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RECTANGULAR AND ELLIPTICAL PROBABILITY INEQUALITIES
FOR SCHUR-CONCAVE RANDOM VARIABLES'

By Y. L. TonG

University of Nebraska

It is shown that if the density f(x) of X = (X, --- , X,,) is Schur-concave,
then (1) P(|X.| = a;, i =1, --., n) is a Schur-concave function of (¢(a1),
«eo, ¢d(an)), and (2) P{Z(X;/a:)® < 1} is a Schur-concave function of (¢ (a?),
<o+, ¢(a2)), where ¢;[0, ) — [0, ) is any increasing and convex function.
By letting ¢ (a) = a, (1) implies that P(|X;|<ai,i=1,---,n) = P(|X.| =
a i =1, ..., n). As special consequences, the results yield bounds for
exchangeable normal and ¢ variables and for linear combinations of central
and noncentral Chi squared variables. .

1. Introduction and motivation. This work concerns probability inequalities via
majorization and Schur-concavity. Roughly speaking, a majorizes b (in symbols, a > b)
indicates that the components of a are more diverse. For definitions of majorization and
Schur-concave functions, see Marshall and Olkin (1979, page 7, page 54).

Let X = (Xi, -, X,) denote a n-dimensional random variable whose density is f(x).
We shall say that X is Schur-concave if f(x) is a Schur-concave function of x. Marshall
and Olkin (1974) previously proved that the cumulative probability

a1 Bla)=PXi<a,i=1,---,n)

is a Schur-concave function of a = (a, - - - , a,) for all Schur-concave random variables X.
Since in many statistical applications the rectangular probability

(1.2) v@)=P(|Xi|<=ai,i=1,---,n)

is also of concern, a related question is whether or not y(a) is also a Schur-concave
function of a. This question cannot be answered by a similar argument given by Marshall
and Olkin (1974), so a new proof is needed.

In this paper we show that the answer to the above question is positive by proving an
integral inequality for Schur-concave functions. After this result is proved, we then use the
same basic argument to obtain an inequality for the probability contents of ellipsoids, and
indicate a direction for possible generalization. The inequalities involve the concept of
diversity of the components of a scale (instead of location) parameter vector, and are
applicable in a number of situations. For the multivariate normal and ¢ variables, the
inequalities yield bounds for the probability contents of rectangular sets and ellipsoids.
Consequently bounds for linear combinations of central and noncentral Chi squared
variables can be derived.

After proving these inequalities in Section 2, we observe some applications in Section
3.

2. The main theorems. For notational convenience let A(a), B(a) denote the
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rectangular set and the ellipsoid given by
2.1) A(@) = {x|xER" |xi|=ai,i=1,-..,n},
(2.2) B(a) = {x|x € R", Y1 (x:/a;)* = 1}.

To avoid the trivial case, it will be assumed that the a/’s are strictly >0fori=1, ..., n.
The purpose of this section is to present the following theorems.

THEOREM 2.1. Iff(x): R" — [0, ») is Borel-measurable and Schur-concave (strictly
Schur-concave) then, provided that the integral exists, faw) f(x) dx is a Schur-concave
(strictly Schur-concave) function of (a1, «-- , az).

THEOREM 2.2. Iff(x) satisfies the conditions stated in Theorem 2.1, then [p@) f(x) dx
is @ Schur-concave (strictly Schur-concave) function of (ai, - - , a).

The proofs of these two theorems depend on the lemma given below. Let C(a), C(b)
denote two closed convex sets in R? which depend on the vectors (a1, az) and (b1, b2). Let
ci(a) =inf{x; + x| x € C(a)}, c2(a) = sup{x: + x2|x € C(a)}.

For every fixed A € [c;(a), cz(a)] let 4 (a) be the segment of the line x; + x» = A intersecting
C(a), | 4(a) | the length of 4 (a), and 8, (a) the distance between the midpoint of 4 (a) and
(%A, %2\). Let us assume the following conditions’

CoNDITION Al. c;(a) = c1(b) and cz(a) < c2(b).

ConDITION A2. The inequalities
(2.3) 4@ =<4,
(2.4) o\ (a) = 4 (b)
hold for all A € [c:1(a), c2(a)].
Then the set {x; + x2| x € C(a)} is a subset of {x; + x2|x € C(b)}, the line segment in

C(a) is shorter, and the coordinates of its midpoint are more diverse in the sense of
majorization.

LEMMA 2.1. Assume that Conditions Al, A2 are satisfied. If f(x): R* — [0, ©) is
Borel-measurable and Schur-concave then, provided that the integrals exist,

(2.5) f(x) dx = f(x) dx

C(a) C(b)

holds. In addition, if f(x) is strictly Schur-concave and if strict inequalities in (2.3), (2.4)
hold for A\ € I, and \ € I, respectively for some intervals I, and I, then the inequality in
(2.5) is strict.
Proor. Consider the orthogonal transformation
U = (x1+x2)/\/§, Uy = (xl—xz)/\/é.

For each fixed u; let (u;, di(a)) and (u;, dz(a)) be the endpoints of the line segment in
C(a) in the (u;, u2) space, and (u;, d(a)) be the midpoint, where d;(a) < d:(a), d(a) = %
Y% d;(a), and they depend on u;. Then Condition A2 implies

(2.6) dz(a) — di(a) = dz(b) — di(b),
2.7) |d(a)| —|d(b)|=0.
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If we write

cx(@)/V2  pdyla)
f f(x) dx = f fl(wn + w2/ V2, (1 — us)/2) duz duy,
C(a) «

(@)/V2 Jd(a)

then for every fixed u;, by Schur-concavity, the function f((u; + U2)/‘/§ , (W — u2) /\/5 ) is
symmetric in u; and unimodal. Thus for fixed dz (a) — d;(a) the value of the inner integral
is nonincreasing in | d(a) |. Letting

_Jd(@) —dd) if d(a) =0,
= 1d(b) —d(a)  otherwise,

and combining (2.6), (2.7) with the fact that f = 0, we have

dy(a) dy(a)—e
f Flr + u2)/V2, (w1 — us)/V2) dus < f fl(u + ) /N2, (= us)/V2) du,
(28) d(a) dy(a)—¢

dy(b)
= f Fl(u + us) /2, (w — us)/2) dus.

d,(b)

Combining (z.8) with Condition Al, the inequality (2.5) now follows. Moreover, the
inequalities in (2.8) are strict, hence (2.5) is strict, under the additional conditions. O

ProOOF oF THEOREM 2.1. In view of Lemma B.1 on page 21 of Marshall and Olkin
(1979) we can give the proof for n = 2 only; that is, statistically speaking we can give the
proof under the conditional distribution of (X3, X;) given (X3, -- -, X,).

Assume that a; > b; = b, > a; and that a = (a;, az) > b = (b, b2). For fixed ¢ = Y3 a;
=Y} b, let us consider the set

C@) ={x|xeR?|x|=ai=1,2}.
Then the line x; + x2; = A is tangent to the sets of boundary points of C(a) and C(b) for
A = * ¢. Hence Condition Al is satisfied. Also, simple algebra shows that, for A € [—c, c],

~/§(c—|>\|) for |A|=a;— ay,
|4@) | = {\/ga2 otherwise,

S\(a) = (al—az)/\/é forl)\|2a1—-a2,
A IN]/v2 otherwise.

Therefore it can be verified that Condition A2 is also satisfied, and the proof follows froin
Lemma 2.1.

ProOF OF THEOREM 2.2 Again consider n = 2, and assume that a3 > b3 = b3 > a3,
c2=Y%a? = Y3 b} is kept fixed. Let

C(a) = (x|x € R’ 31 (x:/a)’ = 1}.

Then again the line x; + x, = A is tangent to the sets of boundary points of C(a) and C(b)
for A = £ ¢. Moreover, it follows from elementary computations that

4 @) = V8 aras(c® — A2)?/c?,
n(a) = (a? — ad) |A|/V2c2

Therefore Conditions A1 and A2 are also satisfied, and the theorem follows.

Combining Theorems 2.1 and 2.2 with a result in Marshall and Olkin (1979) we can
obtain a seemingly more general statement. This is given below as corollaries.
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COROLLARY 2.1. If f(x), the density of X, is Schur-concave, and if ¢(a) :[0, ©) — [0,
) is strictly increasing and convex, then the rectangular probability P(| X;| < a;, i =1,
.++, n) is a Schur-concave function of (¢(ai1), - - , ¢(ay)). That is,

(d’(al)’ e ’¢(an))> (¢(b1)) e >¢(bn))
implies
P(|X|<ayi=1 - ,n)<P(|X|<b,i=1---,n)

Proor. Write the rectangular probability as
y(@) =y (¢(a1)), .-+, o ($(an))).

Since —v is decreasing and (by Theorem 2.1) Schur-convex, and since ¢ " is increasing and
concave, the result follows immediately from case (vi) of Table 2 in Marshall and Olkin
(1979, page 63).0

CoROLLARY 2.2. If f(x) and ¢(a) satisfy the conditions given in Corollary 2.1, then
the elliptical probability P{¥? (X;/a:)* < 1} is a Schur-concave function of (¢(a}), - - -,
é(ar)).

ProOOF. Similar to proof of Corollary 2.1. 00

These corollaries can be applied to obtain inequalities when the sum Y7 ¢(a;) or
Y7 o(a?) is held fixed. If ¢ is a linear function, then they reduce to the statements in
Theorems 2.1 and 2.2. Corollary 2.1 also yields the following geometric inequality: The
volume of the set {x|x € R", | x;|<ai,i =1, - -+, n} is a Schur-concave function of (¢ (a1),
.+, ¢(an)), and is maximized (for fixed Y ¢ (a;)) when a; = --. = a,. For ¢(a) = a this
result is, of course, well-known.

Generally speaking, Theorems 2.1 and 2.2 can be regarded as inequalities via the
diversity of the scale parameters. That is, they say that if f(x) is Schur-concave, then

(2.9) f flays, « -+, anyn) I17 dlaiy:)
D
is a Schur-concave function of a for
(2.10) D={y|ly€R" |»|=Li=1---,n}
and
(2.11) D={(y|lyeR" Yiyi=1},
respectively; or equivalently, the function defined by
(2.12) Y(@)=EgXi/ai, -+, Xn/n)

is Schur-concave where g is the indicator function of D of (2.10) or of (2.11). This fact is
analogous to, but different from, the inequality due to Marshall and Proschan (1965) which
was obtained under the assumption of concavity instead of Schur-concavity. Note that, as
pointed out in Tong (1980, page 116), the result of Marshall and Proschan (1965) does not
yield probability inequalities.

A legitimate question is whether or not the results can be generalized to the class of
convex sets

(2-13) Dk={y|yeRn)ny:z$1}y k=2’4’6"")°°>
for fixed

(214) ck/(k—l) = Eit af/(k—l) = E;t b{?/(k—l).
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In view of the facts that the sets given in (2.10) and (2.11) are D. (plus the boundary
points) and D., respectively, and that for general 2 Condition Al is already satisfied, it is
conjectured that such an extension is possible. It also appears that the proof of Lemma 2.1
can be modified to obtain similar results for general symmetric and convex sets, but it is
not yet known to the author to what extent such a generalization is possible.

3. Applications. In this section, we give some applications of the main results.

APPLICATION 3.1. Independent and identically distributed random variables. Let
X1, -++, X, beii.d. univariate random variables with density 4 (x). If A (x) is a log-concave
function of x, then X = (Xj, ..., X,) is Schur-concave, and Theorems 2.1 and 2.2 can be
applied to obtain bounds on their joint probabilities.

APPLICATION 3.2. Symmetric unimodal densities. If f(x) is permutation symmetric
and unimodal, then it is Schur-concave, hence Theorems 2.1 and 2.2 apply.

APPLICATION 3.3 Exchangeable multivariate normal and t variables. If X = (Xi,
..+, X,) is a normal variable with means p, variances o and correlations p € (=1/(n — 1),
1), then its density is Schur-concave, and Theorems 2.1 and 2.2 apply. Moreover, if S'is a
v x%u/v variable and is independent of X, and if u = 0, 62 = 1, then the density of the
multivariate ¢ variables t = (X;/S, :.., X,./S) is also Schur-concave. Application 3.3
includes the following special cases.

Normal and t probability bounds. In many applied problems one needs to evaluate
the value of a rectangular probability for exchangeable normal or ¢ variables. Suppose that
we find the table value from existing tables with all coordinates equal toa@ = -1 a; (e.g.,
using the tables in Dunn, Kronmal and Yee (1968)). Then from Theorem 2.1 we have
(31) P(lXilsai)i= 1, e yn)—<—P(|Xt|S&)l=1y e yn)’

(3.2) P(ltilsai,i= 1, e ,n)SP(ltllsdyl= 1, e )n))

Thus as a special consequence the existing tables can be used to obtain numerical values
of the upper bounds. To illustrate this point, consider exchangeable normal variables X,
Xz, X3, X, with p = 0, 02 = 1 and p = %, and consider the possible configurations of the a
vector:

(3.0, 3.0, 1.0, 1.0) > (2.75, 2.25, 1.75, 1.25) > (2.5, 2.5, 1.5, 1.5) > (2.0, 2.0, 2.0, 2.0).

Based on numerical calculations on an IBM 365/370 computer, the corresponding values
of y(a) are

0.4975 < 0.7318 < 0.7613 < 0.8569.

Note that the value of v(2.0, 2.0, 2.0, 2.0) is an upper bound on y(a) for all a satisfying
E?:] a; = 8.0.

Distributions of sum squares of normal variables and linear combinations of central

and noncentral Chi squared variables. Let (Y1, ---, Y,) be a normal variable with
variances ¢, means po,(i = 1, .-+, n) and correlations p. Then for all y, the probability
P(3? Y?=y) is a Schur-concave function of (¢(a1?), - -, ¢(0-7)). Thus the maximum of

the probability (for fixed ¥} 07?) is attained when each of o7 is replaced by their harmonic
mean ¢3. For the case p = 0 and p = 0, the upper bound on the probability is P(x7 =<
y/0?%); this yields a bound for the linear combinations of independent Chi squared variables,
and should be useful in the power consideration of certain tests. For the case u # 0 and p
= 0, this yields a new inequality for the noncentral Chi squared distribution via the
diversity of the variances.
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APPLICATION 3.4. Optimal allocation of observations. Let there be n equally corre-
lated (or independent) normal populations with means y; and known variances ¢?, and let
X, denote the sample mean with sample size N; from the ith population (i =1, --- , n). Let
us denote (for ;> 0,i=1, ---,n)

E =X [X, - b,', Xi + bi]

to be the two-sided confidence region for g = (g1, - - - , u»). Then the confidence probability
isP(|X;|= s/I—V—, b;/o;,i=1, ---,n), where (Xi, - .-, X,) is a normal variable with means
0, variances 1 and correlations p. A practical question of concern is this: Under the
condition that b, /01 = - - - = b, /0., what is the best allocation of observations so that, for
fixed total sample size N = )71 N; (but not for fixed Y7, VN;), the confidence probability
is maximized? This question can be answered immediately by choosing ¢(a) = a® in
Corollary 2.1. Therefore, the best allocation is such that | N; — N;| < 1 for all i # j. Further,
it yields a chain of inequalities, and says that the more diverse are N, - - - , N,, in the sense
of majorization, the smaller is the coverage probability. )
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