiency of 7,
follows from the fact that it is sensitive to a wider variety of deviations from #° than is
on. This observation leads us to consider the following points.

(a). Returning to our original desire to discover “concordance,” one might consider
whether the additional deviations from #° correspond to situations which one would wish
to describe as embodying agreement among the judges. In other words, in comparing tests
of the null hypothesis, one should consider the particular alternatives which are relevant
to the problem. This latter approach may involve non-null modeling (see, for example,
Feigin and Cohen, 1978).

(b). There possibly is scope to construct other statistics which are sensitive to exactly
those deviations which are to be considered as implying concordance in given problems.

(¢). The likelihood ratio test (LRT) statistic is the most efficient in terms of Bahadur
slope in the multinomial situation and so one may ask why not test for concordance using
this statistic. There are two comments to be made here.

(i) In the light of (a) and (b) above, the fact that the LRT is sensitive to any deviations
from 7#° is not an advantage when one is trying to discover those deviations which
correspond to a particular pattern of concordance.

(i) Technically, the LRT will be based on a multinomial sample with % = r! cells. In many
practical applications, this will lead to a situation in which most cells are empty. The
usual x3-: asymptotic distribution is then not likely to be sufficiently accurate; see
Fienberg (1979) on the problem of “large sparse multinomials.”

(d). This last point raises the question of rates of convergence to asymptotic distributions
of statistics of the form A, QA,. A crude calculation based on results such as those of
Bhattacharya and Rao (1976, page 120) shows that the maximum deviation of the null
distribution function of A, @A, from its limit (as n — ) is of the order »’n "%, » being the
rank of @ Y. For r = 5 for example, for 7, the value of » is 10 while that for the LRT is
119; this suggests that the same accuracy may require a sample size some 20,000 times as
large for the LRT x%-; approximation as for 7,.
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